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Abstract: Epoxy resins as important organic matrices, thanks to their chemical structure and the
possibility of modification, have unique properties, which contribute to the fact that these materials
have been used in many composite industries for many years. Epoxy resins are repeatedly used in
exacting applications due to their exquisite mechanical properties, thermal stability, scratch resistance,
and chemical resistance. Moreover, epoxy materials also have really strong resistance to solvents,
chemical attacks, and climatic aging. The presented features confirm the fact that there is a constant
interest of scientists in the modification of resins and understanding its mechanisms, as well as in the
development of these materials to obtain systems with the required properties. Most of the recent
studies in the literature are focused on green fillers such as post-agricultural waste powder (cashew
nuts powder, coconut shell powder, rice husks, date seed), grass fiber (bamboo fibers), bast/leaf
fiber (hemp fibers, banana bark fibers, pineapple leaf), and other natural fibers (waste tea fibers,
palm ash) as reinforcement for epoxy resins rather than traditional non-biodegradable fillers due
to their sustainability, low cost, wide availability, and the use of waste, which is environmentally
friendly. Furthermore, the advantages of natural fillers over traditional fillers are acceptable specific
strength and modulus, lightweight, and good biodegradability, which is very desirable nowadays.
Therefore, the development and progress of “green products” based on epoxy resin and natural
fillers as reinforcements have been increasing. Many uses of natural plant-derived fillers include
many plant wastes, such as banana bark, coconut shell, and waste peanut shell, can be found in the
literature. Partially biodegradable polymers obtained by using natural fillers and epoxy polymers
can successfully reduce the undesirable epoxy and synthetic fiber waste. Additionally, partially
biopolymers based on epoxy resins, which will be presented in the paper, are more useful than
commercial polymers due to the low cost and improved good thermomechanical properties.

Keywords: natural fillers; green composites; seed fibers; fruit fibers; grass fibers

1. Introduction

Epoxy resins are one of the versatile thermosetting polymers widely employed for
different applications such as construction, coating, automobile, aerospace, and struc-
tural adhesives. Essentially, epoxy resins are low molecular weight liquids with two or
more epoxide functional groups. These epoxide groups in epoxy resins can easily re-
act with a wide range of curing agents/hardeners such as acids, anhydrides, alcohols,
and amines. During curing, the low molecular weight liquid epoxy resin increases in
length, makes branches, and finally becomes a high molecular weight solid material with a
three-dimensional network structure [1,2]. The completely cured epoxy resins are known
for their high strength, modulus, thermal stability, low shrinkage, chemical resistance,
and dimensional stability [3]. However, the cured epoxy samples are highly brittle and
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are susceptible to moisture absorption. The high brittleness of the epoxy system was due
to their high crosslink density. Xian et al. [4] reported that the crosslinked epoxy resins
may undergo hydrolytic degradation or network hydrolysis when exposed to a humid
environment. This may cause the following changes in the epoxy network such as plasti-
cization, reduction in glass transition temperature (Tg), and the degradation in mechanical
properties when exposed to wet aging conditions.

The current demand for high-performance green composites has resulted in the use
of natural fillers as a reinforcement in the epoxy matrix. The USA, European, and other
government agencies encourage the use of green composites with a high number of natural
resources [5–9]. Studies have shown that the incorporation of various natural fillers in
epoxy resin improved its thermomechanical properties. Many automobile companies are
currently using green fibers in their automotive products, since there is a global emergency
of low CO2 emission [6–9].

The need of utilizing green materials for a sustainable environment has caused an
upsurge in the use of natural materials in the composite industry because the sustainability
of the products during processing and end of life is important. Natural fillers are sustain-
able potential materials as reinforcing agents for different polymer matrices in varying
applications such as automobile, construction, aerospace, toys, defense, sporting goods,
and electronic applications [10]. The key objectives of natural filler in the composite indus-
try were to reduce the cost as well as improve the processing, properties, and environmental
friendliness. The cost of different natural fibers and E-glass fiber per kilogram is given
in Figure 1 [11]. From the figure, when compared with E-glass fiber, all the natural fibers
are cheaper.
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Figure 1. The cost of different natural fibers and E-glass fiber per kilogram in US dollars [11]
(reproduced with thanks from Elsevier, License Number: 5206321182202).

The other advantages of natural fibers are their easy availability, easy manufacturing
process, less energy consumption, renewability, and good mechanical properties. These
advantages make natural fillers an alternative to traditional fillers in many applications such
as construction and infrastructure, furniture, and rotor blade materials [10]. Based on their
origin, natural fibers are plant-based, animal-based, and bacterial-based [12–14]. However,
plant-based natural fibers are preferred due to their abundance, easy availability, and low
cost. The plant fibers can be obtained from bast (flax, hemp, and ramie), leaves (pineapple,
abaca, and sisal), fruits/seeds (cotton and coir), stalk (wheat, rice, and oats), and grass
(bamboo and bagasse) [15,16]. Plants fibers from different sources have varying amounts
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of cellulose, hemicellulose, and lignin content; hence, it is worth characterizing plant fibers
from different sources and using them as a reinforcement in the polymer matrix [17]. Note
that a high content of cellulose in fibers is recommended for the fabrication of composites
with high strength and modulus. Table 1 shows the fiber source, world production, cellulose
content, tensile strength (TS), Young’s modulus, and density [17]. The cellulose content of
ramie, flax, and jute was the highest. Among the various natural fibers, flax showed the
highest tensile strength, modulus, and lowest equilibrium moisture content [17].

Table 1. Fiber source, world production, cellulose content, tensile strength, Young’s modulus,
and density of various natural fibers [17] (reproduced with thanks from Elsevier, License Number:
5206330256793).

Fiber
Source

World
Production

(103 ton)

Cellulose
(wt%)

Hemicellulose
(wt%)

Lignin
(wt%)

Waxes
(wt%)

Tensile
Strength

(MPa)

Young’s
Modulus

(GPa)

Elongation
at Break

(%)

Density
[g/cm3]

Bamboo 30,000 26–43 30 21–31 140–230 11–17 0.6–1.1
Bagasse 75,000 55.2 16.8 25.3 - 290 17 1.25

Coir 100 32–43 0.15–0.25 40–45 175 4–6 30 1.2
Pineapple

Ramie 100 68.6–76.2 13–16 0.6–0.7 0.3 560 24.5 2.5 1.5
Abaca 70 56–63 20–25 7–9 3 400 12 3–10 1.5
Flax 830 71 18.6–20.6 2.2 1.5 345–1035 27.6 2.7–3.2 1.5
Jute 2300 61–71 14–20 12–13 0.5 393–773 26.5 1.5–1.8 1.3

Hemp 214 68 15 10 0.8 690 70 1.6 1.48
Sisal 378 65 12 9.9 2 511–635 9.4–22 2.0–2.5 1.5

Plant-based fillers such as banana fiber, hemp, sisal, pineapple, bamboo, flax, peanut
particles, etc., have been widely used as reinforcement for various polymer matrices.
Studies have shown that plant fibers are an excellent replacement for carbon and glass
fibers in many semi-structural applications [18]. Recently, the isolation of nanocellulose
from plant fibers has received huge attention due to the ease of preparation, good strength,
modulus, and crystallinity. The nanocellulose can be used for the difference of application
as a replacement for carbon-based fillers, metallic fillers, and polymeric nanofillers [19]. It is
important to point out that the natural fillers/fibers in macro, micro, and nanoscales have a
significant impact on the mechanical properties of the polymer matrix [20–22]. However,
a few shortcomings have limited its widespread application in the epoxy composite industry.
These are poor water sensitivity, UV radiation, poor bonding, flammability, dissimilar
chemical nature, and lower mechanical properties compared with synthetic fibers. The poor
moisture resistance and poor bonding or interfacial properties of the natural fillers are
due to the hydrophilic nature because of the presence of hydroxyl groups present in them.
Moreover, the moisture or water may enter inside more easily through the polymer/fiber
interface and affect the short- and long-term properties of the epoxy composites. Thus,
there is a high chance of the degradation of epoxy composites when used for outdoor
applications [23]. These shortcomings can be overcome by the physical treatment of
natural filler (corona treatment, plasma treatment) [24,25], chemical treatment of natural
filler (silane, alkali, benzoylation, etc.) [26–30], and modification of natural fillers with
coupling agents [31].

The utilization of physical and chemical treatment has shown reduced hydrophilicity
and improved thermomechanical performance of the fibers. However, chemical treatment
is not environmentally friendly and is also not cost-effective; therefore, green, ecofriendly,
naturally-derived materials such as tannic acid are recently employed for the surface
functionalization of natural fibers [32]. The physical and chemical treatment of the fibers,
and the addition of coupling agents, have been reported to have an effect not only on the
surface morphology but also on the hydrophilicity, thermomechanical, and water absorp-
tion properties of the composites. The studies reported enhanced short- and long-term
properties by improving the mechanical, fatigue, creep, thermal, and water resistance
properties of the natural fibers-reinforced epoxy composites after various physical and
chemical treatments [33–38]. The studies also reported that the factors such as filler con-
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tent, filler size, and filler geometry also have a significant influence on the properties of
the composites [37,38].

Improved composite materials can be fabricated with the addition of natural fibers
in the epoxy matrix. Thus, the use of natural materials is essential for the development of
low-cost semi-structural epoxy composites and also to reduce undesirable epoxy, synthetic
fiber waste, and CO2 emissions. Therefore, in this study, we have critically reviewed the
possibilities of waste natural materials in the epoxy composite industry. A schematic of
various natural fibers used for the development of natural fiber/filler-reinforced epoxy
composite is given in Figure 2.
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2. Post-Agricultural Waste Powder Material Filled Epoxy Composites (Seed and Fruits)

Post-agricultural waste materials are of interest for the manufacturing of low-cost
composites due to their low price, easy availability, and sustainability. Natural materials
such as walnut waste shell, tamarind shell, peanut shell powder [38–40], etc. have been
acquired wide interest for their application in composite technology. Baig and Mushtaq [39]
studied the influence of tamarind shell powder on the mechanical properties of epoxy
composites. The photograph of tamarind shell and tamarind shell powder is shown in
Figure 3. The 50/50 and 30/70 epoxy/tamarind shell powder compositions were prepared.
The composite with a 30/70 composition showed the highest TS, tensile modulus (TM),
and hardness, while the 50/50 composition showed the highest flexural strength (FS)
and flexural modulus (FM). The water absorption is more for 30/70 compositions. In an
interesting study, Prabhakar et al. [40] used NaOH treated waste peanut shell powder as a
reinforcement for DGEBA epoxy resin. The researchers observed that the incorporation of
waste peanut shell powder improved the TS, TM, and thermal stability.

Salasinska et al. [41] used walnut shell waste powder as a modifier for epoxy compos-
ites. The walnut shell waste filler was milled, and a particle size in the range of 32–120 µm
was prepared. The concentration of the filler used in the epoxy matrix was 20%, 30%, 40%,
and 50%. The FTIR spectrum revealed that the curing process was modified in the presence
of fillers. The study reported a reduction in moisture content in epoxy composite with
the incorporation of walnut shell powder; however, some moisture will always be present
depending on the environmental conditions. The mechanical properties such as TS and
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impact properties were reduced with the incorporation of walnut shell powder due to the
poor dispersion of particles in the matrix. On the other hand, YM, hardness, and storage
modulus (SM) were increased; the authors claim that this is due to the catalytic effect of
OH groups present in fibers on the epoxy reaction kinetics, which may result in a higher
crosslink density of the samples. The thermal stability of the composites (5% mass loss, 10%
mass loss, and residual mass) was also increased due to the higher thermal stability of the
walnut shell waste powder. In a more recent study, Albaker et al. [42] used treated walnut
shell waste powder as a filling material for epoxy matrix. The walnut shell was milled,
sieved, and then alkali-treated. Then, the alkali-treated filler was treated with three differ-
ent organic acids such as citric acid, oxalic acid, and formic acid. The treatment increases
the percentage of cellulose, while it reduces the percentage of hemicellulose and lignin.
The concentration of the treated filler used in epoxy was 10%, 20%, 30%, 40%, and 50%.
The composites prepared showed an increased TS and YM with comparable hardness,
while the elongation at break was reduced. The optimum concentration of the treater
filler was 20 wt%, irrespective of the type of treated fiber. On the other hand, the thermal
stability of the composite was slightly reduced, while the water absorption was marginally
increased. Barczewski et al. [43] studied and compared the feasibility of sunflower husk,
hazelnut shell, and walnut shell as waste agricultural filler for developing low-cost epoxy
composites. Before incorporating in the epoxy matrix, the sunflower husk, hazelnut shell,
and walnut shell were ground, as shown in Figure 4. The content of the filler used in the
composite was 15%, 25%, and 35%. The TM, FM, and hardness of the composites were
increased, while the TS, FS, and IS were reduced, with the increasing addition of ground
waste fillers. Among the composites, hazelnut shell-based organic waste filler showed the
best properties. Thus, the hazelnut shell filled composite was most favorable for developing
eco-friendly composites
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Sathishkumar et al. [44] studied the dry sliding wear and friction performance of epoxy
composites containing cashew nutshell powder. The cashew nutshell powder was prepared
from cashew nut seed, and the powder was treated with 5% NaOH solution to remove
the weak amorphous phase from it. The concentration of the NaOH treated filler used in
epoxy resin was 5%, 10%, 15%, 20%, and 30%. It is also worth noting that the coefficient of
friction and specific wear rate was low for the epoxy sample containing 30% treated filler
as a result of better bonding and uniform distribution of the filler. Since the nutshell is a
waste part cashew and is fully biodegradable, it is worth using it for the development of
epoxy composites for tribological applications. Shakuntala et al. [45] fabricated wood apple
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shell particulates composites with improved mechanical and wear resistance. The wood
apple shell particulates of ca. 212 µm from wood apple shells were prepared by crushing
and ball milling. The density and void content of the epoxy matrix was decreased with the
incorporation of wood apple shell particulates. The TS, FS, interlaminar shear strength,
and SM was increased with the incorporation of wood apple shell particulates in the
epoxy network, and the best results were observed for 15% filler content. The improved
mechanical properties are due to the good wetting of the filler by the epoxy resin. However,
a drop in mechanical properties was observed for 20 wt% filler contents, because at higher
loading, it is more difficult for effective wetting of the filler by the epoxy polymer, leading to
poor interfacial interaction between the filler and polymer. The erosion wear properties of
the composites were tested at different impingement angles. The composites showed lower
erosion wear properties compared to neat epoxy, and the 10% and 15% composites showed
the lowest erosion wear properties. Irrespective of the samples prepared, the erosion rate
was maximum at an impingement angle between 45◦ and 60◦. The photograph of wood
apple fruit and wood apple shell, SEM images of the wood apple shell particles, and erosion
wear behavior of the composites at different impingement angles are shown in Figure 5.Polymers 2022, 14, x FOR PEER REVIEW 6 of 18 
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Soumyalata et al. [46] studied and compared the effect of coconut shell powder and
rice husk powder as a reinforcing filler in epoxy composites. The mechanical properties,
specific gravity, and water absorption properties of the composites were studied. Compared
to rice husk powder, the coconut shell powder-reinforced epoxy composite gives higher
TS, FS, impact strength (IS), and hardness (shore D). The water absorption resistance
was also reported to be higher for coconut shell powder-reinforced epoxy composite.
The reported specific gravity for both the composites is similar: 1.21 and 1.2, respectively.
The comparative study showed that the coconut shell powder-reinforced epoxy composite
was superior to the rice husk-reinforced epoxy composite. Similarly, Salleh et al. [47]
reported an increased Izod impact strength of epoxy composites with the incorporation
of Komeng coconut carbon fiber. Thus, many studies reported encouraging results for
the possible use of post-agricultural waste powder in the composite industry. However,
the impact of degradation of fruit and seed fillers in epoxy composites during their long-
term service time has not been considered. The lack of information on the degradation
of the composites limits the use of fruit and seed fillers in many service applications.
Therefore, more experimental, theoretical, and prediction studies on the fruit and seed
fillers-reinforced epoxy composites are required to ensure better serviceability [48].
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Open access.

3. Grass Fiber-Based Epoxy Composites

Napier, bamboo, and bagasse are widely used in construction applications. Kommula
et al. [49] studied the effect of incorporation of untreated and alkali-treated Napier grass in
the epoxy matrix. Randomly oriented short and long unidirectional fibers were used for
the fabrication of the composites. The fiber loading used was 10%, 20%, and 30%, and the
NaOH concentration used was 5%, 10%, and 15%. The TS, TM, FS, FM, and IS of the
composites were improved with fiber addition and NaOH treatment. Irrespective of the
type of fiber (randomly oriented short and long unidirectional fibers), the best properties
were observed for 20% filler content with 10% alkali treatment. The improvement in
properties was due to the improved interfacial adhesion between the fiber and polymer
after the alkali treatment. Note that long fibers show superior properties compared to short
fibers. The water absorption and chemical resistance of the composite were also reduced
with alkali treatment. Based on the properties, the researchers recommend the alkali-treated
Napier grass treated epoxy composites for semi-structural applications.

Agricultural waste bagasse was treated with triglycidyl isocyanurate (TGIC) and 9,10-
dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) to graft nitrogen and phosphorous-
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containing compounds onto its surface [50]. Then, the modified bagasse was incorporated
with the epoxy network to fabricate fire-retardant epoxy composites. The reaction process of
epoxy/modified bagasse is shown in Figure 6. The study revealed that the modified bagasse
improved the initial pyrolysis temperature, suppressed smoke, and showed excellent flame
retardancy in both UL94 and LOI tests. The mechanism for the increased flame retardancy
was biochar formation; this is because DOPO produces phosphoric acid during thermal
heating and promotes biochar formation. Thus, halogen-free flame retardant could be
developed by using bio-based flame retardant.
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Fiore et al. [51] studied the feasibility of fibers from Arundo Donax, a noon wood
plant with very fast growth as a reinforcement for epoxy composites. To make fine fillers,
the Arundo Donax plants were collected, dried, and ground by a grinding machine and
later sieved by a sieving machine. The fibers were not chemically treated to keep the cost
low. The following inference was observed from the study. With the incorporation of fillers,
the void content increases, TM increases, and FM marginally changes, while the TS and FS
were reduced. The drop in TS and FS was due to (i) the hydrophilic nature of the fillers
and (ii) high void content. The dynamic mechanical analysis shows no variations before Tg,
but after Tg, the SM being higher may be due to the presence of rigid filler in the rubbery
matrix. Based on the results, the researchers suggested the use of Arundo Donax filler-
based epoxy composites for semi-structural applications. Kumar et al. [52] treated bamboo
filler with NaOH, and the treated filler was incorporated in the epoxy network to improve
the mechanical properties of epoxy composites. The filler content used was 2.5%, 5%, 7.5%,
10%, and 12.5%. The void content in the composites was increased with the increase in
the filler content for both untreated and treated filler. However, the treated composites
reported minimum void content. The TS and FS were increased with the increase in the
filler content (up to 10%) for both untreated and treated filler. Another very interesting
example for green epoxy composites was an efficient and eco-friendly solution proposed by
Singh et al. [32]. Here, the naturally derived tannic acid is used to modify bamboo micron
fibers. The modified fibers are used as a reinforcement to prepare high-performance epoxy
composites. The results showed that the incorporation of 5 wt% treated fibers in the epoxy
matrix enhanced the stress intensity factor and critical strain energy release rate by ≈60%
and ≈212%, respectively.
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4. Bast and Leaf Fibers Modified Epoxy Composite

Maleque et al. [53] used pseudo-stem woven banana fabric to enhance the mechanical
properties of epoxy composites. The TS, FS, TM, FM, and IS of the epoxy composites
increased considerably. The SEM micrographs of the composites revealed good interfacial
bonding between the fiber and epoxy matrix. Masiewicz et al. [54] used three different
natural materials such as collagen, hemp fibers, and pepper powder as a modifier for epoxy
matrix and studied the changes in gel time and mechanical properties. For the preparation
of epoxy composites, hemp fibers and pepper powder were mixed directly with epoxy
resin, while collagen was first dissolved in ethylene glycol followed by mixing in epoxy
resin. The curing was done for 24 h at room temperature and post-curing at 80 ◦C for
3 h. The filler content used was 5–20%. The study reported an increase in gel time with
the incorporation of fillers. Irrespective of the type of filler, the IS, flexural strain, and
critical stress intensity were increased, and maximum values were reported for composites
containing 5% of filler content. Among the composites studied, the IS and critical stress
intensity were maximum for 5% pepper-modified epoxy composites, and increases of 270%
and 330% were observed respectively compared with neat epoxy. The impact strength
of epoxy composites containing 5–20% natural filler is shown in Figure 7. The beneficial
effects in improving the properties of epoxy composites point out the possible use of green
fillers as an alternative to synthetic fibers for composite applications.Polymers 2022, 14, x FOR PEER REVIEW 10 of 18 
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Ridzuan et al. [55] presented the effects of pineapple leaf (PALF), Napier, and hemp
fibers on the scratch resistance of epoxy composites. The effect of the fillers on the horizon-
tal load, coefficient of friction, penetration depth, scratch hardness, and scratch observation
were studied. The concentration of filler used was 5, 7.5, and 10 wt%. The scratch resis-
tance and coefficient of friction were highest for the higher wt% of bio-fillers, and among
the composites, the Napier-filled epoxy composites showed better scratch resistance and
coefficient of friction compared to the pineapple leaf and hemp fiber-filled epoxy com-
posites. In addition, the penetration depth is lower for Napier than the pineapple leaf
and hemp bio-filled epoxy composite. These results support the highest scratch resistance
for Napier-modified epoxy composites. Later, Ridzuan et al. [56] fabricated jute/epoxy,
kenaf/epoxy, and Napier-filled epoxy composites and studied the water absorption and
dielectric properties of the composites. The concentration of the fiber used was 7%, 14%,
and 21%. The time of immersion and the change in the fiber content has a significant
effect on the water absorption properties of the composites. For all three composite series,
the water absorption increases with an increase in the concentration of fiber content and
with an increase in the time of the experiment. A saturation in water absorption in all these
composites was observed at 500 h. The kenaf and Napier-filled composites showed lower
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water absorption than jute fiber-filled composites. The dielectric constant of the composites
in dry and wet conditions was studied. The Napier-reinforced epoxy matrix showed the
lowest dielectric constant between 12.4 and 16.66 GHz.

Shah et al. [57] prepared epoxy composites containing 0.5, 1.0, 1.5, and 2.0 wt%
Acacia Catechu powder. Fourier transform infrared spectroscopy confirmed increased cure
conversion in filled epoxy. Adding a very small amount of filler (1.0 wt%) resulted in a 14%
increase in the FS and 94% improved IS due to the modification in morphology and crosslink
density. Additionally, the aromatic tannin phenol structures of Acacia Catechu improved
the thermal stabilities of epoxy composites. In addition, the scanning electron microscope
analysis showed shear banding phenomena between filler particles and epoxy resin, which
caused increased toughness. Gargol et al. [58] fabricated epoxy composites containing
varying amounts of waste hemp fibers. The curing agent used was triethylenetetramine
and the fiber content used was 0, 5, 10, 15, and 20 wt%. The samples were cured at room
temperature for 10 h. The intermolecular interaction between the hemp fiber, epoxy, and the
curing agent was schematically represented in Figure 8. The FTIR studies of the composites
reported the absence of the peak at 904 cm−1 due to the absence of epoxide ring because of
the complete curing of the composite samples. Thermogravimetric analysis showed improved
thermal stability for the composite samples compared to neat polymer and fiber. The DSC
study reported a major exothermic peak at slightly above 300 ◦C due to the degradation of
the composite samples and was marginally improved for the composite samples compared
to the pure matrix. On the other hand, the tensile, flexural, and hardness values of the epoxy
composites were reduced with the incorporation of fibers. Maleki et al. [59] studied the effect
of drilling on flax epoxy composites using three different drill bits: a twist drill, CoroDrill
854, and CoroDrill 856. The thrust force was increased with an increase in spindle speed and
feed. Among the three different drill bits, the twist drill has the lowest thrust force at different
conditions. Furthermore, the delamination was lowest for the twist drill, and the optimum
spindle speed and feed were 1500 rpm and 0.2 mm/rev, respectively.
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5. Other Natural Fillers Reinforced Epoxy Composites

A new study on the utilization of nano-oil palm ash as filler material for epoxy
composite production was presented by Khalil et al. [60]. The study focused on the effect of
the filler content on the physical, mechanical, and thermal properties of epoxy composites.
The density of the nano-structured oil palm ash-filled epoxy samples was increased with
increasing filler loading. On the other hand, the void content showed a low value for the
1% composites; this was followed by a moderate increase, only 5% composite showed
higher void content than the pure epoxy matrix. The mechanical properties such as TS,
TM, FS, FM, and thermal stability were increased with filler loading, and the best results
were achieved at 3% filler. In addition to using fillers from plant sources, in recent years,
researchers also focused on the use of waste fibers such as CF, eggshell, seashell, etc.,
as fillers for the epoxy composites [61,62]. Bessa et al. [63] studied the effect of the addition
of CF on the thermal resistance and noise reduction of epoxy composites. Three different
compositions—20/80, 30/70, and 40/60 (epoxy/CF)—were prepared. The researchers
observed that the thermal resistance and acoustic insulation properties were maximum
at the highest CF content, i.e., 20/80 epoxy/CF composite. This was due to the hollow
structure of the CF, i.e., the internal hollow channel in the CF contributes to thermal and
acoustic reduction. Vijayan et al. [64] developed CF-incorporated epoxy coating with
improved performance. The pure epoxy and CF incorporated epoxy were coated on carbon
steel and subjected to an accelerated salt immersion test. The progress of corrosion was
evaluated. During the initial days of the test, no corrosion was observed for both epoxy/CF
and epoxy coatings. However, after two weeks, corrosions are observed in the coating,
but the corrosion is least affected in epoxy/CF coatings. This is because in neat epoxy
coatings, many holes and cavities are generated during coatings, which results in localized
corrosion called pitting corrosion. However, pitting corrosion is less in number in the case
of epoxy/CF composites due to the absence of holes and cavities because of the better
interfacial interaction between the CF and epoxy matrix. Thus, the CF acts as an effective
anti-corrosion agent.

Abdelmalik et al. [65] studied the variations in TS and insulation properties of the
epoxy composites with the addition of eggshell powder. The eggshell was washed with
water, acetone, and methanol and dried. The cleaned eggshell was ball milled to have
eggshell powder with ca. 75 µm. The tensile strength of epoxy composites was increased
with the increasing addition of eggshell powder, and the best results were observed for
4 wt% filler, which was followed by a reduction for the composite with 5% filler content due
to the agglomeration of the particles. The polymeric insulation properties were reduced
with the incorporation of eggshell powder, and the minimum value was observed for
3% filler; a marginally higher electrical conductance was observed for 4 and 5% filler
content. It is worth pointing out that all the composites fabricated reported lower electrical
conductance compared to neat epoxy. Fombuena et al. [66] fabricated and characterized
bioepoxy composites filled with seashell wastes. The researchers collected seashell from the
coast of Valencia (Spain). It is washed with water and 4% NaOH to remove the impurities
and milled and sieved to powder of 250 µm. The XRD profile reported both aragonite and
calcite crystal phases in seashell (CaCO3) powder. The TGA thermogram of the seashell
powder reported two-step degradation; a minor degradation at ca. 250 ◦C is due to the
degradation of organic content, and the main degradation at approximately 817 ◦C is due
to CaCO3. It was observed that the incorporation of seashell powder improved the FM,
hardness, and Tg of the composites.

6. Hybrid Composites

Hybridizing various natural fillers with synthetic fibers is one of the recent approaches
adopted by researchers to get the best thermomechanical performance of composites.
The natural fibers lack strength, modulus, and durability compared with synthetic fibers
such as glass, aramid fiber, Kevlar, and carbon. In addition, the other drawbacks of natural
fibers such as moisture absorption, flammability, poor bonding with polymer matrix, etc.,
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can be overcome by hybridizing with synthetic fibers. Note that synthetic fibers have
good mechanical properties, long-term durability, negligible water absorption, excellent
compatibility, and good thermal resistance. As a result of these superior properties, they are
widely used in the epoxy composite industry for favorable mechanical properties, fatigue
properties, and durability [67–72]. In this method, the properties of two or more fillers
can be combined, and synergy in the performance can be achieved. The advantages of
hybridizing natural fiber with synthetic fibers are cost reduction, flexibility in tailoring
composite design, and enhancement in thermomechanical properties [67,73]. Xian et al. [73]
fabricated epoxy/carbon (C)/flax (F) hybrid composites with different stacking sequences
and studied the effect of stacking sequences (CFFFC, FCFCF) on the energy absorption
and damping properties. The composite with a sandwich structure (CFFFC) showed
higher energy absorption than FCFCF, which was due to the high strength of the carbon
outer layer and better bonding between the flax fabric inner layers. On the other hand,
the damping coefficient is greatest for alternately stacked (FCFCF) composites, because the
deformation of flax is higher than carbon. In a recent study, Xian et al. [74] developed two
types of (fiber random hybrid (RH) and core–shell hybrid (CH)) epoxy carbon/glass fiber
hybrid composite rods. The composites were subjected to a combined water immersion
and bending test for 360 days. The random hybrid (RH) composite rod showed greater
strength after the aging studies. The long-term prediction in bridge service environments
was conducted and revealed better serviceability for the RH composite rod.

Prabhu et al. [75] hybridized sisal and waste tea leaf fibers with glass fibers that were
incorporated in the epoxy matrix. The sisal and waste tea leaf fibers were selected because
of their sound absorption properties. Before applying the fibers, they were treated with
5% of NaOH to remove non-cellulosic components from the fiber. The weight of the glass
fiber in all composites was kept at 10%, while the composition of sisal and waste tea leaf
fibers was varied, but their total weight is fixed at 30%. Among the hybrid composites,
the composite with 20% sisal, 10% waste tea leaf fiber, and 10% glass showed the best TS
and FS. The impact energy values are also high for the composite with 20% sisal, 10% waste
tea leaf fiber, and 10% glass. The alkali treatment and hybridization increase the interfacial
adhesion between the fiber and epoxy matrix phase, which in turn increases the mechanical
properties. The sound absorption coefficient of the composites was tested in the frequency
range 63 to 6300 Hz, and the maximum sound absorption coefficient was observed for the
hybrid composites. The increased mechanical properties and sound absorption coefficient
suggest the potential application of the epoxy hybrid composites containing glass/sisal and
tea powder in automobiles components, soundproofing materials, and interior paneling

Wang et al. [76] studied the effect of hybridizing flax fiber sheets with glass fiber
sheets in epoxy composites. Different combinations of hybrid composites with eight layers
were fabricated, and among the composites prepared, G2F4G2 (two glass fiber sheets each
sandwiched over four layers of flax) showed very high FS and FM compared to neat flax
fiber-reinforced epoxy composites. The G2F4G2 composite also reported an 84% increase
in SM with an 8 ◦C increase in Tg compared to neat flax fiber-reinforced epoxy composites.
Fatinah et al. [77] studied the effect of the addition of untreated Napier fiber, 5% NaOH-
treated fiber, and hybridized untreated Napier fiber/glass fiber in the epoxy network.
The amount of filler was kept constant at 25%. Researchers observed the reported TS and
TM in the order untreated Napier fiber/glass fiber > 5% NaOH treated fiber > untreated
fiber. Mansor et al. [78] used an analytical hierarchy process and found that kenaf fiber is
the best among the natural fibers for the fabrication of hybrid composites with glass for
the designing of a brake lever in automotive. Elkhouly et al. [79] studied the effect of date
seed filler on the abrasive wear of glass fiber–epoxy composites. The study showed a very
good enhancement in wear resistance and toughness of glass fiber/epoxy composites with
the addition of date seed filler. The date seed filler is effective at reducing the cost of the
composites but also has good wear resistance and toughness.

Zhan and Wool [80] fabricated hybridized waste CF and glass fiber epoxy composites
with lower density. The CF-reinforced epoxy composites possess lower strength and
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modulus, while replacing a part of the CF with glass fiber improved the modulus and
strength. Thus, hybridization is a useful way to make use of waste CF in composite
applications. Nguyen et al. [81] fabricated a prototype of a bike silencer using hybrid epoxy
composites containing glass and CF. Kocaman and Ahmetli [82] investigated the influence
of acrylated soybean oil (AESO) along with banana bark and seashell in the mechanical
properties of epoxy composites. The concentration of acrylated soybean oil used is 50%.
Note that acrylated soybean oil was used as a co-matrix. The seashell-containing epoxy
systems exhibit higher TS, e-modulus, and hardness than banana bark epoxy composites.
Later, Ozkur et al. [83] studied the effect of blending soybean oil in epoxy resin and
reinforced with jute woven fabric. The composites showed maximum impact strength over
50% soybean oil. While the maximum TS was reported at 30% soybean oil, the maximum
FS was reported at 20% soybean oil. Both TS and FS decrease above 30% soybean oil. Thus,
soybean oil has a significant influence on the performance of composites.

7. Current Challenges and Limitations

The performance of the green composites in their service life depends on various
environmental conditions such as rain, moisture, temperature, and UV light. In the case
of fiber-reinforced epoxy composites, the moisture or water may enter inside more easily
through the polymer/fiber interface; therefore, degradation in mechanical properties is
inevitable during the service life. The conditions such as increase in temperature and UV
irradiation accelerate the chain scission of the polymers and filler degradation. Therefore,
the degradation, mechanism, and understanding of the long-term performance of the
composites are vital for the successful implementation of the composite materials in various
applications. However, the lack of information on long-term performance limits the use of
natural fiber in many service applications [84,85]. This highlights the usefulness of new
technologies such as accelerated weathering and wet aging studies of epoxy composites to
evaluate the long-term durability of the composites in various environmental conditions.
The modeling studies of water transport, thermal degradation, photodegradation, etc.,
would be worth understanding the long-term performance of the composites to get a
conclusive overview of the long-term performance of the composites.

8. Conclusions

This review presented that the addition of bio-fillers of natural origin positively
changes and improves the performance of the epoxy composites. These composite materials
are becoming more attractive due to their suitability, ecofriendly nature, availability of raw
materials, low cost, and good performance. A large range of new materials can be designed
using natural filler-modified epoxy composites for versatile applications.

In this paper, cashew nuts powder, hemp fibers, bamboo fibers, palm ash, waste tea
fibers, banana bark fibers, coconut shell powder, rice husks, date seed, pineapple leaf,
and other bio-fillers as an enhancement for epoxy resin as matrix are reviewed. The lit-
erature reports a favorable change in the properties of the neat epoxy system with the
incorporation of natural fibers. It is proved that cost-effective composites can be developed
by using various natural fillers. The recent research results caused an upsurge in the
fabrication of lightweight hybrid composites with more environmentally friendly mate-
rials and have been employed in automobile and construction parts. However, the poor
water sensitivity, poor bonding, flammability, and lower mechanical properties compared
with synthetic fibers limited its widespread application in the epoxy composite industry.
The chemical and physical treatments of natural fibers are usually adapted to overcome the
drawbacks of natural fiber. However, the lack of information on long-term performance
limits the use of natural fiber in many service applications. Therefore, more experimental,
theoretical, and modeling studies are much needed to predict the serviceability.
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43. Barczewski, M.; Sałasińska, K.; Szulc, J. Application of sunflower husk, hazelnut shell and walnut shell as waste agricultural
fillers for epoxy-based composites: A study into mechanical behavior related to structural and rheological properties. Polym. Test.
2019, 75, 1–11. [CrossRef]

44. Sathishkumar, T.; Kumar, S.A.; Navaneethakrishnan, P.; Siva, I.; Rajini, N. Synergy of cashew nut shell filler on tribological
behaviors of natural-fiber-reinforced epoxy composite. Sci. Eng. Compos. Mater. 2017, 25, 761–772. [CrossRef]

45. Shakuntala, O.; Raghavendra, G.; Kumar, A.S. Effect of Filler Loading on Mechanical and Tribological Properties of Wood Apple
Shell Reinforced Epoxy Composite. Adv. Mater. Sci. Eng. 2014, 2014, 1–9. [CrossRef]

46. Soumyalata, D.B.A.; Latheef, A.; Mathew, A.J. Fabrication and Comparative Study on the Mechanical Properties of Epoxy
based Polymer Composites with Coconut Shell Powder and Rice Husk Powder as Filler Materials. Int. J. Eng. Res. 2020, 9,
IJERTV9IS070096. [CrossRef]

47. Salleh, M.M.B.H.; Salleh, Z.; Rosdi, M.S.; Sapuan, S.M. Mechanical Properties of Coconut Carbon Fibre/Epoxy Composite
Material. Int. J. Mech. Eng. 2013, 2, 55–62.

48. Uthaman, A.; Xian, G.; Thomas, S.; Wang, Y.; Zheng, Q.; Liu, X. Durability of an epoxy resin and its carbon fiber-reinforced
polymer composite upon immersion in water, acidic, and alkaline solutions. Polymers 2020, 12, 614. [CrossRef] [PubMed]

http://doi.org/10.1016/j.jmrt.2018.12.021
http://doi.org/10.1002/app.13261
http://doi.org/10.1080/00194506.2013.832026
http://doi.org/10.3390/ma12132145
http://www.ncbi.nlm.nih.gov/pubmed/31277304
http://doi.org/10.1016/j.compositesb.2013.09.028
http://doi.org/10.1177/0892705714563125
http://doi.org/10.1088/2053-1591/ab67f8
http://doi.org/10.1002/app.30960
http://doi.org/10.1007/s12633-020-00508-z
http://doi.org/10.1016/j.matchemphys.2019.122112
http://doi.org/10.1163/016942410X537305
http://doi.org/10.1002/pc.20705
http://doi.org/10.1016/j.compositesb.2019.107089
http://doi.org/10.1016/j.conbuildmat.2019.03.001
http://doi.org/10.1016/j.compositesb.2016.06.051
http://doi.org/10.1016/j.jmrt.2021.03.020
http://doi.org/10.1016/j.matpr.2021.01.525
http://doi.org/10.1007/s12221-015-1119-1
http://doi.org/10.1007/s00289-017-2163-3
http://doi.org/10.1002/app.50770
http://doi.org/10.1016/j.polymertesting.2019.01.017
http://doi.org/10.1515/secm-2016-0243
http://doi.org/10.1155/2014/538651
http://doi.org/10.17577/IJERTV9IS070096
http://doi.org/10.3390/polym12030614
http://www.ncbi.nlm.nih.gov/pubmed/32156099


Polymers 2022, 14, 265 16 of 17

49. Kommula, V.P.; Reddy, K.O.; Shukla, M.; Marwala, T.; Rajulu, A.V. Mechanical properties, water absorption, and chemical
resistance of Napier grass fiber strand–reinforced epoxy resin composites. Int. J. Polym. Analys. Character 2014, 19, 693–708.
[CrossRef]

50. Liu, S.-H.; Ke, C.-Y.; Chiang, C.-L. Thermal Stability, Smoke Density, and Flame Retardance of Ecotype Bio-Based Flame Retardant
Agricultural Waste Bagasse/Epoxy Composites. Polymers 2021, 13, 2977. [CrossRef]

51. Fiore, V.; Scalici, T.; Vitale, G.; Valenza, A. Static and dynamic mechanical properties of Arundo Donax fillers-epoxy composites.
Mater. Des. 2014, 57, 456–464. [CrossRef]

52. Kumar, R.; Bhowmik, S.; Kumar, K. Establishment and Effect of Constraint on Different Mechanical Properties of Bamboo Filler
Reinforced Epoxy Composite. Int. Polym. Process. 2017, 32, 308–315. [CrossRef]

53. Maleque, M.A.; Belal, F.Y.; Sapuan, S.M. Mechanical properties study of pseudo-stem banana fiber reinforced epoxy composite.
Arab. J. Sci. Eng. 2007, 32, 359–364.

54. Masiewicz, J.; Roszowska-Jarosz, M.; Kostrzewa, M.; Jasik, A.; Krawczyk, P. The modification of an epoxy resin by natural plant
materials. Environ. Proct. Nat. Res. 2020, 31, 14–20. [CrossRef]

55. Ridzuan, M.; Majid, M.S.A.; Khasri, A.; Gan, E.; Razlan, Z.; Syahrullail, S. Effect of pineapple leaf (PALF), napier, and hemp fibres
as filler on the scratch resistance of epoxy composites. J. Mater. Res. Technol. 2019, 8, 5384–5395. [CrossRef]

56. Ridzuan, M.; Majid, M.A.; Khasri, A.; Cheng, E.; Razlan, Z. Effect of natural filler loading, multi-walled carbon nanotubes (MWCNTs),
and moisture absorption on the dielectric constant of natural filled epoxy composites. Mater. Sci. Eng. B 2020, 262, 114744. [CrossRef]

57. Shah, A.H.; Li, X.; Xu, X.; Dayo, A.Q.; Liu, W.-B.; Bai, J.; Wang, J. Evaluation of mechanical and thermal properties of modified
epoxy resin by using acacia catechu particles. Mater. Chem. Phys. 2019, 225, 239–246. [CrossRef]
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