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From rabbit antibody repertoires to rabbit
monoclonal antibodies

Justus Weber, Haiyong Peng and Christoph Rader

In this review, we explain why and how rabbit monoclonal antibodies have become outstanding reagents for laboratory research

and increasingly for diagnostic and therapeutic applications. Starting with the unique ontogeny of rabbit B cells that affords

highly distinctive antibody repertoires rich in in vivo pruned binders of high diversity, affinity and specificity, we describe the

generation of rabbit monoclonal antibodies by hybridoma technology, phage display and alternative methods, along with an

account of successful humanization strategies.
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INTRODUCTION

European rabbits (Oryctolagus cuniculus; Figure 1) have played
an important role as animal models in immunology for many
decades.1,2 Today, rabbits are still a major source for a wide
variety of monoclonal antibodies (mAbs) and polyclonal
antibodies (pAbs) with broad utility. pAbs can be described
as a set of different antibodies generated in response to a
specific pathogen or antigen, generally targeting different
epitopes. mAbs, on the other hand, contain a defined
antigen-binding site (paratope) that typically binds with high
affinity and specificity to only one epitope. From a pharma-
ceutical point of view, mAbs provide a molecularly defined and
reproducible product, whereas pAbs are traditionally an impre-
cise mixture of different antibodies.3 As is the case for mouse
and human mAbs, IgG is the most common isotype of rabbit
mAbs (Figure 2).

Rabbit pAbs have been used extensively as analytical tools in
biomedical research and especially for immunological techni-
ques, such as immunohistochemistry (IHC), western blotting
and flow cytometry. Rabbit pAbs have also been utilized as an
important tool for food safety assessments.4 In addition, rabbit
pAbs have been used in a clinical context. A prominent
example is anti-thymocyte globulin (ATG). ATG is a mixture
of purified polyclonal rabbit, horse or goat IgGs against human
T cells that has been used as an immunosuppressive drug for
decades. In organ and allogeneic bone marrow transplantation,
ATG application causes rapid depletion of T cells, leading to
a decreased risk for rejection and acute graft-versus-host
disease. However, ATG does not induce long-term tolerance.5

Rabbit ATG is one of the most commonly used ATGs, due to
its higher lymphocytotoxicity compared to horse ATG.6 Rabbit
ATG known as Thymoglobulin (Sanofi Genzyme, Inc., Cam-
bridge, MA, USA) was approved by the US Food and Drug
Administration (FDA) in 1998. More recently, an improved
rabbit pAbs cocktail targeting human leukocytes was reported
as a potential immunosuppressive drug in xenogeneic (for
example, pig to human) organ transplantation.7 In addition,
one rabbit pAb is currently approved by the FDA as an in vitro
diagnostic tool (c-Kit pharmDx; Agilent Technologies, Inc.,
Santa Clara, CA, USA) for the IHC-based detection of CD117
(c-kit) expression in gastrointestinal stromal tumors to aid
treatment decisions.8

mAbs and mAb-derived antibody therapeutics9,10 are
currently widely used to treat human diseases, such as cancer
and autoimmune diseases.11,12 Although no therapeutic rabbit
mAbs have been approved by the FDA thus far, 11 rabbit mAbs
are FDA-approved in vitro diagnostic tools in the clinic.13,14

Ten of these mAbs are being used to detect the expression of
tumor-associated antigens, including HER2, estrogen receptors,
progesterone receptors and PD-L1. One mAb is used to
detect helicobacter pylori infections. A rabbit mAb to human
androgen receptor splice variant 7 has emerged as a promising
tool for the detection of circulating tumor cells by
immunofluorescence and IHC in prostate cancer.15,16 In
addition, several rabbit mAb-derived therapeutics are currently
being investigated in clinical trials registered at ClinicalTrials.
gov. In oncology, examples include sevacizumab (Simcere
Pharmaceutical Group, Inc., Nanjing, China), a humanized
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rabbit anti-human vascular endothelial growth factor mAb
(NCT02453464),17,18 APX005M (Apexigen, Inc., San Carlos,
CA, USA), a humanized rabbit anti-human CD40 mAb
(NCT02482168), and YYB101, a humanized rabbit anti-
human HGF mAb (YooYoung Pharmaceutical Co., Inc., Seoul,
Korea; NCT02499224).19,20 Further, chimeric antigen receptor
T cells based on a rabbit anti-human ROR1 mAb21 have
commenced clinical trials recently (NCT02706392).22,23 In
ophthalmology, humanized rabbit anti-vascular endothelial
growth factor mAb brolucizumab (Alcon, Inc., Hünenberg,
Switzerland), a mAb in scFv format administered intravitreally,
is being investigated in advanced clinical trials (NCT02307682
and NCT02434328).24 Following these examples, a number of
rabbit mAb-derived therapeutics are expected to transition
from preclinical to clinical studies in the near future. Currently,
only a handful of companies develop rabbit or rabbit-derived
mAbs for laboratory research and for diagnostic and therapeu-
tic applications. Some of the companies in the global market
are Abcam, Inc. (Cambridge, UK; RabMAb platform; through
acquisition of Epitomics, Inc., Burlingame, CA, USA, in 2012);
Alcon, Inc. (through acquisition of ESBAtech, Inc., Schlieren,
Switzerland in 2009); Apexigen, Inc. (San Carlos, CA, USA;
spun out by Epitomics, Inc. in 2010); Cell Signaling Technol-
ogy, Inc. (Danvers, MA, USA; currently listing 44000 different
rabbit mAbs); Agilent Technologies, Inc.; MAB Discovery, Inc.,
Neuried, Germany; Lab Vision Corporation, Inc., Fremont,
CA, USA; Thermo Fisher Scientific, Inc. (Carlsbad, CA, USA;
Invitrogen ABfinity recombinant rabbit antibodies); and
Ventana Medical Systems, Inc. (Tucson, AZ, USA).

What is the attraction of rabbit antibodies for the applica-
tions discussed above? Rabbits have been used to investigate
immunological questions and to develop immunological
techniques for 4100 years. Thus, many standard procedures
are established, published and validated, such as immunization
and purification methods yielding high amounts of rabbit
antibodies.25 In addition to these practical considerations,
rabbits are characterized by a variety of natural features that
make their antibody repertoire very attractive for the discussed
applications. First, rabbits belong to the order Lagomorpha,
which is evolutionary distinct from the order Rodentia,
to which, for example, mice and rats belong.26–29 Rabbit
antibodies are able to recognize epitopes on human antigens
that are not immunogenic in rodents,30 increasing the total
number of targetable epitopes and facilitating the generation of
antibodies that cross-react with mouse orthologs of human
antigens.31–33 This is an important aspect for basic research and
preclinical investigations with, for example, human tumor
xenografts, where the presence or absence of on-target-off-
tumor toxicities of therapeutic antibodies provides important
information prior to clinical translation. In general, rabbit
anti-mouse reactivity is valuable in mouse models of human
disease and has also been exploited in basic research, for
example, on mouse stem cell antigens.34–36 Second, it has been
observed that rabbits elicit strong immune responses against
small molecules and haptens, which is uncommon in
rodents.18,37–41 A third important aspect is the scarcity of
inbred rabbit strains, while most mouse strains are inbred.1,42

It is thought that inbred strains in general elicit less
diverse immune responses, which makes it more difficult to

Figure 1 Oryctolagus cuniculus. Shown is an individual with
b9 κ-light-chain allotype from a pedigreed non-inbred colony of
rabbits developed and characterized at the US National Institute of
Allergy and Infectious Diseases, National Institutes of Health. The
rabbits are currently housed at a rabbitry in Stanwood, WA, USA,
owned by R & R Research, Inc. and available for custom
immunization and harvests of peripheral blood, spleen and bone
marrow. (Photo courtesy of Dr Rose G. Mage).

Figure 2 Schematic drawing of natural rabbit antibodies in IgG
format. The ~150-kDa rabbit IgG molecule contains two identical
κ (white) or λ (light gray) light chains paired with two identical
heavy chains (dark gray). The light chain consists of an N-terminal
variable domain (VL), shown with its three CDRs, followed by one
constant domain (CL). The heavy chain consists of an N-terminal
variable domain (VH), also shown with its three CDRs, followed by
three constant domains (CH1, CH2 and CH3). CH1 and CH2 are
linked through a flexible hinge region that has the amino-acid
sequence APSTCSKPTCP (or APSTCSKPMCP in an allotypic
variant) and anchors three disulfide bridges (orange) of the IgG
molecule, one for each of the two light- and heavy-chain pairs, and
one for the heavy-chain pair. Notably, rabbits have two κ light
chains, K1 and K2. The more frequent κ light chain, K1, contains
an additional disulfide bridge that links VL and CL.
Rabbits of the commonly used New Zealand White strain have
~90% IgG-κ (K1), ~10% IgG-κ (K2) and o1% IgG-λ antibodies.
CDR, complementarity-determining region.
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raise strong and diverse binders.18 Correspondingly, in many
IHC studies that compared rabbit and mouse mAbs to the
same human antigens, rabbit mAbs consistently revealed higher
sensitivity.43–62 In a recent study,63 1410 rabbit mAbs raised
against 15-amino-acid peptides representing 100 different
antigens revealed a typical affinity range of 20–200 pM
(median 66 pM), as determined by high-throughput surface
plasmon resonance. A fraction of rabbit mAbs even revealed
higher affinities near the detection limit of 1 pM. However, the
affinity range of 46 mouse mAbs (30–300 pM; median 72 pM)
analyzed in parallel was not significantly different.63 More
direct comparisons of rabbit and mouse mAbs to a wider
variety of antigens are warranted to determine a significant
difference in affinity. Fourth, most strategies to generate mAbs
are based on the recovery of B cells from spleen, bone marrow
or blood, which are present in higher quantities in rabbits than
in mice due to their overall larger body size. (The average body
weight of a 3-month-old laboratory rabbit is 2.5 kg compared
to 25 g for a 6-week-old laboratory mouse.) For example,
50 times more spleen B cells can be recovered from rabbits
compared to mice.18 In addition, the larger blood volume of
rabbits compared to mice facilitates mass spectrometry analyses
of bulk serum IgG.64 Fifth, as discussed in the next section,
rabbits use different mechanisms to genetically generate and
diversify their primary and secondary antibody repertoires
compared to humans and mice, effectively creating a comple-
mentary set of binders for the discussed applications. The
recent sequencing and annotation of the rabbit genome
(OryCun2.0 assembly) has provided new insights into this
unique antibody repertoire.1,65,66

ONTOGENY OF RABBIT B-CELL AND ANTIBODY

REPERTOIRES

The development of the rabbit B-cell repertoire significantly
differs from that of other mammals. The current model
proposes a three-step process (Figure 3) consisting of the
neonatal B-cell repertoire generated by B lymphopoiesis in the
fetal liver and omentum switching to bone marrow after birth,
the primary ‘pre-immune’ B-cell repertoire evolving during the
first 2 months after birth in gut-associated lymphoid tissue
(GALT) and the secondary ‘immune’ B-cell repertoire gener-
ated upon B-cell activation by immunogen binding.2,67 The
neonatal B-cell repertoire starts developing between the second
and third week of gestation.68,69 Interestingly, B lymphopoiesis
is very limited in the bone marrow of adult rabbits,70 indicating
that B lymphopoiesis is mainly restricted to early development.
However, B cells with germline antibody sequences were found
in the adult spleen.71 In addition, in a rabbit-to-rabbit adoptive
transfer model, it was shown that rabbit B cells were able to
engraft into host stem cell niches,72 which led to the conclusion
that rabbit B cells are long-lived and potentially self-renewing
and may thus sustain the rabbit antibody repertoire throughout
a rabbit’s lifetime.73

Rabbits mainly rearrange their heavy chains first followed
by their light chains74 and thus follow the primary B-cell
development pathway proposed by Ehlich et al.75 In brief, this

model proposes the VH–D–JH recombination of the heavy
chain, followed by its expression as a pre-B-cell receptor. Upon
stimulation of the pre-B-cell receptor, VL–JL light-chain
recombination is started. Some evidence for non-templated
nucleotide-addition (also known as N-nucleotides) has been
observed in rabbit Vκ–Jκ rearrangements in 1-day-old rabbits,
suggesting that terminal deoxynucleotidyl transferase was
recently expressed.76

Although a potential pool of 200 VH genes are present for
heavy-chain rearrangement,66,77 a majority of these are infre-
quently or not expressed.78 There are 10–20 D genes and
4–5 JH genes.79 However, it is known that certain genes from
these clusters are preferentially utilized: VH1, the most
D-proximal VH gene, is present in 80–90% of all heavy-
chain gene rearrangements.68,79,80 Three different allotypes
VHa1, VHa2 and VHa3 are known, resulting in the
VHa-positive serotype.81,82 The remaining 10–20% of heavy
chains contain VHx, VHy or VHz genes.83,84 This finding
was somewhat surprising, because there is another functional,
D-proximal VH sequence significantly closer to the
VH1 segment. Indeed, it could be shown that the VH4 segment
is utilized in 80–90% of the heavy-chain rearrangements in
VH1-negative Alicia strain rabbits. However, this heavy-chain
rearrangement was very rare in adult rabbits, suggesting that
the VH4 rearrangement is non-productive in most cases and
thus lost in the course of development.69 Lanning et al.73

suggested negative self-antigen effects and non-efficient pairing
with light chains and surrogate light chains during B-cell
development as possible reasons. In addition, preferential
utilization of D2a, D2b and D1 as well as JH4 could be
shown.79

It is thought that rabbits compensate for this preferential
utilization of certain VH, D and JH genes in part by
N-nucleotide addition at the VH–D and D–JH junctions
during recombination.68,69 Using high-throughput sequencing
of antibody repertoires from three New Zealand White rabbits,
Lavinder et al.85 determined that the mean± s.d. length of
the third complementarity-determining region (CDR) of the
heavy chain, which is known as HCDR3, includes both
junctions, and thus is the most hypervariable of all six CDRs,
is 15± 4 (mode= 13) amino acids compared to mouse and

Figure 3 Ontogeny of rabbit B-cell and antibody repertoires.
The three principally different developmental stages of B-cell
and antibody diversification in the rabbit are shown. GALT;
gut-associated lymphoid tissue; SGC, somatic gene conversion;
SHM, somatic hypermutation.
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human HCDR3s with mean± s.d. lengths of 11± 2 (mode= 10
amino acids) and 15± 4 (mode= 15) amino acids, respectively.
These findings confirmed that rabbit HCDR3s share more
similarity with human HCDR3s than mouse HCDR3s and
could be relevant for therapeutic applications.86

Although there is limited heavy-chain usage in the neonatal
rabbits’ B-cell repertoire, there may be compensation by usage
of diverse light chains. There are two types of rabbit light
chains—κ and λ—with the κ light chain present in two
different isotypes called K1 and K2.87 Four K1 κ-light-chain
allotypes—b4, b5, b6 and b9—have been observed in domes-
ticated rabbits. Notably, the constant domain sequences of
these rabbit κ-light-chain allotypes have much higher amino-
acid sequence diversity than human Ig allotypes with pairwise
amino-acid sequence differences of up to 40%.88 This high
degree of polymorphism exceeds the allotypic diversity of the
three heavy-chain allotypes, a1, a2 and a3 (~20% amino-acid
sequence differences), and even surpasses the allotypic diversity
of major histocompatibility complex loci.1 K1 is by far the most
abundant isotype and represents between 70 and 90% of
all light chains, whereas the rest is usually a mixture of both
K2 and λ-light chains.89 Many K1 light chains are characterized
by an intrachain disulfide bridge between cysteine 80 in Vκ and
cysteine 171 in Cκ (Figure 2).90 This additional disulfide
bridge, which was discovered biochemically91,92 and later
confirmed by X-ray crystallography,93,94 is not found in human
or mouse light chains. It may contribute to the stability
of rabbit antibodies and is one of many peculiarities of
Ig evolution in vertebrates. This disulfide bridge is absent from
rabbits of the K1-negative Basilea mutant strain that only
expresses K2 and λ-light chains. Some but not all of the
K1 light chains of rabbits homozygous for the b9 κ-light-chain
allotype86 have a cysteine 108 in Jκ that is thought to create an
alternative intrachain disulfide bridge with cysteine 171 in
Cκ.89,90 These allotypes play an important role for the
generation of rabbit mAbs by phage display and are discussed
in more detail below. So far, ~ 50 functional Vκ genes have
been identified.76,95 Recently, using next-generation sequencing
of rabbit antibody repertoires, Kodangattil et al.96 demon-
strated that light-chain rearrangements are significantly more
diverse than heavy-chain rearrangements in rabbits. In addi-
tion, the imprecise junction of VL and JL genes in rabbits
encompasses particularly long stretches of N-nucleotides,
resulting in, on average, longer LCDR3s (12± 2 amino acids;
mode= 12) compared to mouse and human (9± 1 amino
acids; mode= 9; Figure 4).85 The longer rabbit LCDR3s are
occasionally stabilized by disulfide bridges.97 Taken together, by
generating a more diverse neonatal light-chain repertoire
followed by a comparable degree of further diversification into
primary and secondary light-chain repertoires, the light chain
can compensate for the limited diversity of heavy-chain
repertoires in rabbits. This may also explain the dominance
of the rabbit light chain in general and LCDR3 in particular in
several of the antibody/antigen complexes for which three-
dimensional structures have been determined by X-ray
crystallography.94,97–100

The limited neonatal antibody repertoire is further diversi-
fied between week 4 and 8 after birth resulting in the primary
antibody repertoire.67 This postnatal diversification is an
unusual phenomenon and has so far only been observed in
rabbits and pigs.101 The two main mechanisms are somatic
gene conversion (SGC; templated) and somatic hypermutation
(SHM; non-templated; Figures 3 and 4). SGC, predominantly
used only in chicken and rabbit Ig gene diversification,102

leads to the replacement of large nucleic acid sequence stretches
with DNA fragments from non-utilized VH genes.80,103,104

High-throughput sequencing revealed a mean± s.d. tract
lengths of 59± 36 nucleotides.85 Thus, the non-expressible
majority of VH genes play an important role for heavy-chain
diversification. The predominance of this mechanism in rabbit
(23%) compared to human (2.5%) and mouse (0.1%) heavy
chains, as determined by high-throughput sequencing,85 is
thought to lead to decreased wastage: a substantial portion of
VH–D–JH recombinations with N-nucleotides addition have
out-of-frame junctions, whereas SGC, a homologous DNA
recombination event,105 tends to favor in-frame substitutions
and extensions.89 In addition, SHM is observed at considerable
levels during this developmental stage.83,106,107 Following
rearrangement in the neonatal B-cell repertoire, rabbit light-
chain genes also undergo SGC and SHM to diversify the
primary B-cell repertoire (Figures 3 and 4).108 Further
corroborating the importance of the light chain for generating
diversity in rabbit antibody repertoires, SGC is more
frequent (32%) and has a longer mean± s.d. tract length
(86± 48 nucleotides) in rabbit κ-light chains compared to
rabbit heavy chains.85

Interestingly, the generation of the primary repertoire is
highly GALT-dependent. In short, GALT involves the uptake
of pathogens from the gastrointestinal track by specialized
epithelial cells known as M cells and the presentation of
antigens to B cells leading to B-cell stimulation, diversification
and proliferation.109 Surgical removal110 of GALT tissues,
such as the Peyer’s patches in the small intestines, the
sacculus rotundus and the appendix111 resulted in severely
immunodeficient rabbits. In addition, it was observed
that germ-free rabbits developed abnormal GALT.112,113

Lanning et al.114 demonstrated that this directly correlated
with reduced somatic VH–D–JH diversification compared to
germ-exposed rabbits.

The secondary B-cell repertoire is generated upon antigen-
dependent B-cell stimulation. Again, additional diversity is
introduced by SGC and SHM in both heavy and light chains
(Figures 3 and 4).115,116 These events further broaden the B-cell
repertoire directed against a certain set of antigens associated
with a specific pathogen.73

The discussed idiotypic and allotypic peculiarities of rabbit
antibodies further extend to the isotype. Notably, rabbits only
have one IgG isotype (one Cγ gene) compared to four
IgG isotypes in mice (IgG1, IgG2a, IgG2b and IgG3) and
humans (IgG1, IgG2, IgG3 and IgG4). In contrast, rabbits have
13 Cα genes giving rise to at least 10 functional IgA isotypes,
the most diverse IgA system known,1,117 compared to just one
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IgA isotype in mice and two in humans. Collectively, the
unique features of B-cell ontogeny and antibody repertoire
make rabbits a valuable source for the generation of antibodies
of high affinity and specificity.

GENERATION OF RABBIT MABS

Hybridoma technology
The discovery and development of hybridoma technology for
the generation of mAbs by Georges Köhler and César Milstein
in 1975 has had a huge impact on biomedical research and its
application to modern medicine.118,119 Hybridoma technology
is a method to generate stable cell lines that constantly secret
a defined mAb. For this purpose, B cells derived from an
immunized animal are fused with a myeloma cell line in the
presence of polyethylene glycol. The hybridomas generated this
way are cloned by limiting dilution, screened for favorable
mAb characteristics and then expanded in culture to obtain
high amounts of the desired mAb.119 Generally, two hybri-
doma types can be distinguished: first, homo-hybridomas
where both host B cells and fusion cell line emerged from
the same species and, second, hetero-hybridomas derived from
two different species.120

Ever since their initial discovery, multiple aspects of the
general technique have been modified in order to avoid certain
problems related to fusion efficiency, hybridoma stability and
mAb titers.121 Hybridoma technology has been used extensively
to generate thousands of different mAbs against a wide variety
of antigens. In fact, the majority of FDA-approved chimeric,
humanized and human mAbs originate from hybridoma
technology.120 However, all of these were derived from mouse
B cells or transgenic mouse B cells with human Ig genes.
Due to the favorable properties of rabbit antibodies, many

groups tried to develop methods for the generation of rabbit
hybridomas. This endeavor was significantly complicated by
the absence of rabbit myeloma cell lines.122 Viral transforma-
tion of rabbit B cells to generate myeloma-like cell lines also
proved to be difficult and rather inefficient.123 For these
reasons, substantial efforts focused on generating rabbit–mouse
hetero-hybridomas. Unfortunately, all hetero-hybridomas
generated in the early days of hybridoma technology revealed
poor fusion efficiency, genetic instability and impaired func-
tional rabbit heavy- and light-chain pairings.124–126 In 1988,
Raybould et al.122 generated the first stable rabbit–mouse
hetero-hybridoma by polyethylene glycol-mediated fusion
of rabbit spleen B cells with the mouse myeloma cell
line SP2/0-Ag14. Even though they observed stable rabbit
IgG expression for several months, other groups observed
genetic instability and concomitant decrease of mAb secretion.
These shortcomings could be partially addressed by extensive
efforts to regularly subclone the rabbit–mouse hetero-
hybridoma.127 The first rabbit homo-hybridoma was developed
in 1995 in the laboratory of Katherine Knight.128 In order to
obtain a potential rabbit fusion cell line, transgenic rabbits were
generated by single-cell zygote microinjection and mated to
generate v-abl/c-myc double transgenic rabbits. This method
led to the discovery of the first stable rabbit plasmacytoma cell
line, 240E-1,129 which could be used as an efficient fusion
partner to generate rabbit homo-hybridomas. Interestingly,
Spieker-Polet et al. also showed in this publication that B cells
derived from different rabbit tissues led to the generation of
hybridomas secreting different ratios of IgG, IgM and IgA.
However, the stability of the obtained homo-hybridomas was
still a major concern and IgG secretion decreased over time.
Although this decay is frequently also observed for mouse
homo-hybridomas, it appeared to be more drastic in the case of
rabbit homo-hybridomas.30,130 For this reason, Zhu and
Pytela121 attempted to further improve the initial 240E-1 cell
line by iterative subcloning to screen for clones with higher
fusion efficiency, yielding hybridomas with higher genetic
stability and more stable rabbit IgG secretion. The obtained
fusion cell line 240E-W and its successors 240E-W2 and 240-
W3, which are characterized by higher fusion efficiency and the
absence of endogenous rabbit heavy- and light-chain secretion
(US Patent 7,429,487),41 are part of the proprietary RabMab
platform of Epitomics, Inc. (now Abcam, Inc.) and were used
to generate the therapeutic rabbit mAbs sevacizumab and
APX005M discussed above.

Aside from therapeutic applications, rabbit mAbs generated
by hybridoma technology have become highly valuable reagents
for diagnostic applications and for laboratory research.
For example, highly specific rabbit mAbs can detect
activating mutations in the tyrosine kinase domain of
EGFR by IHC of lung cancer tissues.131 Rabbit mAbs are also
suitable to detect post-translational modifications.132,133

Further, rabbit mAbs against the HIV-1 protein gp120 were
shown to mimic neutralizing human anti-HIV-1 gp120 mAbs,
promoting rabbit immunization as model for HIV-1 vaccine
development.94,134–136

Figure 4 Molecular mechanisms of sequence diversification in
rabbit antibody repertoires. Top: VH–D–JH and VL–CL recombi-
nation takes place in the neonatal B-cell repertoire. In the rabbit,
N-nucleotide additions (blue) at VL–CL junctions (encoding LCDR3)
are more extensive than those found at VH–D and D–JH junctions
(encoding HCDR3). Middle: SGC events (green) diversify the
VH and VL portion of rabbit heavy and light chains in primary and
secondary B-cell repertoires and mostly localize to regions encoding
HCDR1, HCDR2, LCDR1 and LCDR2. Bottom: SHM events (red)
further diversify rabbit heavy and light chains in primary
and secondary B-cell repertoires. SGC, somatic gene conversion;
SHM, somatic hypermutation.
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Phage display technology
Bacteriophage, also simply known as phage, are viruses that
infect and replicate within bacteria. Phage display was invented
by George Smith, who discovered that the minor coat protein
(pIII) of filamentous phage can be modified at its amino
terminus to present peptide sequences without affecting phage
infectivity. In addition, these phage particles contained the
genomic information encoding the respectively modified coat
protein, thus physically linking genotype and phenotype.
A combination of phage selection and amplification could be
used to efficiently enrich phage that contained certain peptide
sequences.137 However, the incorporation of larger peptide
sequences, protein domains or whole proteins represented
a serious challenge due to decreasing infectivity. For this
reason, two-component systems were developed that consisted
of a phagemid encoding the pIII fusion protein and a helper
phage contributing the phage genome to encode all proteins
necessary for generating infectious phage particles. Usually,
these helper phage contain a modified packaging signal, leading
to the preferential assembly of phage particles containing the
phagemid. In the early 1990s, the first filamentous phage
display antibody libraries based on pIII fusion proteins were
published using either scFv or Fab fragments.138,139 To date,
these formats are still dominating the selection of mAbs by
phage display.140–142

Although phage display was established with mouse and
human antibody libraries to mine immune, naive and synthetic
antibody repertoires,120,141 the fact that rabbit mAbs were
difficult to generate by hybridoma technology for a number of
years provided a strong incentive for exploring the accessibility
of rabbit immune antibody repertoires by phage display. The
first rabbit antibody library selected by phage display was
reported by Ridder et al.,143 using a scFv format as in
subsequent independent studies.39,40,144–151 Rabbit antibody
libraries in Fab format followed in short succession.152,153

Due to the higher expression levels of human compared to
rabbit constant domains in bacteria, a chimeric rabbit/human
Fab format consisting of rabbit variable domains VL and
VH recombinantly fused to human constant domains CL and
CH1, respectively, proved particularly successful for the selec-
tion of rabbit mAbs by phage display19,154–160 and their
subsequent humanization (Figure 5).155 However, the above-
discussed intrachain disulfide bridge between cysteine 80 and
cysteine 171 found in rabbit κ light chains of the dominating
K1 isotype posed a challenge to the chimeric rabbit/human
Fab format as human CH1 does not harbor a cysteine 171. In
fact, only few Fab originating from the K1 isotype were
selected,86,155 indicating that the free thiol group of cysteine
80 is disfavored and that its presence diminishes the selectable
diversity of chimeric rabbit/human Fab. Indeed, chimeric
rabbit/human Fab derived by phage display from immunized
K1-negative Basilea strain rabbits revealed higher sequence
diversity and higher affinity compared to those from
K1-positive New Zealand White strain rabbits immunized with
the same immunogens.86 Interestingly, the same study by
Popkov et al. also compared rabbits homozygous for the

b9 κ-light-chain allotype (Figure 1) with the presumed alter-
native intrachain disulfide bridge between cysteine 108 and
cysteine 171. Fusion of the rabbit Vκ and human Cκ encoding
sequences in the generation of the chimeric rabbit/human Fab
library removes cysteine 108, thus avoiding the exposure of
a free thiol group. Consequently, immunized b9 allotype
rabbits also revealed superior selectable diversity and were
subsequently used in several additional studies.21,32,161 These
include the generation of a chimeric rabbit/human Fab against
the HIV-1 protein Rev.99 The Fab was able to invert
Rev polymerization and allowed for the formation of
Fab-Rev co-crystals that could be analyzed with X-ray crystal-
lography providing the first three-dimensional structure of
Rev and the first three-dimensional structure of a rabbit
mAb.98 Notably, the crystal structure revealed a dominant
role for LCDR3 in the antigen-binding site (Figure 6).
A cyclic peptide derived from LCDR3 was shown to bind
HIV-1 Rev with high affinity and to potently inhibit
Rev polymerization,162 corroborating the functional impor-
tance of the above-discussed high sequence diversity of rabbit
light chains.

A key advantage of using the natural Fab format for phage
display is its robust monomeric nature that permits affinity-
driven selections.142 By contrast, the unnatural scFv format has
a tendency to dimerize, trimerize and tetramerize,163,164

potentially causing avidity-driven selections.141 Thus, we

Figure 5 Chimeric rabbit/human Fab and humanized rabbit Fab.
Top: in contrast to rabbit Fab, chimeric rabbit/human Fab, which
consist of rabbit variable domains (blue and orange) and human
constant domains (gray and white), are well expressed in
Escherichia coli and displayed on phage. The phage particle shown
displays one chimeric rabbit/human Fab copy linked to the phage
surface by the C-terminal pIII protein domain as its phenotype
and, as its genotype, contain the corresponding single-stranded
phagemid that encodes the Fab. This physical linkage of phenotype
and genotype is the essence of phage display. Bottom: following
selection by phage display, chimeric rabbit/human Fab can be
humanized, which typically involves the grafting of the six rabbit
CDRs (blue and orange) into human framework regions (gray and
white).
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recommend using chimeric rabbit/human Fab format-based
phage display for applications that require rabbit mAbs of high
affinity. Even if the application calls for scFv, such as for the
generation of intrabodies, the chimeric rabbit/human Fab
format has been used for selection by phage display followed
by conversion to the rabbit scFv format.160,165–167 In addition
to Fab and scFv formats, single-domain antibody formats, that
is, VL or VH alone, which due to their smaller sizes have
advantages for certain applications, such as the recognition of
cryptic epitopes,163 have also been engineered from rabbit
mAbs.168–170 The noted dominance of the rabbit light chain
may make phage display of rabbit VL libraries particularly
attractive.

Alternative methods
As discussed, hybridoma technology and phage display have
distinct virtues and shortcomings that have fueled the devel-
opment of alternative techniques to generate mAbs. Unlike
hybridoma technology, phage display relies on the proper
transcription, translation, folding and assembly of light and
heavy chains in bacteria. Also, a potential disadvantage of phage
display, as well as other display technologies, is their combi-
natorial nature, leading to the random pairing of light and
heavy chains.120 As discussed above, limiting factors encoun-
tered during hybridoma technology, at least initially, included
fusion efficiency and hybridoma stability.130,171 Also, unlike
mouse hybridoma technology, rabbit hybridoma technology
was patented, imposing intellectual property restrictions that
have contributed to the incentive of developing alternative
methods.

In the generation of human mAbs, prominent alternative
methods include the clonal expansion of B cells by, for
example, Epstein–Barr virus immortalization, and single B-cell
sorting followed by light- and heavy-chain-encoding
DNA amplification and sequencing.120 Notably, like hybridoma
technology but unlike phage display, both methods yield
natural light- and heavy-chain pairs. Single B-cell isolation
based on antigen capture by fluorescence-activated cell sorting,
magnetic beads, solid-phase panning or hemolytic plaques
followed by light- and heavy-chain cloning has also been
applied to the generation of rabbit mAbs from peripheral
B cells,172–176 which does not require killing of the animal
and allows for multiple sampling points from primary and
secondary lymphoid tissues.177 Antigen capture-driven bulk
spleen B-cell isolation from immunized rabbits followed by
light- and heavy-chain-encoding DNA amplification and
their combinatorial assembly and expression in scFv–Fc or
IgG format in mammalian cells has also been reported.178 In
the fluorescent foci method, plasma cells from rabbit bone
marrow are identified by fluorescent microscopy, isolated and
subjected to light- and heavy-chain-encoding DNA amplifica-
tion and sequencing.179

High-throughput DNA sequencing technologies have been
applied to the in silico generation of mAbs as well as to the
analysis of naive and immune antibody repertoires in different
species.180 In the rabbit, high-throughput DNA sequencing of
B-cell repertoires along with mass spectrometry analysis of bulk
serum IgG has been used for the deconvolution of mAbs.64,181

Interestingly, this method revealed that the serum IgG response
to an invertebrate protein following hyperimmunization was
oligoclonal rather than polyclonal, comprising 34 rabbit mAbs
belonging to 30 distinct clonotypes.64

HUMANIZATION OF RABBIT MABS

The human immune system is intended to recognize and
selectively remove potentially pathogenic organisms and
substances. This is also true for nonhuman proteins, such as
mouse and rabbit mAbs. The respective immune responses are
characterized by high titers of human antibodies directed
against these foreign antibody sequences.182 This has two main
physiological consequences; first of all, it leads to side effects
comparable to allergic reactions of different levels of severity
and, second, it leads to the rapid elimination of the adminis-
tered mAb, thus limiting its diagnostic or therapeutic
efficacy.183,184 For these reasons, nonhuman mAbs are now
routinely converted to chimeric mAbs by combining the
nonhuman variable domains with human constant
domains185 and further to humanized mAbs by grafting all
or some of the CDRs of the nonhuman variable domains into
human frameworks.186

The first chimeric and humanized rabbit mAbs were
reported by Rader et al.155 In this study, chimeric rabbit/
human Fab selected by phage display were humanized by
grafting the six rabbit CDRs, three from each light and heavy
chain, into human frameworks that were diversified at certain
positions to allow the selection of either human or rabbit

Figure 6 Crystal structure of a chimeric rabbit/human Fab selected
by phage display in complex with HIV-1 Rev (PDB accession code
2X7L).98,99 The three CDR loops of the heavy chain are colored
blue and the three CDR loops of the light chain are colored orange.
Amino-acid residue side chains that interact with the antigen (gray)
are drawn as sticks. Note the dominating contribution of LCDR3 to
the paratope. When synthesized as cyclic peptide, LCDR3 on its
own was able to bind HIV-1 Rev with high affinity.162
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residues by phage display. The resulting humanized rabbit
mAbs retained the high affinity and specificity of their parental
mAbs. As discussed above, aside from having higher utility for
downstream clinical applications, using chimeric rabbit/human
Fab format for phage display has the added advantage of
affording higher expression levels in bacteria and, concomi-
tantly, higher display levels on phage.155

Since this first report, a number of additional humanized
rabbit mAbs have been published and patented. In general,
humanization strategies that have worked for mouse mAbs also
work for rabbit mAbs, whether it is by rational design,17,33,187

directed evolution188 or a combination of both.155,189 As is
the case for mouse mAbs, grafting of all six CDRs followed
by iterative fine-tuning of framework residues is the most
frequently used method for humanizing rabbit mAbs.
Borras et al. used a general acceptor framework for the
humanization of rabbit scFv. In this study, a certain human
framework carrying five specific human-to-rabbit mutations
was able to generate humanized rabbit mAbs to two different
antigens with conserved affinities and specificities, and
improved biophysical properties.24 Humanization strategies
that confine the content of parental rabbit antibody sequences
only to the most hypervariable of the CDRs, such as LCDR3
and HCDR3,190 have also been successfully applied to rabbit
mAbs.188

Thus far, there have been no reports that analyze the
immunogenicity of clinically investigated humanized rabbit
mAbs. Recent studies indicate that patients can still mount an
immune response to humanized or even fully human mAbs.
These findings indicate that additional aspects, such as idiotype,
allotype, glycosylation and aggregation, contribute to the
immunogenicity of mAbs.191 Nonetheless, the occurrence of
these unwanted side effects is significantly lower than
previously observed for nonhuman antibodies.182

SUMMARY AND OUTLOOK

Driven by the success of rabbit pAbs on one hand and mouse
mAbs on the other hand, rabbit mAbs have become highly
successful reagents for laboratory research and for diagnostic
and therapeutic applications. The unique ontogeny of rabbit
B cells affords highly distinctive antibody repertoires rich in
in vivo pruned binders of high diversity, affinity and specificity.
The ability to access rabbit antibody repertoires by hybridoma
technology, phage display and alternative methods has fueled
the increased use of rabbit mAbs in many different applica-
tions. Rabbit mAbs generated by hybridoma technology are
particularly attractive for IHC, with many studies demonstrat-
ing higher sensitivity compared to benchmark mouse mAbs.
Rabbit mAbs generated by phage display have found the use for
applications ranging from the detection of uranium in water40

to chimeric antigen receptor T cell therapy of cancer.22 Given
that humanization strategies are now well established, the
therapeutic utility of rabbit mAbs is especially intriguing. With
the first rabbit mAb-derived therapeutics already in clinical
trials, we predict that rabbit mAbs will gain further traction in
preclinical and clinical pipelines over the next decade.
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