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Abstract

Motivation: The inherent low contrast of electron microscopy (EM) datasets presents a significant challenge for
rapid segmentation of cellular ultrastructures from EM data. This challenge is particularly prominent when working
with high-resolution big-datasets that are now acquired using electron tomography and serial block-face imaging
techniques. Deep learning (DL) methods offer an exciting opportunity to automate the segmentation process by
learning from manual annotations of a small sample of EM data. While many DL methods are being rapidly adopted
to segment EM data no benchmark analysis has been conducted on these methods to date.

Results: We present EM-stellar, a platform that is hosted on Google Colab that can be used to benchmark the
performance of a range of state-of-the-art DL methods on user-provided datasets. Using EM-stellar we show that the
performance of any DL method is dependent on the properties of the images being segmented. It also follows that
no single DL method performs consistently across all performance evaluation metrics.

Availability and implementation: EM-stellar (code and data) is written in Python and is freely available under MIT
license on GitHub (https://github.com/cellsmb/em-stellar).

Contact: vijay.rajagopal@unimelb.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Electron microscopy (EM) is a fundamentally important modality
for basic biomedical science research. In recent years, we have seen
significant advances in EM technologies with the advent of, first,
electron tomography and, more recently, focused ion-beam and ser-
ial block-face scanning EM (Hussain et al., 2018). These technolo-
gies generate giga- and tera-bytes of high-resolution images of
subcellular architecture which must be segmented manually or using
image segmentation algorithms. The inherent low contrast in EM
has motivated the use of crowd-sourcing platforms, and image
segmentation challenges such as to reduce the image postprocessing
time. Deep learning (DL) is a powerful approach to image segmenta-
tion that is being widely explored as a way to segment high-
throughput biological datasets, including EM images (Xing et al.,
2018). In recent years, there have been several efforts to streamline
the usage of such technologies for the community (Haberl et al.,
2018; Khadangi et al., 2020; Schmidt et al., 2018; Von Chamier
et al., 2020). One crucial question that arises is whether we can use
such platforms to segment all types of EM data and whether they
have inherent limitations in segmenting particular types of ultra-
structures. Typically, these platforms utilize one unique or a limited
number of available deep neural network architectures. No study

has investigated the relationship between the choice of the DL
method and the segmentation performance. Moreover, segmenta-
tion performance evaluation remains under investigated as current
studies use a limited number of the evaluation metrics, and the im-
pact of the choice of evaluation metric has not been investigated.

One of the other challenges that the community faces when using
such methods is the lack of sophisticated DL utilities and functional-
ities as the current platforms often resort to demo-based DL applica-
tions. For example, such platforms opt for one single optimization
method or use a limited set of evaluation criteria as the inbuilt evalu-
ation metrics of the popular application programming interfaces
(API) are often limited. Or the segmentation objective function or
loss function is constrained to a limited number of inbuilt functions
that such API provide. However, we have witnessed in recent years
that successful DL applications in computer vision problems rely on
a strategic blend of data processing, network architecture, optimiza-
tion method, loss function, validation method, validation criteria
and hyperparameter tuning. We have also seen how the choice of
network architecture, loss function or optimization method can af-
fect the DL performance (Janocha and Czarnecki, 2017; Khadangi
et al., 2018, 2019; Khadangi and Zarandi, 2016; Lin et al., 2017;
Liu et al., 2019; Tan and Le, 2019). In addition to the above, the
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cost-effectiveness or the computational efficiency of DL applications
have not been investigated before.

We present EM-stellar (the official implementation is provided
as a Colab Notebook on GitHub (https://github.com/cellsmb/em-
stellar). We also provide a python implementation for the users who
might face issues with storage limitations on Google Drive or have
data security and privacy concerns), a comprehensive interface be-
tween the user and the DL application that is dedicated to EM image
segmentation. Figure 1 represents the workflow of EM-stellar and
the analysis that we have investigated in this study. EM-stellar pro-
vides a wide range of DL network architectures, evaluation metrics
and easy to use utilities. Such utilities involve a wide range of custom
loss functions, validation criteria, state-of-the-art optimization
methods that minimize the hyperarameter tuning and K-fold cross-
validation. Moreover, it enables the user to benchmark the perform-
ances of a diverse set of DL algorithms and use the desired methods
as the ensemble of models for the final inference stage. EM-stellar is
provided as the self-explanatory Jupyter Notebook for Google
Colab which simplifies the use of such sophisticated technologies
and utilities to a set of simple user clicks. This approach will save
lots of time as the user will not face problems with software depend-
encies installment, and they do not need to learn the workflow of

applications as EM-stellar is ready to use interface with guidelines of
the usage for the users.

2 Materials and methods

2.1 Deep convolutional neural networks
Here, we briefly outline the deep neural networks that we have
included in this study. The methods have been ordered chronologic-
ally by year and month. Software packages used in this study had
open-source licenses. We use modified versions of the mentioned
networks to test their performance on experimental datasets, and
the corresponding architectures were correctly implemented to the
best of our knowledge as validated with the literature.

1. VGG (Simonyan and Zisserman, 2014): VGG was proposed in

2014 as one of the first deep convolutional neural networks

used for ImageNet challenge (Deng et al., 2009) where the

authors had proposed to push the depth to 16 or even 19

layers. The network uses tiny 3� 3 convolution filters and rec-

tified linear units ((ReLU) as the main activation function. We

have used VGG-16 in this study as the encoder, then we have

Fig. 1. Overview of the EM-stellar. Top of the figure shows the workflow of the EM-stellar. The user uploads the raw data to Google Drive and uses networks to segment the

raw data. A wide range of metrics can be used to monitor the validation or to assess the inference performance. Moreover, in this study, we have performed a wide range of

analysis including complexity analysis, convergence times. The bottom (computational demand comparison, BS and RT represent batch size and running time, respectively)

shows effect of the batch size on the segmentation performance and the computational demand. As shown, increasing the batch size will require more GPU resources and,

hence incurring more charges. We also show that increasing the batch size during the training expedites the convergence and often leads to better inference results. Moreover,

we have also compared the DL performance with the previously developed machine-learning software packages including ilastik and Weka (we provide detailed analysis on

our experiments with Weka and ilastik in Supplementary Information)

98 A.Khadangi et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1094#supplementary-data


employed two-dimensional (2D) upsampling with skip connec-

tions to retrieve the feature channels back to the original reso-

lution. Batch normalization (Ioffe and Szegedy, 2015) has been

used in the network to stabilize the training. The kernels were ini-

tialized using He-normal initialization method (He et al., 2015).

2. PReLU-net (He et al., 2015): Parametric rectified linear unit

(PReLU) was proposed in 2015 to generalize ReLU. The authors

had also proposed a novel initialization method (He-normal) for

kernels which improved the classification performance on

ImageNet challenge. We adapted PReLU-net to use in this study

where batch normalization has been used to stabilize the

training.

3. U-net (Ronneberger et al., 2015): U-net was proposed in 2015

for medical and biological image segmentation. The network uses

two symmetric paths, namely called contractive and expansive

paths to enhance capturing context and localization, respectively.

In this study, we have implemented U-net in two versions: in the

first version, we have used batch normalization across all the

layers; however, the second version lacks batch normalization

layers. ResNet (He et al., 2016): Deep residual learning was pro-

posed in 2016 to ease the training deep neural networks by reduc-

ing their complexities. The authors had evaluated a 152-layer

residual network which had eight times more depth than VGG,

but representing lower complexity as compared to VGG. In this

study, we have used ResNet-50 as the encoder, and a U-net like de-

coder with skip connections have been utilized to retrieve the fea-

ture channels back to the original input resolution.

4. SegNet (Badrinarayanan et al., 2017): SegNet was proposed in

2017 as a deep, fully convolutional neural network for semantic

pixel-wise segmentation. The network consists of an encoder

network followed by a decoder network and subsequently pixel-

wise classification layer. We have used SegNet in this study to

segment the EM images; however, we have modified the output

layer to suit the binary classification task.

5. CDeep3M (Haberl et al., 2018): CDeep3M was proposed in

2018 to facilitate access to complex computational environ-

ments and high-performance computational resources for the

community. The authors had implemented InceptionResnetV2

(Szegedy et al., 2017) using Caffe on Amazon Web Services

(AWS) EC2 instance. Access to these facilities requires the user

to pay for the resources on an hourly rate basis for both training

and inference. CDeep3M offers 2D and three-dimensional (3D)

segmentation pipelines.

6. EM-net (Khadangi et al., 2020): EM-net was proposed in 2020

for 2D segmentation of EM images. The authors have proposed

trainable linear units which generalize PReLU and ReLU and have

evaluated the proposed network and the base classifiers on a FIB-

SEM cardiac dataset and ISBI challenge for neuronal stacks seg-

mentation. EM-net represents lower computational complexity in

terms of the number of trainable parameters and floating point

operations per second (FLOPs).

2.2 Data
We used two publicly available datasets in this study. The first data-
set includes left ventricular myocyte FIB-SEM image datasets col-
lected from mice, as described previously (Glancy et al., 2015). We
extracted 24 random patches from this dataset each having
512 � 512 pixels for training, testing and validation. After we
manually annotated mitochondria on this sample, we split data ran-
domly into training, validation and testing by 16/24, 4/24 and 4/24,
respectively. The second dataset involves mice lateral habenula serial
block-face scanning electron microscopy (SBEM) 1024 � 1024 �
80 voxels, as described previously (Haberl et al., 2018). We

extracted 320 random patches from this dataset and the correspond-
ing binary mitochondria masks that had already been annotated for
training, validation and testing. We split data randomly into train-
ing, validation and testing by 80%, 10% and 10%, respectively. All
the random data splits were performed using K-fold cross-
validation, and the inference performance is reported based on the
best fold model.

2.3 Training and testing
All the experiments in this study except CDeep3M were imple-
mented using TensorFlow GPU 1.8.0 CUDA 9.0 (Abadi et al., 2016)
and KERAS 2.2.4 (others, 2015). These experiments were per-
formed on a GPU cluster, HPC Spartan (Lafayette et al., 2016) as
described in(Khadangi et al. (2020). A stack of 100GB GPU instance
was launched on AWS p3.2xlarge in the US West (Oregon) region to
train CDeep3M. CDeep3M is implemented in Caffe, and we utilized
the default settings for training as described in Haberl et al. (2018)
and Khadangi et al. (2020). More details about the training and test-
ing are provided in Supplementary Information.

3 Results

3.1 Overview of DL methods
We performed an extensive survey of the literature to identify state-
of-the-art deep neural networks that have been utilized for EM
image segmentation. We chose CDeep3M (Haberl et al., 2018),
EM-net (Khadangi et al., 2020), PReLU-net (He et al., 2015),
ResNet-50 (He et al., 2016), SegNet (Badrinarayanan et al., 2017),
U-net (Ronneberger et al., 2015) and VGG-16 (Simonyan and
Zisserman, 2014) for our experiments. Among these methods, we
have experimented EM-net with all of its seven base classifiers
bringing the total number of networks and methods to a maximum
of thirteen. We used two publicly available focused ion-beam scan-
ning electron microscopy (FIB-SEM) datasets for our experiments
and evaluation purposes. We utilized a wide range of segmentation
evaluation metrics to compare the results including F1-score,
Foreground-restricted Rand Scoring after border thinning
[VRand

ðthinnedÞ] Foreground-restricted Information-Theoretic Scoring
after border thinning [VInfo

ðthinnedÞ] (Arganda-Carreras et al., 2015).
More details about datasets and evaluation metrics are highlighted
in methods section.

3.2 EM-net variants demonstrate reliable learning

capacity on both small and large datasets
We trained and evaluated chosen networks with two FIB-SEM data-
sets, including one small cardiac dataset comprising 24 serial sec-
tions each of pixel size 512 � 512, and another large neuronal
dataset consisting of 320 serial sections with the same image size as
the cardiac dataset. Mitochondria were manually annotated on both
datasets. Figure 2 illustrates the results of evaluating networks on
the test datasets that were held out randomly and not used for train-
ing. The result values have been normalized using min–max normal-
ization per metric category for comparison.

As shown, despite the difference in size between these two data-
sets, EM-net variants (grouped within a box on both heatmaps)
demonstrate competitive evaluation metric values when compared
to other methods. The ensemble of top EM-net base classifiers out-
performs other methods majority of the metrics on the cardiac data-
set; however, the segmentation performance metric values were not
as high performing on the neuronal dataset based on average voting.

3.3 No one network can fit them all
Figure 2 shows how the underlying texture and intensity distribution
of different datasets, and the target ultrastructures can affect the per-
formance of a deep neural network in segmenting a dataset. One
network cannot achieve high performance for all datasets—one net-
work cannot fit them all. Considering U-net BN and EM-net V2 4X,
both methods demonstrate only above-average performance on
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segmenting the cardiac dataset in terms of the VRand
ðthinnedÞ score;

however, they achieve top performance based on the same metric
for the neuronal data. Additionally, almost all of the methods repre-
sent relatively similar performance based on sensitivity metric for
the cardiac dataset, whereas they have dropped below 50% on the
neuronal dataset. CDeep3M demonstrates above-average perform-
ance for the cardiac dataset, whereas it provides inferior perform-
ance on the neuronal dataset. However, Figure 2 implies that an
ensemble of top classifiers may lead to reliable performance across
different datasets.

3.4 Evaluation metrics remain subjective and probably

unique to the deep neural network
Choosing the right evaluation metric for segmenting EM data is a
critical and still challenging step as depending on the objective of the
segmentation, the user might prefer a specific set of segmentation
metrics (Arganda-Carreras et al., 2015). In other words, there is no
one universal evaluation metric for such tasks. The choice of such

metrics might even depend on the segmentation task; e.g. 2D or 3D
segmentation may require different evaluation metrics. One previous
study (Taha and Hanbury, 2015) has investigated benchmarking
segmentation metrics for biomedical images in the 3D setting. Still,
most of the studies have opted for F1-score and Jaccard index as the
segmentation metric of choice. In one other research (Caicedo et al.,
2019), the same metrics have been utilized as the main evaluation
metrics for nucleus segmentation.

We extended our analysis to monitor the response of the neural
networks to different evaluation metrics. We followed this aim as
the evaluation metrics reported for EM image segmentation remains
sparse in the literature, and no study has investigated such a broad
range of analysis on evaluation metrics. Our analysis shows that per-
formances of these networks are subject to change depending on the
evaluation criteria. Take the result of U-net BN on neuronal test
dataset as an example shown in Figure 2. This network achieved
top-performing VRand

ðthinnedÞ score; however, it demonstrated aver-
age performance when using other metrics, including accuracy, e.g.
Moreover, our analysis shows that the Jaccard similarity index and
F1-score are mostly correlated for those instances that have achieved
top Jaccard index scores.

In addition to the above, we found that some methods demon-
strate unique behavior when applied to different datasets. As shown
in Figure 2, CDeep3M demonstrates the same performance for spe-
cificity and PPV, meaning that this network produces minimal false-
negative segmentation instances. However, the performance of
VGG implies that this network delivers low sensitivity and high spe-
cificity on both neuronal and cardiac datasets. These findings sug-
gest that the architecture of the deep neuronal networks and the
underlying layers can affect the performance of the networks when
evaluated with different metrics. In summary, the users might prefer
one network over another depending on the desirable evaluation
metrics, and they should not expect that one method will be the top
performer for all the metrics.

3.5 Convergence times vary depending on the size of

the dataset or the underlying data structures
Figure 3 shows the convergence times of the networks on both car-
diac and neuronal datasets according to the validation metrics that
we have chosen during the training. The convergence times imply
that the large ground-truth datasets (in this case, neuronal dataset),
and potentially diverse structural variations in the data will impact
the convergence time of the network. However, this does not neces-
sarily mean that the convergence times are positively correlated with
the data size only.

Take EM-net V1 BN and V1 BN 2X as an example shown in
Figure 3. Based on a comparison between the convergence times of
these two networks for the cardiac dataset, one user might expect that
V1 BN 2X will demonstrate lower mean and median values for the
convergence times relative to the V1 BN on the neuronal dataset as
well. However, Figure 3 shows precisely the opposite. On the other
hand, U-net and U-net BN demonstrate relatively similar convergence
times based on their mean and median values for the neuronal dataset;
however, U-net BN has converged faster than U-net on the cardiac
dataset. Our analysis shows that convergence times does not only de-
pend on the ground-truth data size but is also affected by underlying
data structures and the feature bank of the network used for the train-
ing. In general, EM-net V1 2X and EM-net V2 show less sensitivity to
the data size or data structures, as shown in Figure 3.

3.6 Complex networks might not perform well and

might also exhaust resources
Figure 4 illustrates the ball chart reporting the complexity of the net-
works in terms of Giga FLOPs, the associated number of parameters
and top VRand

ðthinnedÞ score (thresholded to above 0.90) on the corre-
sponding test datasets. The operations are reported for one iteration
based on an input tensor with the shape of (1, 512, 512, 1) repre-
senting a single batch of monochromic image. As shown, ResNet
and CDeep3M required the lowest and highest FLOPs, respectively.

Fig. 2. Heatmap of evaluation metrics for different methods based on the test data-

sets. The values are normalized using min–max normalization per metric category.

The black boxes correspond to EM-net base classifiers, including the ensemble

methods. Top: cardiac, bottom: neuronal data
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Fig. 3. Convergence times (hours) of different networks for cardiac and neuronal data based on the different evaluation metrics. These times have been reported based on our

runnings on four parallelly pooled Nvidia Tesla P100 GPUs

Fig. 4. Ball chart reporting complexity of networks based on Giga FLOPs and the corresponding performances in terms of the VRand
ðthinnedÞ score. This figure also illustrates

the number of trainable parameters for individual networks (millions)
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First, the number of parameters does not directly reflect the com-
plexity. Considering EM-net V2 4X and U-net BN, both these net-
works have a relatively similar number of parameters; however,
EM-net V2 4X required less computational resources to perform the
same job as compared to U-net BN. Second, this figure shows that
the high number of parameters or complexity of the networks do
not necessarily yield top test performances. This figure shows how
EM-net V1 2X and V1 BN 2X have achieved top VRand

ðthinnedÞ score
on the cardiac dataset despite their very low complexity and the
number of parameters. However, we can observe that their perform-
ances have been not as good when tested on the neuronal dataset
but they are still competitive when compared to the VGG and
CDeep3M results. Finally, we can observe that U-net BN demon-
strates similar performance in terms of VRand

ðthinnedÞ score for both
cardiac and neuronal datasets.

3.7 Visualization of the intermediate layers reveals the

redundancy of the feature channels
We visualized over 140 000 intermediate feature channels for U-net
BN, VGG and EM-net V2 4X on the test datasets. We analyzed the
2D correlation between each of the individual channels leading to

over than 9 billion feature correlation maps. Figure 5 illustrates the
distributions of the correlation maps between each block of the net-
works. Each of these blocks shares the same characteristic as the
underlying feature channels, which have the same resolutions. For
example, B1 represents the distributions of the feature correlation
maps for these three networks within their corresponding block one,
and they all have the same feature resolutions in this case (512, 512)
in x and y as we have used for training datasets. We have also visual-
ized the interblock feature correlation maps by which we can ana-
lyze the relationships of the feature maps within each of the blocks
of these networks. For example, take B4 and B3 in y and x axes, re-
spectively. This location corresponds to 2D contours of the feature
correlation distributions between these blocks. It suggests that U-net
represents similar feature correlation distributions in blocks three
and four; however, VGG and EM-net show much spread distribu-
tions which means they extract less redundant feature maps. We
have also visualized the scatter plots of these feature correlation
maps distributions in the upper-diagonal plots.

Our analysis shows that in general, VGG and EM-net demon-
strate fewer feature correlations within each block and even be-
tween the individual blocks as compared to U-net. The

Fig. 5. Block-wise feature correlation map distributions for EM-net, U-net and VGG. B1 corresponds to the first block (maximum feature resolution), B5 represents the bottle-

neck of the networks (minimum resolution), and B9 represents the block corresponding to the output node. The upper-diagonal plots show the scatter plots of the feature cor-

relation maps, the bottom-diagonal plots represent the 2D contours of the block-wise distributions and diagonal plots correspond to univariate feature correlation

distributions of individual blocks
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distributions of these feature channel correlation maps reach their
maximum between blocks three and four in VGG, implying that
features are less correlated within these two blocks. However,
EM-net demonstrates less correlation between the feature chan-
nels within the block five called ‘the bottleneck’ (where almost
30–50% of the features are concentrated here) as compared to
the two others.

From the interblock feature correlation map perspective, we
can observe that U-net demonstrates a high correlation between
the correlation map distributions of the different blocks as these
distributions are centered or peaked. This implies that feature
maps extracted by the U-net could potentially lead to redundant
feature maps, especially in the bottleneck as almost all the blocks
represent the same level of feature correlation map distributions.
One study (Iglovikov and Shvets, 2018) has investigated this phe-
nomenon by tweaking the U-net architecture where they have sub-
stituted the encoder of the U-net to the encoder of the VGG-11,
and the authors have obtained better performance in terms of
Jaccard similarity index.

3.8 Visualization of the segmentation masks reveals

that CDeep3M is less prone to false-negative
We have visualized the overlays of the segmentation results on the
sample cardiac and neuronal test datasets. Figures 6 and 7 illustrate
the overlay of binary masks on the sample cardiac and neuronal test
datasets, respectively. These illustrations have been obtained based on
the results of EM-net (average and majority voting), CDeep3M and U-
net BN. As shown, CDeep3M provides minimal false-negative or miss-
ing mitochondria on these images; however, the number of false-
positives is higher than EM-net and U-net. U-net and EM-net offer a
higher number of false-negative instances in comparison with
CDeep3M as they are more prone to missing mitochondria.

We have used a threshold value of 0.5 to obtain binary masks of
the segmentation probability maps resulted from the networks in
these visualizations, as illustrated in Figures 6 and 7. However, met-
rics like VRand

ðthinnedÞ and VInfo
ðthinnedÞ handle such a limitation by

thinning the border or using a threshold step value of 0.1. As a re-
sult, we can monitor the desired performance metric and finally de-
termine the best performing threshold value.

Fig. 6. Comparison of mitochondria segmentation results on sample cardiac test dataset. Yellow, green, red and blue correspond to true-positive, true-negative, false-negative

(missing mitochondria) and false-positive. EM-net, U-net and VGG are less prone to false-positives; however; CDeep3M demonstrates minimum false-negative segmentation

errors. The left column represents the sample test FIB-SEM images of cardiomyocytes. Other columns correspond to the overlay of result masks for CDeep3M, EM-net, U-net

BN and VGG
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4 Discussion

We have presented EM-stellar, a framework for benchmarking DL
methods for EM image segmentation that is hosted on Google

Colab. Although a couple of reviews of using DL methods for mi-
croscopy image analysis and segmentation have been reported
(Carneiro et al., 2017; Xing et al., 2018), a comprehensive evalu-
ation of the segmentation methods has not been conducted to date.

Fig. 7. Comparison of mitochondria segmentation results on sample neuronal test dataset. Yellow, green, red and blue correspond to true-positive, true-negative, false-negative

(missing mitochondria) and false-positive. EM-net ensembles and U-net are less prone to false-positives; however; CDeep3M demonstrates minimum false-negative segmenta-

tion errors. The left column represents the sample test SBEM images of mice brain cells. Other columns correspond to the overlay of result masks for EM-net ensembles based

on average and majority voting, CDeep3M and U-net
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In this paper, we have compared seven different deep convolutional
neural networks for EM image segmentation. Most of the studies
reported in the literature are limited to one tissue type such as neur-
onal microscopy datasets; however, we report our analysis not only
using a neuronal dataset but also using cardiac EM data. We also
have extended our study to analyze the performance of these meth-
ods using a wide range of segmentation metrics.

Moreover, we report the computational complexity of these
algorithms and their associated computational demand. This is the
first study in the literature that reports such analysis in the context
of EM image segmentation, which is implemented in the cloud for
persistent reusability by biologists. Our Colab notebook enables the
users to benefit from state-of-the-art software and hardware resour-
ces in the context of DL to achieve the maximum segmentation
performance.

We found considerable variation in the segmentation perform-
ance metrics across individual algorithms. Our study shows that
different deep neural networks perform differently when using a
single segmentation metric. Among many validation performance
monitoring criteria, high validation F1-score and Jaccard similar-
ity index are associated with high test Jaccard, F1-sore and
VRand

ðthinnedÞ scores. In terms of the objective function, we have
found that using binary cross-entropy for highly imbalanced bin-
ary segmentation tasks will not necessarily lead to best inference
results and using focal loss (Lin et al., 2017) is highly recom-
mended in such cases. In terms of the optimization methods, using
warm-up strategy (Goyal et al., 2017) has led to best inference per-
formance in ISBI challenge and mitochondria segmentation in both
cardiac and neuronal datasets. For small and limited training data-
sets, complex networks tend to overfit more often; however, they
show reliable performance as exposure to an abundant training
dataset. Convergence times and computational resource expense
depend on both variations of structures in image data and changes
across serial sections. Moreover, our experiments suggest that
training these networks on GPUs in parallel mode with increased
batch size boost the segmentation performance and minimize the
convergence times.

We also report the segmentation performance using ilastik and
Weka (see Supplementary Information). Our experiments suggest
that DL methods perform better than ilastik and Weka in terms of
accuracy. However, ilastik and Weka offer a significant advantage
over DL methods as they can save user’s time by segmenting the data
with limited and sparse ground-truth labels in the expense of accur-
acy and require less training time and computational resources.

Finally, we highlight the importance of ensemble learning in EM
image segmentation. Our experiments show that using only one type
of classifier or deep neural network, or even one randomly chosen
validation dataset will not lead to maximum test segmentation per-
formance. Hence, we have equipped EM-stellar with ensemble
learning which enables the user to select the inference model based
on majority or average voting. Moreover, EM-stellar allows the user
to benefit from K-fold cross-validation, which maximizes the chance
of obtaining maximum inference performance.

To summarize, EM-stellar is a cloud-based platform hosted on
Google Colab which gives free access to GPU and TPU resources
and enables the user to use state-of-the-art DL methods across a
wide range of segmentation performance metrics. It is equipped
with several machine-learning strategies including K-fold cross-
validation, different loss functions and optimization methods. It
enables the user to choose top-performing models for ensemble
learning based on report insights that are provided at the end of
the training. We recommend the users to use U-net BN and EM-
net V2 4X for segmentation when a large training dataset is avail-
able; otherwise, they may use EM-net V1 2X. However, the users
might opt for arbitrary networks if they aim at using an ensemble
of different models. We plan to utilize TPUs in the future as part of
EM-stellar release versions and integrate other state-of-the-art net-
works such as EfficientNet (Tan and Le, 2019) to deliver max-
imum performance and efficiency. Table 1 illustrates a summary
of our findings on the network selection strategy for the prospect-
ive users.

This summary is acquired based on our experiments and may
not be generalizable under other data or methodology settings.
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