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Epigenomic evolution in diffuse large B-cell
lymphomas
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The contribution of epigenomic alterations to tumour progression and relapse is not well

characterized. Here we characterize an association between disease progression and DNA

methylation in diffuse large B-cell lymphoma (DLBCL). By profiling genome-wide DNA

methylation at single-base pair resolution in thirteen DLBCL diagnosis–relapse sample pairs,

we show that DLBCL patients exhibit heterogeneous evolution of tumour methylomes during

relapse. We identify differentially methylated regulatory elements and determine a relapse-

associated methylation signature converging on key pathways such as transforming growth

factor-b (TGF-b) receptor activity. We also observe decreased intra-tumour methylation

heterogeneity from diagnosis to relapsed tumour samples. Relapse-free patients display lower

intra-tumour methylation heterogeneity at diagnosis compared with relapsed patients in an

independent validation cohort. Furthermore, intra-tumour methylation heterogeneity is

predictive of time to relapse. Therefore, we propose that epigenomic heterogeneity may

support or drive the relapse phenotype and can be used to predict DLBCL relapse.
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D
iffuse large B-cell lymphoma (DLBCL) is the most
prevalent B-cell non-Hodgkin lymphoma in adults
worldwide1,2. One-third of patients do not respond

to chemotherapy (R-CHOP, rituximab, cyclophosphamide,
doxorubicin, vincristine and prednisone) or relapse in 5 years
after treatment3,4. The disease is characterized by heterogeneous
genetic, phenotypic and clinical features5,6, which could only
partially explain the failure treatment of some patients.
Recent large-scale genomic studies have shown that mutations
in the epigenetic machinery and concomitant perturbation of
epigenomic patterning are frequent events in B-cell lymphomas7.
The best-studied epigenetic modification is DNA methylation,
which consists of the addition of a methyl group to carbon 5
of the cytosine within the dinucleotide CpG8. Hyper- or
hypomethylation of gene regulatory regions is associated with
gene silencing or expression, respectively. Promoter methylation
is generally inversely correlated with gene expression level. DNA
methylation-profiling studies indicate that cytosine methylation
distribution is perturbed in lymphomas compared to normal B
cells7. For example, hypermethylation of a CpG-rich region
within the first intron of BCL6 was reported to maintain high
level of expression of the critical oncogene in part by blocking
binding of a negative regulator CTCF of this locus9.

While the contribution of DNA methylation to lympho-
magenesis has been investigated, the role of DNA methylation in
lymphoma progression and relapse is unknown. In childhood
acute lymphoblastic leukaemia, a tendency towards hypomethy-
lation was demonstrated in relapsed tumours by whole-
methylome analyses10,11. In DLBCL, inhibition of DNA
methylation using azacitidine can overcome chemotherapy
resistance both in preclinical models and possibly in patients12.
These results may implicate DNA methylation in resistance to
standard treatment in DLBCL, a feature also observed in relapsed
disease. It has been reported that aberration in DNA methylation
increases with disease severity in B-cell lymphomas, suggesting
again a potential role for DNA methylation in B-cell lymphoma
progression13. Here we reason that characterizing the
DNA methylome at single-base resolution in relapsed DLBCLs
would help understand its role in disease progression and
its contribution to relapse-associated phenotypes such
as chemoresistance. We performed enhanced reduced
representation bisulfite sequencing (ERRBS)14 to interrogate the
methylation levels at three to four million CpGs distributed in a
cohort of DLBCL patients who were uniformly treated with
standard chemotherapy (R-CHOP) and eventually relapsed.
Taking advantage of the single-nucleotide resolution provided
by ERRBS14, we are able to access intra-tumour methylation
heterogeneity (MH) at diagnosis and relapse in DLBCL and
correlate it with disease progression.

We characterize the evolution of methylome from diagnosis to
relapse in DLBCL along three different axes—overall changes in
DNA methylation landscape, differentially methylated regulatory
elements and intra-tumour MH. We find that DNA methylation
landscape evolves in heterogeneous ways from diagnosis to
relapse in our cohort, which is consistent to the complex genetic
background of DLBCL. Despite the heterogeneous background
of DNA methylation landscape, we determine a methylation
signature based on consistently differentially methylated regula-
tory elements between diagnosis and relapsed pairs. This
signature is linked with specific genes and pathways whose role
in relapse may be important, for example, transforming growth
factor-b (TGF-b) receptor activity pathway and apoptosis.
Finally, we observe decreased intra-tumour MH from normal
tissues to primary diagnosis tumour samples then to relapsed
tumour samples. We also compare and contrast the tumour
methylome of the relapsed cohort with another group of patients

(n¼ 7) who have not relapsed in 5 years after initial treatment.
We conclude that non-relapsed patients have lower intra-tumour
MH at diagnosis compared with relapsed ones. Importantly, this
conclusion has been validated in a second, independent and
larger (n¼ 59) cohort of DLBCL patients. Our results provide
insights into the evolution of the DLBCL epigenome on
chemotherapy and how DNA methylation may help to drive
the relapse phenotype. Our data also suggest that epigenetic
heterogeneity in DLBCLs at diagnosis is predictive of the
occurrence of relapse.

Results
Heterogeneous DNA methylation changes on DLBCL relapse.
Several studies have shown that the DNA methylation landscape
differs between primary DLBCL (at diagnosis) and normal B cells
including germinal centre B cells (GCBs) and naı̈ve B cells
(NBs)13,15–17. Here we sought to determine whether DLBCL
progression and relapse are associated with DNA methylation
landscape changes. To characterize the DNA methylome, we
performed ERRBS14 on 13 pairs of DLBCL diagnosis tumours
(untreated) and their matched relapsed (after treatment) samples
from 11 patients. Time to relapse varied between 0.5 and 13 years
(Cohort 1; Supplementary Data 1). In one patient, we obtained
tissues from three different sites of relapse and performed ERRBS
on all three relapsed samples. Approximately half of our samples
were of the GCB subtype at diagnosis as assessed by
immunohistochemistry (Cohort 1; Supplementary Data 1). In
all but one case, the relapsed tumour was of the same subtype as
the diagnosis tumour. In addition to tumours, we profiled
methylomes of tonsilar B-cell subsets (GCBs and NBs) from two
healthy individuals. ERRBS provided more than 10� sequencing
coverage (centred around 50� ) on three to four million CpG
sites genome wide for each sample (Supplementary Data 2).
These data sets were used to calculate the DNA methylation levels
for all CpG islands (CGIs) as well as outside of CGIs. Hierarchical
clustering of CGI methylation levels in all samples revealed
that diagnosis and relapse samples from the same patient always
cluster together but nonetheless showed that significant
methylation differences exist between sample pairs
(Supplementary Fig. 1). When analysing the methylation levels
from all patients, we observed increased DNA methylation levels
at CGIs (P¼ 6.9e� 5, t-test; P¼ 1.5e� 3, Wilcoxon test) and CGI
shores (defined as 1 kb flank regions of known CGIs on both
sides; P¼ 5.1e� 7, t-test; P¼ 1.5e� 3, Wilcoxon test) in DLBCLs
compared with normal B cells (NBs and GCBs were merged into
a single group due to limited sample numbers; Fig. 1a). However,
we did not observe significant methylation level changes outside
of CGIs (410 kb away from known CGIs; P¼ 0.22, t-test;
P¼ 0.66, Wilcoxon test; Fig. 1a). We chose 10 kb as our cutoff to
define regions unambiguously outside of CGIs and GGI shores.
These results are in agreement with previous studies in
DLBCL13,16,18. When we interrogated the DNA methylation
changes between diagnosis and relapsed tumour samples in each
pair, we only observed decreased DNA methylation levels outside
of CGIs (P¼ 0.04, paired t-test; P¼ 0.07, paired Wilcoxon test)
from diagnosis to relapse but no significant DNA methylation
changes at CGIs (P¼ 0.47, paired t-test; P¼ 0.59, paired
Wilcoxon test) and CGI shores (P¼ 0.29, paired t-test;
P¼ 0.08, paired Wilcoxon test; Fig. 1a). These results differ
from those observed in treatment-resistant prostate cancer19,
where DNA methylation increased substantially at CGIs on
tumour progression. They however are concordant with those
observed in acute lymphoblastic leukaemia10,11.

The analyses described so far were performed using the average
methylation level across all CGIs, CGI shores and non-CGIs.
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When we interrogated CpG individually, we found that the
methylation status of many CpGs changed between diagnosis and
relapse differentially. Specifically, we observed between 39,808
and 1,035,960 differentially methylated CpGs (DMCs) in each

sample pair (false discovery rate¼ 20%, Fisher Exact test;
Supplementary Data 3). In addition, we identified between 78
and 13,162 hypermethylated differentially methylated regions
(DMRs) in each case (Fig. 1b and Supplementary Data 3;
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Figure 1 | DNA methylation landscape changes in DLBCL patients. (a) Percentage of DNA methylation in CGIs, CGI shores and non-CGIs of normal B

cells (n¼4) and diagnosis–relapse DLBCL sample pairs (n¼ 13). For each CpG, we collected the number of methylated reads and the number of total

reads. The DNA methylation for different genomic regions for each sample was calculated by the percentage of methylated reads out of total reads from all

the CpGs inside corresponding regions. ***Po1e� 5, *Po0.05 (t-test, normal versus diagnosis; paired t-test, diagnosis versus relapse). The median, upper

and lower quartiles are shown. Whiskers represent upper quartileþ 1.5 IQR and lower quartile� 1.5 IQR. (b) Numbers of hypermethylated or

hypomethylated DMRs of individual DLBCL patients, between diagnosis and relapse. Patient 1 had 3 sites of relapse and consequently 3 diagnosis–relapse

pairs were analysed (the same diagnosis sample was used for all comparisons). Out of 13, 11 pairs show more hypomethylated regions than

hypermethylated regions. (c) Pathways overexpressed with hypermethylated genes (promoters overlapped with hypermethylation DMRs) of individual

patients were illustrated here. Each row represents a single pathway and each column represents a patient pair. The enrichment of the pathways was

determined in a patient-by-patient manner (n¼ 1, Po0.005, randomization-based non-parametric testing). GO analyses were performed with iPAGE20.

Pathways from the lymphoid gene signature database for Staudt Lab21 were used here. The background included around 24,000 genes from Refseq. IQR,

interquartile range.
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see Methods for details on how DMRs are determined). The
number of hypomethylated DMRs varied between 92 and 28,744
(Fig. 1b and Supplementary Data 3). We selected top 1,000 DMCs
(based on adjusted Fisher P values) and DMRs (based on
methylation difference) from patient 1.1 as representative
examples listed in Supplementary Data 4 and 5. Further analyses
demonstrated that the tendency toward hypo- or hypermethyla-
tion is not affected by the distribution of methylation sites in the
genome or by the bias of ERRBS assay towards CG-rich regions
(Supplementary Note 1; Supplementary Fig. 2).

Consistent with the global trend towards hypomethylation at
relapse, 11 pairs showed more hypomethylated DMRs at relapse,
while the other two showed more hypermethylated DMRs, which
suggests once again hypomethylation as a potential hallmark of
DLBCL relapse (Fig. 1b). Despite this trend, the number of DMRs
within each pair varied broadly between cases (Fig. 1b). In patient
1 for whom we had three sites of relapse, we found that two of the
sites have similar methylation profiles suggesting recent diver-
gence, while the other one had significantly different methylation
landscape (Fig. 1b and Supplementary Fig. 1). We applied
pathway analysis using the information-theoretic iPAGE20

approach to the genes associated with hypermethylated and
hypomethylated DMRs at relapse (these genes are defined as
genes with promoters that overlapped with DMRs) in each
patient separately (see Methods). We identified a small number of
pathways that are over-represented among hypermethylated
DMR-associated genes in more than two patients, such as
CNS_Node1661 (ref. 21; central nervous system cell
differentiation pathways; Fig. 1c). However, most differentially
methylated pathways in relapse are specific to one or two
individuals such as E2F3_overxpression_4x_up21 (genes
upregulated by E2F3 by fourfold; Fig. 1c). Altogether these
results indicate distinct evolutionary directions of the DNA
methylome in DLBCL patients, with each patient evolving along
its own trajectory.

Preferential methylation changes at regulatory elements. We
sought to determine where in the genome DNA methylation
changes tend to occur between diagnostic and relapsed samples.
Across all patients, we found that hypermethylated DMRs at
relapse were mostly enriched at promoters (defined as ±2 kb
windows centred on RefSeq transcription start sites) compared
with the distribution of ERRBS-covered regions (36 versus 19%,
P¼ 2.2e� 16, binomial test; P¼ 4e� 4, t-test; Fig. 2a). These
regions were defined as containing at least five covered CpGs
minimum, separated by o250 bp between contiguous CpGs,
which is similar to the definition of DMRs without methylation
ratio cutoff and DMCs requirement. The distribution of hypo-
methylated DMRs was overall similar to the distribution of
ERRBS-covered regions (Fig. 2a). Next we examined the methy-
lation changes at or nearby CTCF-binding sites between diag-
nostic and relapsed samples. For this analysis, we used CTCF sites
determined by chromatin immunoprecipitation (ChIP)-seq in the
OCI-Ly1 DLBCL cell line. We observed that 52% of hyper-
methylated DMRs and 54% of hypomethylated DMRs were
located in the neighbourhood (r10 kb) of CTCF-binding sites
(Fig. 2b,c). As a control, we generated randomly located CTCF-
binding sites with the same genomic distribution as the true
binding sites22 and found significantly fewer relapse-associated
hypermethylated (40%, P¼ 2.2e� 16, Fisher Exact test) and
hypomethylated DMRs (39%, P¼ 2.2e� 16, Fisher Exact test) in
close proximity to these random sites. These results support a link
between CTCF binding and DNA methylation changes at
relapse. As another control, we performed the same analysis on
BCL6-binding sites in OCI-Ly1 obtained from a previous study23.

BCL6 has not been reported to be associated with DNA
methylation status and accordingly we did not observe any
significant association between DMRs and BCL6 binding.
Altogether these results confirm a potential mechanistic
connection between DNA methylation evolution in DLBCL and
specific regulatory elements.

Methylation signature at relapse involves key pathways. Despite
the high patient-to-patient evolutionary heterogeneity in DNA
methylation, we hypothesize that there might be a small but
common methylation signature of DLBCL relapse in which the
evolutionary relapse methylome converges at specific genes. To
determine such a methylation signature, we specifically focused
on three kinds of genomic locations:promoters, enhancers and
CTCF-binding sites. We selected these regulatory elements
because methylation changes occur within them as shown above
and methylation at these elements is known to impact gene
regulation24–26. To determine a methylation signature, we
performed supervised analysis of the DNA methylation levels of
regulatory elements. We labelled samples as diagnosis and relapse
and sought to call differentially methylated elements between
these two groups using a paired statistical approach. In addition
to promoters, we used enhancers derived from the OCI-Ly1 cell
line using ChIP-seq and defined as regions positive for H3K4me2
and H3K27Ac but not H3K4me3 (ref. 23; since we could not
perform histone modification ChIP-seq due to limited availability
of patient-derived tumour tissues) We also used CTCF sites
determined by ChIP-seq in the OCI-Ly1 DLBCL cell (see
Methods). Altogether we identified 107 differentially methylated
promoters, 22 enhancers and 118 CTCF-binding sites between
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diagnosis and relapse (410% DNA methylation changes and
Po0.05, paired t-test, two-sided; Supplementary Fig. 3,
Supplementary Fig. 4a–c and Supplementary Data 6). Next we
associated differentially methylated regulatory elements with
genes based on genomic proximity (see Methods). In total, we
determined 44 hypermethylation related genes and 490
hypomethylation related ones (Supplementary Note 1). Many
genes in our signature are potentially related to tumour
progression. For example, SMAD6 (near hypomethylated
CTCF-binding site) is one of the regulators of TGF-b
superfamily pathway, which plays a key role in lymphoma
biology27.

To confirm the functionality of our methylation signature
genes, we first performed pathway analysis with iPAGE20 on the
corresponding genes and identified several pathways as over-
represented among hyper- or hypomethylated genes, notably
including anti-apoptosis and tumour necrosis factor activity
(Fig. 3a,b and Supplementary Fig. 5). Activin receptor activity was
for example over-represented in hypomethylated genes with two
genes ACVR2A and ACVR2B being frequently hypomethylated
(Supplementary Fig. 4a). ACVR2A and ACVR2B have important
roles in apoptosis, immune response, cell proliferation and
differentiation and may therefore play a role in lymphoma
relapse27–29. Genes associated with TGF-b receptor activity were
over-represented among hypomethylated genes (Fig. 3a). It has
been previously reported that escaping from TGF-b-mediated
growth inhibition is critical to lymphoma relapse27. Our data
suggest that methylation aberrations of genes in the TGF-b
receptor activity pathway might be involved in lymphoma
relapse, thus confirming another recent report linking
methylation of TGF-b-associated genes with chemoresistance12.
In one patient where we had sufficient tissue, we performed
RNA-seq on diagnostic and relapsed biopsies and found in that
patient hypomethylation related genes (genes whose promoter is
located nearby a DMR, within 5 kb) were correlated significantly
with higher gene expression level (P¼ 2.2e� 16, t-test;
Supplementary Fig. 6). Altogether these results suggest that our
methylation signature is associated with DNA methylation
changes and may help mediate the relapse phenotypes by
contributing to the enhanced expression of key genes.

To validate the robustness of our methylation signature, we
used an orthogonal approach (MassArray) to validate the
methylation levels of our ERRBS identified elements. We
performed MassArray on nine randomly selected regions (three
promoters, three enhancers and three CTCF-binding sites) from
10 samples to validate the average methylation levels of these
regions in both diagnostic and relapsed samples. We observed
that seven out of nine regions displayed significant correlations of
average methylation level between ERRBS and MassArray
(Po0.05), including ACVR2A promoter and WDR34 CTCF-
binding site (Fig. 3c,d and Supplementary Data 7).

Intra-tumour MH decreases at relapse. We next investigated the
association between intra-tumour MH and tumour evolution.
Bisulfite sequencing-based DNA methylation profiling provides a
unique opportunity to quantify intra-tumour DNA MH since
each sequenced read is derived from one individual tumour cell
(Supplementary Fig. 7). As shown in Supplementary Fig. 7, loci
with identical DNA methylation level can have varying levels of
intra-tumour MH. To assess the intra-tumour MH of specific
genomic region, we used the concept of epipolymorphism as
recently introduced in Landan et al.30. In brief, the
epipolymorphism of a given locus was defined as the
probability that two epialleles found at that locus and randomly
sampled from the cell population differ from each other.

To calculate a genome-wide measure of MH, we binned
epipolymorphism values for all loci genome-wide according to
methylation level. The median epipolymorphism level across the
range of methylation levels reflects epigenetic heterogeneity
genome wide (Fig. 4a and Methods) and enables comparisons
between diagnostic and relapsed samples. For example, the intra-
tumour MH measured by epipolymorphism decreased at relapse
for patient 1.1 (Fig. 4b; Supplementary Fig. 8). Overall, we
observed that intra-tumour MH decreased significantly from
diagnosis to relapse across all sample pairs except Patient 6
(P¼ 8e� 4, paired t-test; P¼ 0.003, paired Wilcoxon test;
Fig. 4c). We found that epipolymorphism decreased in most
methylation bins in all sample pairs except patient 6
(Supplementary Data 8). This result is consistent with clonal
selection of a subset of lymphoma cells on chemotherapy
treatment leading to the relapsed tumour. This observation is
robust when we interrogated other groups of loci in promoters
(with different selection standards) in the intra-tumour MH.
When we chose loci located within promoter regions, we found
that 11 out of 13 pairs displayed significant lower intra-tumour
heterogeneity (P¼ 0.002, paired t-test; P¼ 0.003, Wilcoxon test;
Fig. 4d). Of note, we also observed lower intra-tumour MH in
diagnostic samples compared with normal tissues both in CGIs
(P¼ 0.0002, t-test; P¼ 0.003, Wilcoxon test) and in promoters
(P¼ 0.0004, t-test; P¼ 0.006, Wilcoxon test; Supplementary
Fig. 9a,b). These results are consistent with normal B cells
consisting of a population of diverse, non-clonal B cells with
distinct methylation patterns and DLBCL tumours arising from
individual B-cell clones.

A systematic comparison of intra-tumour MH dynamics at
promoters between diagnostic and relapsed samples identified 14
gene promoters that displayed pronounced lower intra-tumour
MH from diagnosis to relapse (45% epipolymorphism decrease
and Po0.05, paired t-test), including ADCY6, C9orf142,
ECHDC3, ENGASE, HSPA4L, ISL2, KCNH3, LHX4, NAPRT1,
OXTR, PACSIN1, PPP1R3G, SPIRE2 and TMEM130. Using one
locus (chr11: 72,353,470–72,353,478) as an example (Fig. 5a), we
showed that tumour populations displayed diversified DNA
methylation patterns at diagnosis but this diversity was complete
lost at relapse. When applying iPAGE20 to 14 intra-tumour MH
decreased genes, several enriched pathways were identified
(Fig. 5b). We postulate that at least some of these promoters
are under selection for specific methylation alleles. Generally,
more promoters displayed lower intra-tumour MH from
diagnosis to relapse than higher heterogeneity (48% versus
40%). It has recently been reported that locally disordered
methylation was linked to low-level gene expression in chronic
lymphocytic leukaemia31. Therefore, decreased MH at relapse
may also correlate with gene expression changes.

To validate the robustness of our approach for quantifying
intra-tumour MH, we PCR-amplified bisulfite-converted DNA at
specific loci and sequenced the PCR product using Illumina
MiSeq (PE 2� 150 bp). We calculated intra-tumour MH using
the same analytical approach as the one used for ERRBS. Out of
five regions with enough CpGs to compare, we found that four
regions had significant correlations between the median intra-
tumour MH derived from either ERRBS or Bisulfite-PCR-MiSeq
(Po0.05; Supplementary Data 9). We used ENGASE and
ECHDC3 promoters as examples to illustrate the correlation
patterns (Fig. 5c,d).

Intra-tumour MH predicts relapse. We then wondered whether
epigenetic heterogeneity could potentially support the Darwinian
process in DLBCL tumours. One hypothesis is that tumour cell
populations with a large variety of epialleles are more likely to
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progress and give rise to relapsed tumours than tumours with
lower MH. To test this hypothesis, we investigated whether intra-
tumour MH at diagnosis would predict whether a DLBCL patient
would relapse. To this end, we performed ERRBS on primary
tumours from seven DLBCL patients who did not relapse in 5
years after treatment (Cohort 1; Supplementary Data 1). We
found that non-relapsed patients displayed significant lower
intra-tumour heterogeneity at diagnosis compared with relapsed
patients (Cohort 1; loci in CGIs; P¼ 0.0165, t-test; P¼ 0.035,
Wilcoxon test; Fig. 6a). We observed similar intra-tumour MH
differences when we interrogated promoter loci (Cohort 1;
P¼ 0.0168, t-test; P¼ 0.027, Wilcox test; Fig. 6b). When we

compared the two DLBCL subtypes (GCB and non-GCB), we
found no significant difference in intra-tumour MH between
them at CGIs (P¼ 0.8, t-test; P¼ 0.7, Wilcoxon test) or pro-
moters (P¼ 0.7, t-test; P¼ 1, Wilcoxon test). In parallel, we
performed VDJ-sequencing for all tumours32 and used the clonal
frequencies of VDJ somatic hypermutation patterns associated
with the main V, D, J rearrangement in each tumour to quantify
clonal heterogeneity. In brief, clonal heterogeneity was the
empirical entropy calculated by the frequencies of VDJ somatic
hypermutation patterns in the tumour population in each patient.
In contrast with intra-tumour heterogeneity, we found no
significant difference in intra-tumour clonal heterogeneity at
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diagnosis measured by VDJ-seq between patients who relapsed
and patients who did not (P¼ 0.29, t-test; P¼ 0.38, Wilcoxon
test; Supplementary Fig. 10). Accordingly, we found no significant
correlation between intra-tumour MH and intra-tumour clonal
heterogeneity (Pearson cor¼ � 0.2; P¼ 0.56). Altogether these
results suggest that intra-tumour clonal MH (and not clonal
genetic heterogeneity) at diagnosis may be a potential predictor of
DLBCL relapse.

To validate our conclusions, we performed ERRBS on a
completely independent larger cohort (n¼ 59) with extensive
clinical annotations (Cohort 2; Supplementary Data 10). As
before, ERRBS provided more than 10� sequencing coverage
(50� on average) on two to three million CpG sites genome-
wide for each sample (Supplementary Data 2). In this
independent cohort, non-relapsed patients (n¼ 19), identified
as patients who did not relapse in 5 years after initial diagnosis,
displayed significant lower CGIs intra-tumour MH compared
with relapsed patients (n¼ 29; P¼ 0.04, t-test; P¼ 0.03,
Wilcoxon test Fig. 6c). These results independently confirm the
data obtained on the first cohort. We then examined progression-
free survival after treatment in the 59 patients. Using survival
analysis, we found that patients with lower intra-tumour MH

(lower 30% of all the patients, n¼ 18) were associated with longer
progression time (log-rank P¼ 0.011; Fig. 6d) compared with
high intra-tumour MH group (higher 30% of all the patients,
n¼ 18). Our results further support the hypothesis that epigenetic
heterogeneity within a population of tumour cells at diagnosis
might indeed potentiate the Darwinian evolutionary process that
leads to relapse (Fig. 6e). Moreover, they further support intra-
tumour MH as predictor of relapse occurrence in DLBCL
patients.

Discussion
Many types of genetic lesion, including chromosomal transloca-
tions, aberrant somatic hypermutation, point mutations and a
variety of copy-number aberrations33,34, have been identified in
DLBCL. Our own work indicates that there is extensive genomic
and clonal evolution in DLBCL between diagnosis and relapse32.
However, genetic lesions do not fully explain the molecular
mechanisms underlying tumorigenesis and relapse, and it is
therefore reasonable to postulate that epigenetic programming
might also contribute to the aggressive and chemoresistant
phenotype of relapsed tumours. It is indeed clear that aberrant
epigenetic regulation of gene expression is a hallmark of B-cell
lymphoma and other types of cancer. In this study, we reason that
the examination of DNA methylation profiles could help
understand some of the biological and clinical properties of
B-cell lymphoma relapse. Accordingly, by analysing the DNA
methylation status of 3–4 M CpGs in each sample, we observed
highly heterogeneous epigenomic evolutionary trajectories among
patients. Nonetheless, we successfully identified a small subset
of consistently differentially methylated regulatory elements
between diagnosis and relapse and determined a methylation
signature based on these elements. While some associated
pathways, for example, TGF-b receptor activity pathway have
been associated with relapse and chemoresistance by others12,27,
other genes in this signature will require further investigation to
determine their exact role in relapse-associated phenotypes such
as chemoresistance. Our study also revealed a significant number
of distal enhancers that are hypomethylated in relapse and
associated with genes involved in pathways such as anti-
apoptosis. Enhancer hypomethylation may associate with
upregulation of genes involved in a variety of cancer-related
pathways24. Of note, both promoter and enhancer differential
methylation suggest that regulatory sequence activity may evolve
in DLBCL as a result of epigenomic changes. This in turn suggests
that tumour evolution and relapse may involve rewiring of
regulatory networks mediated by epigenomic changes. Also, to
our knowledge, the drugs in R-CHOP have not been linked to
direct effect on DNA methylation or other epigenetic marks,
which confirm the conclusion that the methylome evolution is
pathogenetic and relapse related. Such evolution—if confirmed
and eventually found to be functional and non-neutral—would
parallel the evolution of species, which colleagues in the evo–devo
field often ascribe to regulatory network rewiring instead of
mutational changes in transcriptional regulators themselves35.
The limited availability of biopsy tissue precluded the systematic
analysis of gene expression changes in the same tumours profiled
by DNA methylation. We only performed RNA-seq in one
patient and found that in that patient hypomethylation
related genes correlated with higher gene expression level
(Supplementary Fig. 6). While little can be generalized from
only one sample, these results support the overall functionality of
the relapse methylation signature identified in this study.

Although our conclusions need to be interpreted with some
cautions as based on a relatively small number of samples, many
genes in our methylation signature are reported to be associated
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Figure 4 | Intra-tumour MH decreases from diagnosis to relapse in
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calculated. Genome-wide intra-tumour MH was quantified by area under

the median line. (b) Median epipolymorphism lines for diagnosis and

relapse tumors from patient 1.1 in our cohort. Intra-tumor MH visibly

decreased with tumour evolution. (c) Relapsed samples displayed

significant lower intra-tumour MH. Out of 13, 12 pairs displayed lower intra-

tumour MH. All the loci were located in CGIs. (d) Relapsed samples

displayed significant lower intra-tumour MH. All the loci located in gene

promoter. Out of 13, 11 pairs displayed lower intra-tumour MH. In c,d, intra-
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NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7921 ARTICLE

NATURE COMMUNICATIONS | 6:6921 | DOI: 10.1038/ncomms7921 | www.nature.com/naturecommunications 7

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


with tumour progression in lymphomas, including a few robust
observations that clearly emerged from published works. In a
recent short hairpin RNA screen in DLBCL cell lines, knocking
down ACVR2A expression in the ABC-DLBCL LY3 cell line36

resulted in a two-fold drop in cell viability in at least one hairpin.
Another hypomethylated gene in relapse, TLR3 (member of the
Toll-like receptor of pattern recognition receptors of the innate
immune system), was associated with a 16-fold decrease in

viability on knockdown in the ABC-DLBCL LY10 cell line36, in at
least one hairpin. One of the anti-apoptotic genes located near a
hypomethylated enhancer at relapse was BCL2, a prognostic
marker for the ABC-DLBCL subtype37. E2F4 has been reported to
be downregulated in Burkitt lymphoma and upregulated in
DLBCL38. Hypoxia-inducible factor controls the expression of
genes in response to hypoxia. It has been reported that the
expression of hypoxia-inducible factor-1a protein is an important
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independent favourable prognostic factor for survival in patients
with DLBCL treated with R-CHOP39, which indicates hypoxia
response pathway plays substantial role in DLBCL relapse on
R-CHOP. Further work is needed to understand how DNA
methylation changes translate into expression changes at relapse.

We also investigated for the first time the correlation between
intra-tumour MH and relapse. We observed decreased intra-
tumour MH with tumour evolution, which is consistent with
clonal selection process underlying tumour progression after
treatment. Intra-tumour MH was first explored by Varley et al.40

at MLH1 promoter and was correlated with clinical outcome in
lymphomas by De et al.13. In the latter study, intra-tumour MH
was defined by the abundance of intermediate methylation states

(not fully methylated nor fully unmethylated) in lymphomas.
They concluded that the extent of intra-tumour MH in DNA
methylation increases with disease aggressiveness, which is
consistent with results shown here13 (although they did not
study relapsed DLBCLs). A recent paper by Oakes et al.41

revealed that increasing MH in chronic lymphocytic leukaemia
correlates with advanced genetic subclonal complexity. Oakes
et al.41 characterized intra-tumour MH in single CpG sites using
an approach called MH, which is calculated by summing all
values between 20 and 80% methylation subtracted by the
amount of estimated genomic allele specific methylation. Despite
the important findings reported by these authors, the approach
used to quantify heterogeneity does not take into account
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adjacent CpG sites, which can only be examined using bisulfite
sequencing-based DNA methylation-profiling approaches such as
ERRBS. MH analysis from single CpG sites is limited since it is
possible to find little variation of DNA methylation at single CpG
sites in the context of high intra-tumour MH on the larger locus
including adjacent CpGs. For example, in Supplementary Fig. 11,
locus A and locus B have identical DNA methylation level (80%)
at all four CpG sites. By definition, MH values are 0 for all loci
(and all CpGs) in both A and B loci. However, using the
epipolymorphism approach, Locus B has higher MH than Locus
A. Intuitively, there are more distinct methylation patterns in the
cell population of Locus B, which came from different cells
(Supplementary Fig. 7). We conclude that the method used in the
present study is more sensitive for quantification of intra-tumour
MH. We used our intra-tumour MH analysis to characterize MH
genome-wide but also within local regions. We found that many
regions had no significant DNA methylation changes but
significant changes in intra-tumour MH. Such patterns could
not be found by previous studies mostly due to use of array-based
methylation-profiling techniques.

We also found that intra-tumour MH at diagnosis is lower in
patients who relapsed compared with patients who had not
relapsed in 5 years after diagnosis. This was shown in two distinct
cohorts. This is the first study that used intra-tumour MH at
diagnosis specifically as a predictor of relapse occurrence. Patients
with lower intra-tumour MH had a longer time to progression
compared with patients with highly disordered methylation
status, which further supports the important role of methylome
evolution in tumour progression. Most importantly, intra-tumour
MH does not clearly correlate with genetic clonal heterogeneity
measured by VDJ-seq, suggesting that intra-tumour epigenomic
heterogeneity does not simply derive from clonal heterogeneity.
We investigated potential mechanisms that could underlie
epigenomic heterogeneity; for example, we studied MH on
AICDA short hairpin RNA-mediated knockdown but did not
observe any decrease or increase in MH (A.M.M., O.E., R.S.,
personal communication). Therefore, mechanisms responsible for
epigenomic heterogeneity remain unknown and require further
investigations. While the use of epigenomic heterogeneity to
predict which patients are at higher risk of relapse may have
clinical implications, prospective validation studies will help
define the true clinical utility of our findings and explain the
underlying biological process. Altogether, however, our study
firmly indicates that DNA methylation and the epigenome evolve
in time and especially on treatment and should be considered
alongside genomic evolution when seeking to explain tumour
evolution.

Methods
DNA extraction. DNA was extracted from frozen solid tissue sections. The
tumour purity of those samples were found to be above 80–90% based on histo-
logical observation. Frozen tissue samples were first digested overnight with
0.5 mg ml� 1 Proteinase K and 0.625% SDS in 4 ml Nucleic Lysis Buffer at 37 �C.
After digestion, 1 ml of saturated NaCl was added to the samples and samples were
shaken vigorously for 15 s before spun at 2,500 r.p.m. for 15 min. Supernatant was
transferred to a new tube and mixed with two volumes of room temperature 100%
ethanol. DNA was precipitated by centrifugation at maximum speed for 30 min,
washed twice with 70% ethanol and finally dissolved in TE or nuclease-free water
overnight at room temperature.

Enhanced reduced representation bisulfite sequencing. Sample preparations
were performed at the WCMC Epigenomics Core Facility14. In brief, the DNA was
digested with MspI enzyme first and then ligated with 5-methylcytosine-containing
Illumina adapters. Adaptor ligated DNA fragments were size selected (150–400 bp)
and processed with bisulfite conversion using the EZ DNA methylation Kit (Zymo
Research, Irvine, CA) as described42. Bisulfite-converted DNA was then amplified
with Illumina PCR primers PE1.0 and 2.0 for 18 cycles. PCR products were cleaned
using Agencourt AMPure XP (Beckman Coulter, Brea, CA) beads as per the
manufacturer’s recommended protocol (Agencourt) and sequenced on Illumina

HiSeq2000. The WCMC Computational Genomics Core Facility supported ERRBS
data analysis14. In brief, bisulfite reads were aligned to the bisulfite-converted hg19
reference genome using Bismark43. All samples had bisulfite conversion rates
499.7%.

CTCF ChIP-seq in DLBCL OCI-Ly1 cell. In brief, 25 million cells were crosslinked
with 1% formaldehyde for 10 min at room temperature. After quenching with
0.125 M glycine for 5 min, cells were washed with PBS twice, and resuspended in
Szak RIPA buffer and left on ice for at least 20 min before sonication. After
sonication, immunoprecipitations were performed using 5 mg anti-CTCF antibody
(Millipore, 07-729) or RbIgG control antibody (Abcam, ab46540). Deep-sequen-
cing libraries were constructed from 10 ng ChIP or Input DNA following Illumina
protocol. Final library product (7 pM) was sequenced either on GAIIX. Peak calling
was performed using ChIPseeqer22.

RNA-seq. Total RNA was extract from patient samples using Trizol (Life-
Technologies). RNA concentration was determined using Qubit (LifeTechnologies)
and integrity was verified using Agilent 2100 Bioanalyzer (Agilent Technologies).
Libraries were generated using mRNA-seq sample prep kit (Illumina), through
which mRNA was selected by two rounds of purification using magnetic polydT
beads and then fragmented. First-strand synthesis was performed using random
oligos and SuperscriptIII (Invitrogen). After second-strand synthesis, a 200-bp
paired-end library was prepared following the Illumina paired-end library pre-
paration protocol. Pair-end sequencing (PE50) was performed on Illumina
HiSeq2000.

MassArray. For validation of DNA methylation measured by ERRBS, single-locus
quantitative DNA methylation was performed on bisulfite-converted DNA (EZ
DNA Methylation Kit, Zymo Research) using MassArray assay (Sequenom, CA).
Primers were designed to cover CpG dense areas of interest by using Sequenom
EpiDesigner beta software (http://www.epidesigner.com/).

Bisulfite-PCR-MiSeq. To validate intra-tumour DNA MH measured by ERRBS,
we performed bisulfite-PCR on several loci of interest. Bisulfite conversion was
performed using the EZ DNA Methylation Kit from Zymo Research. PCR primers
were designed by using Sequenom EpiDesigner beta software. PCR products were
gel purified, and then converted to sequencing libraries following Illumina TruSeq
protocol. Pair-end sequencing (250 bp either end) was performed on Illumina
MiSeq machine. In brief, bisulfite reads were aligned to the bisulife-converted hg19
reference genome using Bismark43, with non-directional model.

Computational approaches for analysing ERRBS data. Differentially methylated
regions (DMRs) were defined as regions containing at least five DMCs (false
discovery rate¼ 20%, Fisher Exact Tests) and whose total methylation difference
was more than 10%. The use of five or more DMCs partially overcomes the
statistical limitation of individual Fisher exact tests based on n¼ 1 patient samples,
as the latter should be cautiously interpreted in the absense of multiple measure-
ments from indepdent samples. DMRs were annotated using ChIPseeqerAnnotate
from the ChIPseeqer package22. Pathway analyses were performed with default
parameters using iPAGE20. Methylation of a specific region was calculated by
averaging the methylation levels of all covered CpGs in that region.

To determine a methylation signature based on our identified differentially
methylated regulatory elements, we identified 107 genes, which had differentially
methylated promoters. Considering enhancers can regulated genes at distances
reaching 1 Mb (ref. 44), we then identified 369 genes that were located in the
neighbourhood of these hypomethylated enhancers (o1 Mb). We did not find
hypermethylated enhancers in our cohort. Although CTCF can form loop up to
1 Mb, about 28% CTCF-binding sites located o10 kb from nearest genes. Thus, we
identified 67 genes located in the neighbour of differentially methylated CTCF sites
(r10 kb, 17 genes near the hypermethylated sites and 50 genes near the
hypomethylated sites).

GO analysis. The gene ontology (GO) analyses were performed with iPAGE20.
The concept of mutual information (MI)45 to directly quantify the dependency
between expression or methylation and known pathways in the GO46 or in
the lymphoid signature database from the Staudt Lab21 are used in iPAGE.
Non-parametric statistical tests are then used to determine whether a pathway is
significantly informative about the observed methylation measurements. An
iPAGE input file is defined across around 24,000 genes from Refseq genes, where
each gene is associated with a unique methylation status in our analysis. In the
analysis of the diagnosis–relapse signature (Fig. 3a,b), each gene is either stable,
hyper- or hypomethylated genes from diagnosis to relapse. In the heterogeneity
analysis (Fig. 5b), each gene is associated with either stable or decreased
heterogeneity in another GO analysis). Meanwhile, each gene can be associated
with a subset of M known pathways (for example, from the GO annotations). For
each pathway, the pathway profile is defined as binary vector with N elements, one
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for each gene. ‘1’ indicates that the gene belongs to the pathway and ‘0’ indicates
that it does not.

Given a pathway profile and a methylation file with Ne groups, iPAGE creates a
table C of dimensions 2�Ne, in which C(1, j) represents the number of genes that
are contained in the jth methylation group and are also present in the given
pathway. C(2,j) contains the number of genes that are in the jth methylation group
but not assigned to the pathway. Given this table, we calculate the empirical MI as
follows:

Iðcandidate pathway; methylationÞ ¼
X2

i¼1

XNe

j¼1

P i; jð Þlog
Pði; jÞ

PðiÞPðjÞ

where

Pði; jÞ ¼ Cði; jÞ=Ne; PðiÞ ¼
XNe

j¼1

Pði; jÞ and PðjÞ ¼
X2

i¼1

Pði; jÞ

To assess the statistical significance of the calculated MI values, we used a non-
parametric randomized-based statistical test. Given I as the real MI value and
keeping the pathway profile unaltered, the methylation file is shuffled 10,000 times
and the corresponding MI values Irandom are calculated. A pathway is accepted only
if I is larger than (1-max_p) of the Irandom values (max_p is set to 0.005). This
corresponds to a P value o0.005. In iPAGE, pathways are first sorted by
information (from informative to non-informative). Starting from the most
informative pathways, the statistical test described above is applied to each
pathway, and pathways that pass the test are returned. When 20 contiguous
pathways in the sorted list do not pass the test, the procedure is stopped.

Highly statistically significant MI is explained by the combination of over-
representation and under-representation in specific methylation groups. To
quantify the level of over- and under-representation, the hypergeometric
distribution is used to calculate two distinct P values:

(a) For over-representation:

Pover X � xð Þ ¼
XN

i¼x

m
i

� �
N �m
n� i

� �

N
n

� �

(b) For under-representation:

Punder X � xð Þ ¼
Xx

i¼0

m
i

� �
N �m
n� i

� �

N
n

� �

where x equals the number of genes in the given methylation group, which are also
assigned to the give pathway. m is the number of genes assigned to the pathway
(foreground), n is the number of genes in the methylation group and N is the total
number of genes (background). If poveropunder, we consider the pathway to be
over-represented in the methylation cluster; otherwise, it is under-represented.
In the heatmap such as those in Figs 3a,b and 5b, colours indicate over- or
under-representation levels. The red colour indicates (in log10) the over-
represented P values and the blue shows under-representation.

Intra-tumour MH calculation. Methylation epipolymorphism was calculated as
defined in Landan’s paper30. The epipolymorphism level of a 4-CpG locus in the
cell population was defined as the probability that epialleles randomly sampled
from the locus differ from each other. More specifically, if we denote pi as for the
fraction of each DNA methylation pattern i in the cell population. The
epipolymorphism equals 1—Spi

2. The higher the epipolymorphism, the higher the
intra-tumour heterogeneity is. Since the epipolymorphism levels are dependent on
DNA methylation levels, we binned all loci based on average methylation level into
21 bins spanning 0–100% methylation levels. All the loci in one sample were
divided into 21 different groups according to their average methylation level. The
width of each bin is 5 except the first and last one ((0%, 2.5%) and (97.5%, 100%)).
We then calculated the median epipolymorphism in each group. Median
epipolymorphism across all groups defined the overall epipolymorphism landscape
across the spectrum of methylation levels. The intra-tumour MH was calculated by
determining the area under median epipolymorphism line. The area under median
line by obtained by summing up median epipolymorphism value across all 21 bins
weighted by the width of the bin. Intra-tumour MH scales from 0 to 100. Larger
areas mean higher intra-tumour heterogeneity. Two analyses were conducted.
In the first one (CGIs), all loci were selected based on the following standards:
(i) location within CGIs; (ii) covered by more than 60 reads; (iii) the largest
distance between the first and the fourth CpG sites was 9 bp.The number of such
loci was about 20,000 on average when using our ERRBS platform. For each locus
of four CpGs, we counted how many times each of the 16 possible methylation
states was observed, obtaining statistics on the distribution of DNA methylation
patterns at thousands of loci. In the second one (promoters), promoter loci were
selected as follows: (i) all loci were located in gene promoter regions (defined as
±2 kb windows centred on RefSeq transcription start sites); (ii) each locus was
covered by more than 60 reads. We obtained about 300,000 loci in each sample

(10-fold more than the previous analysis) for this analysis from ERRBS. For
Bisulfite-PCR-MiSeq data, we obtained around 170 loci in each sample from
targeted regions. The code for performing these analyses will be made available on
request.
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