
Computational and Structural Biotechnology Journal 23 (2024) 1469–1476

Available online 24 March 2024
2001-0370/© 2024 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Software/web server article 

RIscoper 2.0: A deep learning tool to extract RNA biomedical relation 
sentences from literature 

Hailong Zheng a,1, Linfu Xu a,1, Hailong Xie a,1, Jiajing Xie b, Yapeng Ma a, Yongfei Hu a, Le Wu a, 
Jia Chen a, Meiyi Wang a, Ying Yi a, Yan Huang a, Dong Wang a,c,*,2 

a Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, 510515 Guangzhou, China 
b National Institute for Data Science in Health and Medicine, Xiamen University, 361102 Xiamen, China 
c Guangdong Province Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, China    

A R T I C L E  I N F O   

Keywords: 
Non-coding RNA 
Deep learning 
Artificial intelligence 

A B S T R A C T   

RNA plays an extensive role in a multi-dimensional regulatory system, and its biomedical relationships are 
scattered across numerous biological studies. However, text mining works dedicated to the extraction of RNA 
biomedical relations remain limited. In this study, we established a comprehensive and reliable corpus of RNA 
biomedical relations, recruiting over 30,000 sentences manually curated from more than 15,000 biomedical 
literature. We also updated RIscoper 2.0, a BERT-based deep learning tool to extract RNA biomedical relation 
sentences from literature. Benefiting from approximately 100,000 annotated named entities, we integrated the 
text classification and named entity recognition tasks in this tool. Additionally, RIscoper 2.0 outperformed the 
original tool in both tasks and can discover new RNA biomedical relations. Additionally, we provided a user- 
friendly online search tool that enables rapid scanning of RNA biomedical relationships using local and online 
resources. Both the online tools and data resources of RIscoper 2.0 are available at http://www.rnainter.org 
/riscoper.   

1. Introduction 

Biomedical relations are essential for systematically elucidating 
molecular networks and facilitating novel discoveries [1,2]. Recent 
studies on biomedical relations mainly focus on proteins, including 
protein-protein interactions [3,4] and protein-chemical interactions [5]. 
However, the protein biomedical relations only represent a part of the 
life activities. Diverse RNA biomedical relations may play a more 
extensive role in multi-dimensional regulatory systems and act as a 
necessary complement to the biological network [6–8]. Especially, the 
biomedical relations of non-coding RNA (ncRNA), including microRNA 
and long ncRNA (lncRNA), are far more intricate and dynamic and have 
attracted more attention [9,10]. Moreover, the prior knowledge of RNA 
contributed to the analysis of biological mechanisms, such as the 
endogenous competition between RNA transcripts [11] and the 
“coherent” and “incoherent” feedforward loops between miRNAs and 
transcription factors [12]. 

Biomedical relations involving RNA are usually scattered across 

numerous biological studies and prediction methods, which are mainly 
collected in databases [13,14]. Although several tools are available for 
exploring biomedical relations, none of them are specifically designed 
for RNA. For example, PubTator Central only annotated genes/proteins 
[15], while LPInsider only focused on the lncRNA-protein interactions 
[16]. For another example, Luo et al. used a deep neural network to 
extract miRNA-target interactions [17]. However, this tool is limited to 
miRNA and cannot be applied for RNA entity recognition. In our pre-
vious study, we continuously updated RNA-RNA interactions (RR) [7, 
18], which encompass both direct and indirect interactions, and 
RNA-Disease relations (RD) [6,19], which described the RNAs whose 
disorder can lead to the diseases. Furthermore, we provided the RIscoper 
[20], the only tool for extracting RNA-RNA interactions from literature, 
to address the delay in database updates and the limited prediction 
methods for certain types of RNA. However, RIscoper had two limita-
tions that need to be addressed to make it more practical. Firstly, RIsc-
oper detected relations only for RR, which is just one of the RNA 
biomedical relations. Secondly, RIscoper is a word frequency statistical 
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method that recognizes RNA through matching rather than predicting 
the semantic information of words. Therefore, it is unsuitable for RIsc-
oper to capture the biomedical relations involving new RNAs. With the 
development of deep learning, particularly the emergence of pre-trained 
models, text mining tools significantly advanced in their capacity to 
grasp semantic information and predict biological entities [21,22]. 
Several deep learning-based text mining tools have been developed to 
extract and organize the inside textual information related to various 
biological entities [23–25], such as proteins, drugs and diseases 
[26–28]. However, there is a lack of tools designed for comprehensive 
scanning of RNA biomedical relations. 

In this study, we manually curated and established a comprehensive 
and reliable corpus about RNA biomedical relations. In addition, we 
updated the text mining tool RIscoper 2.0 to extract RNA biomedical 
relation sentences from the literature and identify the entities in sen-
tences. By leveraging the pretrained models in deep learning, RIscoper 
2.0 obtained a new capacity to quickly recognize RNA biomedical re-
lations covering novel entities. Furthermore, a user-friendly website was 
provided for database curators, experimental biologists and 
bioinformaticians. 

2. Material and methods 

2.1. Description of the RNA biomedical corpus 

The RNA biomedical relations discussed in this article include RNA- 
RNA interactions (RR) and RNA-Disease relations (RD), which were 
consistently recorded in our database works (RR, from RAID [18] to 
RNAInter 4.0 [7], RD, from MNRD [19] to RNADisease 4.0 [6]). The RR 
and RD records contain multiple types of information, including the 
names of both entities in the entity pairs, corresponding sentences and 
PubMed IDs. Besides, the extent of manually extracted sentences is 
consistent with the description in the original database. For RR, litera-
ture within PubMed (mainly from 2000 to 2020) was screened with the 
following keyword combinations: (RNA molecule) AND (other RNA 
molecule) AND (interaction keywords). For RD, literature within the 
PubMed database (mainly from 2000 to 2021) was screened with the 
following keyword combinations: (ncRNA symbols or ncRNA category 
names) and (disease names). In this study, we re-verified the corpus of 
these RNA biomedical relations and further annotated RNAs and dis-
eases with the corresponding named entities (Table 1). Notably, the RNA 
biomedical relations in this corpus are supported by experiments or 
prediction tools, which were unified and recorded in our database. 

2.2. Annotation methodology 

For the sentences in the above records, we re-verified the RNA 
biomedical relations and used Colabeler software (http://www.colab 
eler.com/) to annotate RNAs and diseases with BIO (Begin, Inside, 
Outside) tags, such as breast (B-Disease) cancer (I-Disease). A detailed 
annotation guideline was provided to educate annotators when creating 
the corpus (Supplementary Note 1). The entity annotation process 
consists of two steps to ensure the quality of annotations: (1) We referred 
to the raw records and the referenced entity databases (Table S1), such 
as NCBI Gene database and Disease Ontology [29]. If the entity can be 
found in the references (in the form of name, symbol or aliases), the 
entire entity was labeled with the corresponding tag. (2) For uncertain 

entities, particularly abbreviations, we searched the corresponding 
article using the PMID information in the record. We then confirmed 
whether the word is an RNA or disease entity based on the information 
where the entity first appears. In this study, positive sentences are 
defined as sentences that contain at least one RR or RD. Entity pairs in 
positive sentences are combined with interaction keywords, such as 
target and bind. 

To build a sentence classification model that distinguishes the posi-
tive sentences from others, the negative sentences in this study were 
defined as sentences that do not contain any RD or RR. Thus, negative 
sentences included both sentences with entity pair and without entity 
pair. Negative sentences without entity pair describe the sentences with 
no RNA-RNA or RNA-disease pair. Negative sentences with entity pair 
match one of the following two conditions: (1) Sentences do not contain 
keywords of interaction. (2) Sentences contain keywords of interaction 
but negative words that affect the judgment of negative samples, such as 
the word “unchanged” in the sentence “Phosphorylation of SMAD2 was 
inhibited, while that of SMAD1 remained unchanged”. Ensuring the 
coverage of negative sentences is important to develop a model that can 
be applied at the article level. We hypothesized that the vast majority of 
sentences in the article do not contain RNA biomedical relations. 
Further, we adopted a three-step strategy to ensure the coverage and 
reliability of the negative sentences. Firstly, we searched the keywords 
“RNA-RNA interaction” and “RNA-Disease interaction” on PubMed and 
downloaded the full text of 15,500 articles published on PMC from 2000 
to 2022. Then, we generated 46,500 negative sentences by randomly 
selecting three sentences from each article. Secondly, we used the dic-
tionary matching method to identify entities in the above sentences. The 
names of RNAs and diseases were extracted from multiple databases, 
including HGNC [30], GENCODE [31], RNAInter [7], RNADisease[6], 
MeSH terms, and HumanDO [32] (Table S1). We further manually 
confirmed that out of 1376 sentences containing at least one pair of 
entities, 803 sentences contained RR or RD, while 573 sentences did not 
contain either RR or RD. The 803 sentences were removed, resulting in a 
total of 45,697 negative sentences. Thirdly, we randomly selected 100 
sentences containing less than two entities and verified them with all 
three annotators. As shown in Table S2, all annotators confirmed that 
none of these sentences contained RR or RD, which supported negative 
sentences for model construction. 

2.3. Flowchart of RIscoper 2.0 

Fig. 1 illustrates the flowchart of the RIscoper 2.0 model, which 
comprises three layers: the initial feature extraction layer, text classifi-
cation (TC) layer and named entity recognition (NER) layer. Notably, 
the TC and NER tasks are merged in the loss function, which benefited 
from the sentences with both entity annotations and sentence labels. All 
three parts were fine-tuned during training. 

Firstly, in the initial feature extraction layer, we leveraged Pub-
MedBERT [22] to tokenize the input sentences and generate the 
768-dimensional contextual embeddings for each token. PubMedBERT 
is a specialized variant of the Bidirectional Encoder Representations 
from Transformers (BERT) model, fine-tuned specifically for biomedical 
text and information extraction from the PubMed database. Upon 
receiving input text, the PubMedBERT tokenizer first matches each word 
in the text against the terms in the PubMedBERT vocabulary, which 
includes common words, subwords, and characters. If a word is not in 

Table 1 
RNA biomedical corpus.   

Relation type Entity type Number of literatures 

RNA-RNA RNA-disease RNA RNA entry Disease Disease entry 

RIscoper 12,728 - - - -  4897 
RIscoper 2.0 16,693 14,292 75,661 13,431 17,567 1569 15,581  
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the vocabulary, the tokenizer then segments the word into smaller 
subwords. For example, the lncRNA entity “lnc-XLEC1″, which is 
manually tagged with “B-RNA”, would be tokenized into “ln”, “##c”, 
“-”, “XL”, “##EC”, and “##1″. Furthermore, the first token of an entity 
is designated with a “B-” prefix. For example, “ln” is tagged with 
“B-RNA” when “##c”, “-”, “XL”, “##EC”, and “##1″ are tagged with 
“I-RNA”. Then, PubMedBERT pre-trained model maps the tokens to 
768-dimensional contextual embeddings, which were further utilized 
for both the TC and NER tasks. 

Secondly, in the TC layer, we used Convolutional Neural Network for 
Text Classification (TextCNN) [33] on all the contextual embeddings 
except the CLS (Classification) token. TextCNN uses multiple convolu-
tion kernels of different sizes to extract key information in sentences, 
which can better capture local features. In this study, we deployed three 
types of convolutional kernels with different sliding windows (3, 4 and 
5), each consisting of 256 individual convolutional kernels. This process 
yielded a 768-dimensional vector for each input token, consistent with 
the length of the CLS token generated by PubMedBERT. Then, the output 
of TextCNN was concatenated with the contextual embedding of the CLS 
token. Finally, the model incorporated a fully connected layer and a 
sigmoid layer to determine whether the input sentence contains RR or 
RD. 

Thirdly, in the NER layer, we used one of the state-of-the-art NER 
models, Bidirectional Long Short-Term Memory-Conditional Random 
Field (BiLSTM-CRF), to process all the contextual embeddings. The input 
tokens were first encoded into a 1024-dimensional hidden state vector 
sequence via BiLSTM [34]. Subsequently, the BiLSTM output was 
concatenated with the initial input contextual embeddings and further 
fused through a fully connected layer to predict labels for each token in 
the sentence. Finally, we utilized CRF [35] to decode the optimal tag 
sequence among all possible sequences. 

The final loss function of the model was a sum of the Cross-Entropy 
and Negative Log-Likelihood functions from both the TC and NER layers. 
Detailed hyperparameter settings of model training were shown in  
Table 2. 

2.4. Evaluation metrics 

Fleiss’ kappa was used to assess the consistency among annotators. 
The formula for calculating Fleiss’ kappa is as follows: 

Fleiss′ kappa =
Po − Pe

1 − Pe  

When Pe is the assumed probability of consistency and Po is the observed 
probability of consistency. Pe and Po are calculated as follows: 

Pe =
∑k

j=1
(

1
Nn
∑N

i=1
nij)

2  

Po =
1

Nn(n − 1)

(
∑N

i=1

∑k

j=1
n2

ij − Nn

)

When n is the number of annotators, N is the number of annotated 
samples, k is the number of categories of samples, and nij is the number 
of annotators who classify sample i as category j. For the TC task, sam-
ples were defined as all input sentences, and the categories included RR, 
RD and None. For the NER task, samples were defined as all words in 
sentences, and the categories included RNA, disease and None. 

Further, to evaluate the performance of text mining tools in TC and 
NER tasks, we calculated three metrics: Precision, Recall, and F1 score. 
These metrics are defined as follows:  

Precision = TP / (TP + FP)                                                                     

Recall = TP / (TP + FN)                                                                         

Fig. 1. Flowchart of RIscoper 2.0.  

Table 2 
Hyperparameter setting.  

Global Local 

Parameters Values Layer Parameters Values 

Learning rate 5 × 10- 
5 

TextCNN Kernels 
number 

768 

Epochs 10 Kernels size 3, 4, 5 
Batch size 16 Loss function Cross entropy 
Optimization 

function 
Adam Pooling 1-max pooling 

Activation 
function 

ReLU BiLSTM- 
CRF 

Loss function Negative Log- 
Likelihood 

Dropout 0.5 LSTM units 512  
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F1 score = 2 × P × R / (P + R)                                                              

Where TP, FP, and FN represent true positive, false positive and false 
negative, respectively. Here, we used a strict full length matching 
strategy to determine named entities. 

3. Results 

3.1. Summary of the RNA biomedical corpus 

Before data collection, we assessed the inter-annotator agreement 
among three individuals who participated in the annotation task. Two of 
the annotators are master’s students, and one is a Ph.D. candidate. All 
the annotators possess a background in Biomedicine and have substan-
tial experience working in the RNA-related biomedical text mining 
domain. A trial collection was created to determine the inter-annotator 
agreement between the annotators. For both the TC and NER tasks, we 
calculated Fleiss’ kappa to calculate the consistency among three an-
notators. Notably, the Fleiss’ kappa of the NER task was calculated in the 
exact match and partial match patterns. Exact match is a situation where 
the annotations should completely overlap, whereas partial match is a 
situation where the annotations may partially or completely overlap. 

The trial collection was created using a random sample of 100 sen-
tences from RR, RD and negative corpora (Table S2-S4). For the TC task, 
three annotators used the original record as a reference for their judg-
ment, resulting in a high Fleiss’ kappa of 0.990. For the NER task, the 
evaluators achieved a Fleiss’ kappa of 0.824 in the exact matching mode 
and 0.927 in the partial matching mode (Table 3). 

Based on the high inter-annotator agreement, we constructed a 
corpus composed of 16,693 RR and 14,292 RD sentences, which were 
manually annotated with about 100,000 named entities (Table 1). The 
sentence lengths range predominantly from 1 to 80 (Fig. 2A, B), and the 
maximum lengths of RR and RD sentences are 163 and 256, respectively. 
Further, all these sentences have at least one entity pair, and many 
sentences contain more than two entities (Fig. 2C-D). When compared to 
the original RIscoper, the corpus within RIscoper 2.0 exhibits two ad-
vancements. Firstly, both the number and type of the corpus were 
improved. Secondly, we added about 100,000 annotations for RNA and 
disease entities in the corresponding corpora and further confirmed the 
accuracy of both sentence and entity annotations. 

To demonstrate the uniqueness of the RNA biomedical corpus, we 
compared the semantic features between RNA-RNA and Protein-Protein 
corpus (Intact database [36]), as well as those between RNA-Disease and 
protein-Disease corpus (Genetic Association Database [37]). For each 
sentence, we used the original PubMedBERT model to compute the 
contextual embeddings of CLS as the sentence features. We then used 
principal component analysis (PCA) to reduce the dimensionality of 
these features. The results showed a clear separation between the se-
mantic features of the RNA biomedical corpus and those of the protein 
biomedical corpus (Fig. 2E, F), which demonstrated the necessity to 
develop a TC and NER method for the RNA biomedical corpus. 

3.2. Development and evaluation of RIscoper 2.0 

Benefiting from the RNA biomedical corpus annotated with both 
sentence labels and named entities, we developed RIscoper 2.0, a BERT- 

based deep learning model that merged both NER and TC tasks. In the 
model, PubMedBERT was used for the initial feature extraction, and 
TextCNN and BiLSTM-CRF were employed for TC and NER tasks. 
Further, the loss functions for both tasks were added in the final loss 
function (Materials and Methods, Fig. 1). All three layers (initial feature 
extraction layer, TC layer and NER layer) were fine-tuned during 
training. In this study, RIscoper 2.0 was evaluated in the 10-fold cross- 
validation framework. We divided the RR, RD and negative corpora 
into ten parts, with nine parts being the training set and the remaining 
part being the test set. For each fold, we first used the RR and RD corpora 
for model training. Then, we froze all layers except the TC layer and 
continued to train the model using negative datasets that only contained 
sentence label information. Therefore, the NER function can only be 
used for positive sentences, and all subsequent NER performance eval-
uations were carried out on positive sentences. The average values of the 
evaluation metrics (F1 score, Precision, Recall) across the ten models 
were presented in Table 4. RIscoper 2.0 achieved F1 scores of 0.925 and 
0.916 in TC and NER tasks, which highlighted its strong performance 
within RNA biomedical corpora. 

The model’s feature extraction capabilities were evaluated to 
demonstrate the enhancements resulting from our strategic modifica-
tions in the three layers. Following feature extraction at these layers, the 
input sentences generated high-dimensional vectors at both entity and 
sentence levels. We applied PCA to these high-dimensional vectors and 
projected them into a 2-dimensional space to facilitate visual compari-
son. In this study, we assessed the feature extraction capabilities of 
different layers by evaluating the separation of features at entity and 
sentence levels. Firstly, for the initial feature extraction layer, we used 
the vector of the CLS token as the sentence feature and found that the 
fine-tuned PubMedBERT model was able to distinguish between 
different RNA biomedical relations (Fig. S1A, B). Similarly, for entity 
tokens labeled with the BIO tags, the fine-tuned model could differen-
tiate between RNA and disease entities (Fig. S1C-F). Secondly, For the 
TC layer, in contrast to previous approaches that directly used the out-
puts of TextCNN for classification, we concatenated the output vectors of 
both TextCNN and Fine-tuned PubMedBERT for classification. Fig. 3A-C 
demonstrated the feature extraction capabilities of three different stra-
tegies: (1) The first strategy involved only fine-tuned PubMedBERT, 
which resulted in the close distance among the same positive sentences. 
(2) The second strategy involved only TextCNN, which resulted in a 
clearer boundary between features of different sentence types (3) The 
third strategy, the merged strategy, successfully inherited the strengths 
of the above two layers. Compared to the two strategies mentioned 
above, the merged strategy resulted in a closer clustering of similar 
sentence types and a clearer boundary between different sentence types. 
Thirdly, for the NER layer, we concatenated the output vectors of both 
BiLSTM and Fine-tuned PubMedBERT for each token. As depicted in 
Fig. 3D-I, this strategy showed a more concentrated clustering of entities 
from the same class and a clearer demarcation between entities of 
different types, highlighting the advantages of the combined use of these 
two output vectors in both RR and RD sentences. The study also eval-
uated the impact of different hyperparameters on the model, such as 
different pretrained models and the integration or separation of the TC 
and NER tasks (Fig. S2). The results indicated that these hyper-
parameters have almost no impact on the results. 

Table 3 
Inter-annotator agreement among three annotators.  

Annotators Exact match (entity) Partial match (entity) Text classification 

RNA (RR) RNA (RD) Disease (RD) RNA (RR) RNA (RD) Disease (RD) 

1 and 2  0.853  0.821  0.760  0.915  0.952  0.915  0.985 
1 and 3  0.901  0.825  0.752  0.951  0.952  0.850  1.000 
2 and 3  0.864  0.858  0.780  0.914  0.956  0.935  0.985 
All  0.873  0.834  0.764  0.927  0.953  0.900  0.990 

Note: RNA-RNA, RR; RNA-Disease, RD 
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3.3. Performance comparison with similar tools 

In this section, we compared the performance of our tool with other 
state-of-art methods, including RIscoper 1.0 [20], MTI extractor [17], 
LPInsider [16], and GPT [38]. The detailed usage process and repro-
duction results of these tools were provided in Supplementary Note 2. 
Firstly, for a fair comparison with RIscoper 1.0, MTI extractor and 
LPInsider, we retrained our model with the 12,727 RR and 9418 RD 
sentences from the RIscoper 1.0 and MNDR databases. All the methods 
were tested in the independent dataset composed of 3966 RR and 4874 
RD sentences that were newly integrated into the RNAInter and RNA-
Disease databases. Of note, the test set included 1208 new entities for RR 
and 3495 new entities for RD (Fig. 4A, B). As presented in Table 5, 
RIscoper 2.0 achieved F1 scores of 0.887 and 0.916 in TC and NER tasks, 
while RIscoper 1.0 only achieved F1 scores of 0.541 and 0.695. When 
focusing on the sentences that contain new entities, RIscoper 2.0 still 
achieved higher F1 scores than RIscoper 1.0 in both TC (0.815 versus 
0.466) and NER tasks (0.957 versus 0.761). Further, our tool overlaps 
with the MTI extractor in extracting microRNA-target interaction sen-
tences. The results showed that the MTI extractor also achieved a lower 
F1 score of 0.860 in miRNA-related sentence classification. Similarly, 
the NER for lncRNAs is the overlapping function of our tool with LPIn-
sider. The function of LPInsider was tested on the test dataset, resulting 
in a higher precision of 1 but a lower recall of 0.029, which may be due 
to the small size of its original training data. 

PubMedBERT was pre-trained from scratch on PubMed articles up to 

2020. To ensure fair performance comparison, we divided our corpus 
into training and testing sets based on the time point of 2020 and 
retrained the model. All corpus was divided into two parts based on the 
publication year of corresponding references: 16,671 RR and 8550 RD 
sentences published before 2020 for model training, and 22 RR and 
5742 RD sentences published after 2020 for testing (Fig. 4C, D). Notably, 
the test set added 17 and 3581 new entities in RR and RD corpora, 
respectively, compared to the training set (Fig. 4E, F). Due to the limited 
number of RR sentences, we used recall values to evaluate the text 
classification results. As shown in Table S5, RIscoper 2.0 still achieved a 
recall value of 0.955 in the TC task and an F1 score of 0.885 in the NER 
task, which performed better in fair comparison with other methods. 

GPT is a large generative language model widely used in natural 
language text processing. For comparison, we utilized chatGPT (version: 
GPT3.5, https://chat.openai.com/) provided by OpenAI to perform TC 
and NER tasks. GPT3.5 was trained on PubMed text data up to January 
2022, which includes our corpus. Therefore, we directly applied GPT3.5 
to all sentences in our corpus for comparison. The corpus was divided 
into 1000 equal parts based on the original sentence order, and the first 
sentence from each part was extracted for testing. In the end, we ob-
tained 1000 sentences for testing and lowercased these sentences to keep 
the input data consistent with RIscoper 2.0. As shown in Table S6, 
RIscoper 2.0 outperformed zero-shot GPT (0.925 vs 0.882) in the TC task 
but was outperformed by few-shot GPT (0.939). In the NER task, RIsc-
oper 2.0 achieved a higher F1-score (0.916) than both zero-shot (0.681) 
and few-shot GPT (0.759), which may be the reason that most genes and 
disease entities were abbreviations lacking useful information. 

Overall, compared to the original RIscoper, RIscoper 2.0 has made 
advancements in three key aspects: (1) a more extensive and compre-
hensive RNA corpus, (2) improved recognition accuracy, and (3) the 
ability to explore novel RNA biomedical relations. 

3.4. Web tool for practical applications 

To facilitate easy access and application of RIscoper 2.0 to extract 
RNA biomedical relation sentences, we developed a publicly available 

Fig. 2. Characteristics and Distinctiveness of the RNA biomedical relation corpus. The distribution of sentence length within the (A) RNA-RNA and (B) RNA- 
Disease corpora. The distribution of entity counts within the (C) RNA-RNA and (D) RNA-Disease corpora. Comparison of RNA and protein biomedical corpora in 
terms of (E) protein-protein interactions and (F) protein-disease associations. 

Table 4 
Evaluation of the RIscoper 2.0 in 10-fold cross-validation.   

Text classification Named entity recognition  

RNA-RNA RNA-Disease All RNA Disease All 

F1 score  0.937  0.912  0.925  0.933  0.845  0.916 
Precision  0.936  0.919  0.928  0.915  0.864  0.905 
Recall  0.938  0.906  0.923  0.953  0.828  0.928  
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online tool at http://www.rnainter.org/riscoper. This tool accepts both 
local and online resources, including Text, PDF, PubMed ID and 
Keyword. Notably, the Keyword function can be especially valuable as a 
supplementary resource when dealing with newly discovered RNAs that 
may not be included in the database timely, or in scenarios where the 
available biomedical relations are insufficient. 

Table S7 presented three illustrative cases to assess the practicality of 

Keyword function, including one miRNA (symbol: MIR367), one lncRNA 
(MIR17HG), and one mRNA (symbol: BAZ2A). For example, by querying 
all symbols of miRNA MIR367 (MIR367, MIRN367, hsa-mir-367) in 
PubMed, we retrieved 83 relevant articles (abstracts) containing 820 
sentences. RIscoper 2.0 recognized 127 positive RR and 115 positive RD, 
out of which 101 unique RR pairs and 103 unique RD pairs were 
manually validated (Table S8). When compared with the experimentally 

Fig. 3. PCA plots of feature vectors for different layers. (A-C) Distribution of sentence features output from different layers in the text classification task. (D-F) 
Distribution of entity features output from different layers in the RNA-RNA interactions (RR) corpus. (G-I) Distribution of entity features output from different layers 
in the RNA-Disease relations (RD) corpus. 
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validated data from RNAInter database, the 103 RR sentences involved 
36 new literature sources and 23 novel RNA entities (Table S9). Simi-
larly, the 99 RD sentences added 33 new literature sources, 24 novel 
RNA entities, and five new disease entities to the RNADisease database. 
Furthermore, upon further comparison with the data supported by 
strong experiments, RIscoper 2.0 demonstrated an enhanced capacity to 
discover additional interaction relationships. As shown in Table S8 and 
S9, the other two case studies similarly demonstrated the ability of 
RIscoper 2.0 to extract most of the true unique RNA biomedical relations 
and provide valuable supplements to the existing databases. Further, we 
tested our tool’s ability to discover intra-sentence relationships where 
one of the entity pairs is replaced by a pronoun or general word, such as 
the words “Potential targets” in the sentence “Potential targets of miR- 
367 were screened by miRWalk software and luciferase reporter as-
says”. Out of the 37 predicted RR and 32 predicted RD sentences that 
contained only one entity, 16 and 30 sentences were manually recon-
firmed as RR and RD sentences where another entity was replaced by a 
pronoun or general word (Table S7). These results indicated that RIsc-
oper 2.0 is suitable for mining intra-sentence relationships. 

4. Discussion and conclusion 

In this study, we established a comprehensive and reliable corpus 
focusing on RNA biomedical relations. The corpus exhibits unique se-
mantic features compared to protein biomedical corpora, indicating its 
necessary role in the biomedical domain. Benefiting from the corpus 

annotated with both sentence labels and named entities, we developed 
RIscoper 2.0, a BERT-based deep learning model to extract the RNA 
biomedical relations. When compared to the original RIscoper and other 
text mining tools, RIscoper 2.0 demonstrated superior performance in 
both TC and NER tasks. Additionally, RIscoper 2.0 obtained the ability to 
extract the biomedical relations involving new entities. We also pro-
vided a user-friendly website that accepts local and online resources as 
input, which facilitates the exploration of RNA biomedical relations and 
serves as a valuable supplement to existing databases. 

Despite these improvements, RIscoper 2.0 still has some limitations. 
Firstly, during the development of RIscoper 2.0, the RNA biomedical 
relations were limited to RR and RD due to the scarcity of other suitable 
corpus types for training deep learning models. For example, the RNA- 
Localization corpus contains only about 1000 sentences, which is 
significantly less than the RR and RD corpora. Similarly, most corpora 
are related to ncRNA, such as miRNA and lncRNA, making RIscoper 2.0 
more suitable for ncRNA corpora. Secondly, the TC and NER tasks 
related to disease performed worse than those related to RNA, which can 
be attributed to two potential factors: (1) The unique entities of diseases 
were significantly fewer than RNA. (2) While RNA entities predomi-
nantly comprise a single word, many disease entities consist of multiple 
words. To enhance model performance, we could add additional disease- 
related sentences and annotations. Fourth, RIscoper 2.0 currently lacks 
the capability to distinguish RNA from other gene products. Our findings 
indicated an overlap of semantic features between RNA and protein 
biomedical corpora, which suggests that it is not feasible to distinguish 

Fig. 4. Novel RNA biomedical relations and entities. (A-B) Overlapping of entities between different databases in both the RNA-RNA and RNA-Disease corpora. 
(C-D) The number of RNA-RNA and RNA-Disease sentences identified over time. (E-F) Overlapping of entities between sentences published before 2020 and after 
2020 in both the RNA-RNA and RNA-Disease corpora. 

Table 5 
Evaluation of the RIscoper 2.0 in extracting new relations.  

Test dataset Method Text classification Named entity recognition 

RNA-RNA RNA-Disease All RNA Disease All 

All Riscoper 2.0 0.889 0.886 0.887 0.941 0.828 0.916 
Riscoper 1.0 0.541 - 0.541 0.695 - 0.695 

miRNA Riscoper 2.0 0.954 - 0.954 - - - 
MTI extractor 0.860 - 0.860 - - - 

lncRNA Riscoper 2.0 - - - 0.983 - 0.983 
LPInsider - - - 0.056 - 0.056  
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RNA and protein at the sentence level. A potential approach to distin-
guish RNA and protein may include extending analysis from the sen-
tence level to paragraph or article level, facilitating more accurate 
identification of RNA and proteins. 

In our future work, we will focus on the continued collection and 
annotation of RNA biomedical corpus to provide a favorable resource for 
ongoing text-mining studies of RNA biomedical relations. Our aim is to 
create a benchmark dataset for future machine learning works within 
the field. Additionally, we are committed to developing new models 
capable of comprehending the RNA biomedical corpus and useful web 
tools to promote the development of RNA-related research. 
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