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Plant vacuoles are the most important organelles for plant growth, development, and defense, and they
play an important role in many types of stress responses. An important function of vacuole proteins is the
transport of various classes of amino acids, ions, sugars, and other molecules. Accurate identification of
vacuole proteins is crucial for revealing their biological functions. Several automatic and rapid computa-
tional tools have been proposed for the subcellular localization of proteins. Regrettably, they are not
specific for the identification of plant vacuole proteins. To the best of our knowledge, there is only one
computational software specifically trained for plant vacuolar proteins. Although its accuracy is accept-
able, the prediction performance and stability of this method in practical applications can still be
improved. Hence, in this study, a new predictor named iPVP-DRLF was developed to identify plant vac-
uole proteins specifically and effectively. This prediction software is designed using the light gradient
boosting machine (LGBM) algorithm and hybrid features composed of classic sequence features and deep
representation learning features. iPVP-DRLF achieved fivefold cross-validation and independent test
accuracy values of 88.25 % and 87.16 %, respectively, both outperforming previous state-of-the-art pre-
dictors. Moreover, the blind dataset test results also showed that the performance of iPVP-DRLF was sig-
nificantly better than the existing tools. The results of comparative experiments confirmed that deep
representation learning features have an advantage over other classic sequence features in the identifi-
cation of plant vacuole proteins. We believe that iPVP-DRLF would serve as an effective computational
technique for plant vacuole protein prediction and facilitate related future research. The online server
is freely accessible at https://lab.malab.cn/~acy/iPVP-DRLF. In addition, the source code and datasets
are also accessible at https://github.com/jiaoshihu/iPVP-DRLF.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Vacuoles are the largest membrane-bound organelles (up to
90 % of plant cells) and play essential roles in plant growth and
development. Vacuoles have important cellular functions, such as
storage of inorganic ions and metabolites, protein degradation,
detoxification, and regulation of cytoplasmic ion homeostasis [1–
3]. During seed development, a large number of protein storage
vacuoles in the tissue are nutrient reservoirs for embryo develop-
ment and seed germination. There are many peripheral proteins
and transmembrane proteins that are related to vacuole activity,
such as channel proteins, proton pumps, transport proteins, and
various solution carrier proteins [4]. Changes in the abundance
and activity of these proteins determine the specific functions of
vacuoles. Another important function of vacuoles and lysosomes
is the hydrolysis of intracellular proteins and membrane proteins
and turnover of organelles (e.g., plastids, mitochondria, peroxides,
and partial nuclei). This function helps to remove excess or dam-
aged organelles, which are key factors in cell homeostasis and sur-
vival [5,6].

Research on the biochemical properties and physiological func-
tions of plant vacuole proteins (PVPs) is the basis for our under-
standing of the mechanisms underlying vacuole biogenesis and
maintenance [7–9]. Experimental subcellular localization methods
are the most reliable means for characterizing of the biological
activities of vacuolar proteins; however, they are usually costly
and time-consuming. Therefore, it is important to develop compu-
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tational methods for the identification of PVPs. Recently, computa-
tional prediction algorithms for protein subcellular localization
have emerged [10–12]. However, most of them have not been
specifically developed for PVPs [13], and therefore, they perform
poorly in identifying PVPs. To the best of our knowledge, there is
only one machine learning tool—a support vector machine
(SVM)-based model named VacPred—designed for PVP identifica-
tion. VacPred has provided two of the best prediction models based
on the SVM algorithm using two commonly used classic feature
extraction methods: dipeptide composition (DPC) and the
position-specific scoring matrix (PSSM)-based feature descriptor
K-PSSM. The PSSM-based model showed slightly better perfor-
mance than the DPC-based model on the blind dataset with an
accuracy of approximately 63 %. Therefore, although these predic-
tors have markedly promoted research on PVP prediction, there is
still a need to develop high-performance PVP predictive tools.

Recently, various sequence-based deep representation learning
features for proteins have been proposed and have obtained satis-
factory results in many protein-sequence analysis applications
[14–19]. These methods are also called deep learning embeddings,
which are obtained by the multi-dimensional transformation of
protein sequences. Deep learning embedding models are always
based on unsupervised or semi-supervised learning and trained
on large protein sequence databases. These techniques can extract
sequence statistics as completely as possible; however, they
require considerable time and computing resources to obtain the
embedded models. Nonetheless, we can take advantage of these
embeddings for PVP prediction by using the idea of transfer
learning.

To further establish a new advanced computational PVP predic-
tor with improved accuracy, we used a computational strategy
combining deep representation learning and classic sequence fea-
tures. A two-step feature selection strategy, that is, a light gradient
boosting machine (LGBM) combined with sequential forward
search (SFS), was subsequently applied to identify the optimal fea-
ture subset from each high-dimensional feature. After optimiza-
tion, we constructed an efficient LGBM-based PVP predictor
named iPVP-DRLF. The construction workflow of iPVP-DRLF is
shown in Fig. 1. Fivefold cross-validation and independent testing
demonstrate that iPVP-DRLF achieves satisfactory overall perfor-
Fig. 1. The workflow of the development a
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mance for PVP identification. Furthermore, despite employing
fewer features, it outperforms two existing state-of-the-art (SOTA)
predictive models on the blind dataset, improving prediction accu-
racy by approximately 6.6 % and 3.5 %, respectively. Through fea-
ture visualization analysis using the uniform manifold
approximation and projection (UMAP) algorithm [20], we found
that deep representation learning features could represent proteins
better than other classic sequence features to distinguish PVPs
from non-PVPs. Thus, it helps to improve the performance of
iPVP-DRLF and leads to the development of powerful predictive
tools.

2. Methods and materials

2.1. Datasets

In this study, the datasets collected by Yadav et al. were used for
model training and testing [13]. Both PVPs and non-PVPs were
derived from the UniProtKB/SwissProt database. The CD-HIT soft-
ware [21] was then used to remove redundant samples by setting
the sequence identity threshold to 60 % [22]. A total of 274 PVPs
were obtained as the initial positive samples. Subsequently, 200
PVPs at 40 % identity cut-off were used as positive samples in
the training dataset. The remaining 74 sequences were used to
form a test dataset to verify the generalization ability of the predic-
tive models. On the other hand, an equal number of negative sam-
ples with 40 % identity were collected to construct the balanced
training and independent test datasets, respectively. In addition,
Yadav et al. also created a PVP-blind dataset from cropPAL [23]
to further evaluate the performance of developed models. The
blind dataset contains 227 vacuole proteins with sequence lengths
greater than 50. The above-mentioned datasets are available at
https://lab.malab.cn/~acy/iPVP-DRLF.

2.2. Feature extraction

An effective sequence representation approach is crucial for
developing satisfactorily performing predictive models. Here, vari-
ous types of feature descriptors were studied. These sequence rep-
resentation methods can be roughly divided into two groups:
nd evaluation process for iPVP-DRLF.
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classic protein sequence encoding methods and deep representa-
tion learning features.

2.2.1. Classic sequence encoding methods
In this study, seven types of sequence-based classic feature

encoding schemes were investigated to convert protein sequences
into feature vectors, including pseudo-amino acid composition
(PAAC); amino acid composition (AAC); dipeptide composition
(DPC); adaptive skip dipeptide composition (ASDC); quasi-
sequence order (QSO); composition, transition, and distribution
model of physicochemical properties (CTD) and dipeptide devia-
tion from expected mean (DDE). These feature encoding algorithms
can be implemented conveniently using various published state-
of-the-art platforms, such as BioSeq-Analysis [24], iFeature [25],
and iLearn [26].

2.2.2. Deep representation learning features
Deep learning has achieved marked success in biological

sequence processing due to its powerful sequence representation
ability and automatic feature extraction capabilities. It is a special
type of machine learning method that can capture parameters in
neural networks to automatically learn feature representation
[27]. Based on the principle of transfer learning, we can utilize
pre-trained deep learning models for feature extraction of new
data or migrate applications to other similar tasks. Typical exam-
ples of deep learning protein sequence embedding methods
include UniRep [28], bidirectional long short-term memory
embedding model (BiLSTM) [29], TAPE [30], SSA [14] and lan-
guage embedding model (LM) [31]. These techniques have been
demonstrated to be powerful tools for many protein engineering
task applications. In particular, unified representation (UniRep),
proposed by Alley et al., was based on a multiplicative long
short-term memory architecture. It was trained on UniRef50 (a
dataset with � 24 million protein sequences) and has the ability
to extract the biological, chemical, and evolutionary information
within the protein sequences. Protein sequences can be repre-
sented as 1900-dimensional feature vectors (average final hidden
state output) using UniRep. More detailed information can be
found at https://github.com/churchlab/UniRep. The BiLSTM
embedding model was trained on the full set of protein domain
sequences in the Pfam database, approximately 22 million protein
sequences. BiLSTM embedding feature can be effectively com-
bined with the global structural similarity between proteins and
pairwise residue contact maps for individual proteins, allowing
the vector matrix mapped from the protein sequences to be fully
characterized [29].

2.3. Classifier

LightGBM is a distributed and efficient gradient-boosting
framework developed by Microsoft Research [24]. This algorithm
is based on decision tree and can be used in various machine
learning tasks, including classification, sorting, and regression.
The traditional gradient boosting decision tree needs to scan all
data samples when estimating the information gain of all possible
split points. This process is very time-consuming. LightGBM uses
two engineering optimization novelties to overcome this problem.
The first is gradient-based one-side sampling (GOSS). The GOSS
algorithm excludes most of the data samples with small gradients
and only uses the remaining ones to estimate the information
gain. This leads to a more accurate gain estimation and signifi-
cantly reduces the number of data instances without losing much
training accuracy. The second is the exclusive feature bundling
algorithm, which reduces the feature number by bundling mutu-
ally exclusive features. Therefore, it provides satisfactory effi-
ciency and scalability when large datasets or high-dimensional
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features are used. More details can be found in Ref. [32]. We also
compared seven other commonly used classifiers to find the best
machine learning algorithm for PVP identification, including ada-
boost (AB), bagging, extremely randomized trees (ERT), gradient
boosting machine (GBM), support vector machine (SVM), random
forest (RF) and extreme gradient boosting (XGBT). We utilized
scikit-learn to implement these efficient algorithms and tuned
the hyperparameters via grid search (https://scikit-learn.org/).
The search range for each classifier is presented in Supplementary
Table S1.
2.4. Feature selection

To overcome overfitting and acquire the most significant fea-
ture space for modeling improvement, feature selection is com-
monly utilized. In recent years, scientists have proposed many
methods to evaluate feature importance, such as analysis of vari-
ance (ANOVA), Chi2, and maximum-relevance-maximum-dis
tance (MRMD) [33–36]. In this study, LGBM was used to rank fea-
tures, and SFS was subsequently applied to search for the best
feature subset [37]. A brief introduction is provided here. The
training data with true labels was first fed into and fitted to the
LGBM model. Next, we could obtain the importance value of each
feature according to the built-in function of the LGBM model. A
feature ranking list was then generated based on the feature
importance values. A higher-ranked feature in the list indicates
that it is more informative. The second step was using SFS to
search for the optimal feature set from the sorted feature list.
Features were added one-by-one from a low index to a high index
to form feature subsets with different dimensions. The feature
subsets were then fed into the classifier to construct predictive
models and evaluated by fivefold cross validation. Finally, the
subset with which the prediction model achieves the best perfor-
mance was considered optimal.
2.5. Performance measurement

Fivefold cross-validation and independent testing were
employed to evaluate the performance of the proposed machine
learning models comprehensively and quantitatively [38–42].
Fivefold cross-validation randomly splits the original training data
into five subsets. Each time, four of them were used for training,
and the remaining one was used as the validation dataset. The per-
formance metrics on the five subsets were averaged to obtain the
overall fivefold cross-validation results. In addition, an indepen-
dent test was used to demonstrate the generalization ability of
the proposed models. Four standard confusion matrix-based met-
rics in binary classification tasks were used to measure the recog-
nition ability. These included accuracy (Acc), specificity (SP),
sensitivity (SE), and Matthew’s correlation coefficient (MCC). They
were calculated using Equations (1) – (4). Moreover, receiver oper-
ating characteristic (ROC) curves and the area under the ROC curve
(AUC) were also used to make an intuitive performance compar-
ison of constructed models.
SE ¼ TP
TPþFN � 100%ð1Þ

SP ¼ TN
TNþFP � 100%ð2Þ

Acc ¼ TPþTN
TPþFPþTNþFN � 100%ð3Þ

MCC ¼ ðTP�TNÞ�ðFP�FNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFPÞ�ðTNþFNÞ�ðTPþFNÞ�ðTNþFPÞ

p ð4Þ

8>>>>><
>>>>>:

TP: true positive; FP: false positive; TN: true negative; FN: false
negative.
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3. Experimental results

3.1. Performance of classic sequence encoding methods

To determine the best PVP sequence feature representation
type, we first developed predictive models using classic protein
sequence descriptors based on the LGBM classifier. Notably, several
of them are high-dimensional features, which are always redun-
dant, noisy, and computationally expensive. Thus, a feature selec-
tion procedure based on the LGBM classifier was performed to
remove redundant and irrelevant features, where only the most
discriminative features were retained to construct predictive mod-
els with upgraded efficiency. The feature selection SFS curves of
each descriptor are shown in Figure S1. The fivefold cross-
validation performance results of models based on optimal feature
subsets for different descriptors are summarized in Table 1.

As can be observed from Table 1, four types of sequence
descriptors, namely DPC, CTD, ASDC and DDE, achieve very similar
performance in terms of five performance measures. And DDE
seems to be the most powerful classic feature encoding method
for PVP prediction. The associated model achieves the highest
Acc, AUC, SP, and MCC values of 79.25 %, 0.867, 79.50 %, and
0.585, respectively. Following the DDE, the DPC feature outper-
forms the other remaining features in terms of Acc and MCC, and
most indicators are only slightly lower than the DDE. Furthermore,
DPC has an SE score of 81.00 %, the highest among all features. AAC
performs the worst among all the descriptors, with Acc and MCC
values of 68.25 % and 0.365, respectively. The QSO and PAAC
encodings also achieve a comparatively lower performance with
an accuracy value of about 70 %, possibly because they can only
capture limited informative patterns from PVP sequences. These
observations are consistent with previous studies suggesting that
the DPC features are critical and essential for prediction of PVPs.
Based on these facts, we then integrated the two top-performing
features, DDE and DPC, into our hybrid feature to explore more
comprehensive and discriminative feature encoding strategies for
PVP prediction.
3.2. Performance of deep representation learning features

Based on the pre-trained deep learning models, we investigated
five types of effective deep representation learning features. Nota-
bly, most deep representation learning features have higher
dimensionality than classical feature descriptors. Therefore, we
applied the same two-step feature selection method to determine
the optimal feature space for each descriptor. The feature selection
results are shown in Figure S2. Table 2 summarizes the perfor-
mance of the optimal feature subsets for each descriptor on the
LGBM classifier.

Deep representation learning features achieve a better and
more stable performance compared with the classic sequence fea-
tures. Except for SSA, the other deep representation learning fea-
tures show significantly improved performance. Among all the
Table 1
5-fold cross-validation results of different classic sequence descriptors.

Feature Acc (%) AUC

DPC (34D) 79.00 0.840
CTD (51D) 78.50 0.845
ASDC (57D) 78.25 0.829
DDE (38D) 79.25 0.867
PAAC (22D) 72.00 0.775
AAC (20D) 68.25 0.742
QSO (44D) 71.00 0.774

Note: The best performance value of each column is highlighted in bold for clarification
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deep representation learning features, BiLSTM achieves the overall
best performance in terms of the three metrics: Acc (85.25 %), SE
(84.00 %) and MCC (0.705). UniRep outperforms all other descrip-
tors on the remaining two metrics, AUC and SP, with values of
0.915 and 87.50 %, respectively. Furthermore, the Acc and MCC
scores of UniRep are only slightly worse than BiLSTM. The accuracy
of BiLSTM and UniRep achieves a marked improvement of approx-
imately 6 % compared with the best performing classic sequence
features. Even TAPE and LM achieve better performance than
DDE on five metrics. These results indicate that deep representa-
tion learning embedding methods can capture more informative
patterns for identifying vacuole proteins from sequences. Consid-
ering the overall performance on the training sets, UniRep and
BiLSTM were selected for the next feature analysis experiment.
3.3. Performance of hybrid features

To further explore the best model for PVP identification, we
investigated the performance of hybrid features that integrated
sequence information frommultiple aspects. Therefore, we directly
combined the aforementioned four best individual descriptors,
namely DDE, DPC, UniRep and BiLSTM, to obtain a 176-
dimensional hybrid feature vector (named F176). Preliminary
experiments showed that this hybrid feature still contains redun-
dant information. Hence, we performed the same feature selection
as described in section 2.4. Here, we systematically evaluated the
SFS results based on eight widely used machine learning classifiers.
The SFS curves of each classifier are shown in Figure S3. The five-
fold cross-validation performance results for different classifiers
are summarized in Table 3. In this step, the testing dataset was
employed to further estimate the comprehensive performance of
these models, and the prediction results are also presented in
Table 3.

We found that the performance of different classifiers varied
greatly. Moreover, it can be observed from Table 3 that there is
no distinct regularity between the validation dataset and the train-
ing dataset. The AB classifier achieves the overall best performance
in terms of five metrics, and the accuracy score is up to 89.50 %. But
its performance on the test dataset is not satisfactory, with an
accuracy of 82.43 %. We observed that the LGBM classifier signifi-
cantly outperforms the other classifiers on three metrics (Acc, SP,
and MCC) on the independent test set. Furthermore, the Acc,
AUC, SP and MCC of the LGBM classifier on the training dataset
are 88.25 %, 0.933, 87.50 % and 0.765, respectively, which is only
slightly worse than the AB classifier. Comprehensively considering
the comparison results among the different classifiers, the consis-
tently competitive performance on both datasets demonstrates
that the LGBM is the most suitable algorithm for developing pre-
dictive models for vacuole protein identification. The new 63-
dimensional fused feature vector (named F63) selected using
LGBM and the SFS method is considered as the optimal subset.
Therefore, the LGBM model trained on the F63 was determined
to be the final model for use in the iPVP-DRLF implementation.
SE (%) SP (%) MCC

81.00 77.00 0.580
78.00 79.00 0.570
77.50 79.00 0.565
79.00 79.50 0.585
67.50 76.50 0.442
67.00 69.50 0.365
70.00 72.00 0.420

. Numbers in parentheses represent feature dimensions after feature selection.



Table 2
Fivefold cross-validation results of different deep representation learning features.

Features Acc (%) AUC SE (%) SP (%) MCC

BiLSTM (44D) 85.25 0.908 84.00 86.50 0.705
LM (40D) 82.00 0.888 81.00 83.00 0.640
SSA (28D) 75.25 0.815 74.50 76.00 0.505
TAPE (55D) 83.00 0.893 84.00 82.00 0.660
UniRep (60D) 85.00 0.915 82.50 87.50 0.701

Note: The best performance value of each column is highlighted in bold for clarification. Numbers in parentheses represent feature dimensions after feature selection.

Table 3
Performance comparison of eight machine learning models based on the corresponding optimal feature subset of F176.

Classifier Fivefold cross-validation Independent testing

Acc (%) AUC SE (%) SP (%) MCC Acc (%) AUC SE (%) SP (%) MCC

AB 89.50 0.943 89.00 90.00 0.790 82.43 0.885 85.14 79.73 0.650
Bagging 84.25 0.895 82.50 86.00 0.685 83.11 0.898 85.14 81.08 0.663
ERT 83.50 0.888 80.00 87.00 0.672 85.81 0.936 90.54 81.08 0.719
GBM 86.25 0.925 87.50 85.00 0.725 83.11 0.899 85.14 81.08 0.663
LGBM 88.25 0.933 89.00 87.50 0.765 87.16 0.916 89.19 85.14 0.744
RF 84.25 0.899 83.00 85.50 0.685 84.46 0.926 87.84 81.08 0.691
SVM 86.75 0.922 85.50 88.00 0.735 80.41 0.871 90.54 70.27 0.621
XGBT 88.25 0.926 88.00 88.50 0.765 83.78 0.900 85.14 82.43 0.676

Note: The best performance value of each column is highlighted in bold for clarification.
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To understand the effectiveness of the deep representation
learning features, we used the most popular feature analysis strat-
egy, UMAP, for dimension reduction to analyze the distribution
characteristics of the training samples. The distribution is shown
in Fig. 2, and the positive and negative samples are distributed
totally differentially in the five compared feature spaces (A-E).
Notably, many PVPs and non-PVPs overlap in the feature space of
the DPC and DDE. In contrast, although there are still some samples
with overlapping distributions in the feature space of UniRep,
BiLSTM, and the F63, marked boundaries appear to exist to sepa-
rate the most positive and negative samples. Especially for the
optimal feature subset F63, the gap between positive and negative
clusters is more obvious, and only a very small number of positive
and negative samples overlap. This suggests that the information
extracted by the deep representation learning embedding methods
Fig. 2. UMAP distribution of PVPs and non-PVPs using the 63-dimensional vector F63 and
dots represent non-PVPs. (A-E) are the distributions of DDE, DPC, BiLSTM, UniRep and
independent test datasets. (For interpretation of the references to colour in this figure l
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is more effective in capturing the difference between PVPs and
non-PVPs. Thus, the performance of the iPVP-DRLF was enhanced.

3.4. Comparison with existing predictors

In this section, we compared the prediction performance of
iPVP-DRLF with two SOTA predictive models: VacPred-DPC and
VacPred-PSSM. All of them were trained and validated using the
same training and testing datasets. As shown in Table 4,
VacPred-PSSM outperforms VacPred-DPC in almost all result met-
rics, so we mainly compared iPVP-DRLF with VacPred-PSSM.
Fig. 3A also visually shows the evaluation metrics comparison. It
is clear that iPVP-DRLF achieved better performance in terms of
most metrics compared to VacPred-PSSM on both datasets. Espe-
cially on the training dataset, the improvements made by our pre-
four compared individual descriptors. The orange dots represent PVPs and the blue
F63, respectively. F presents the ROC curves for iPVP-DRLF on the training and

egend, the reader is referred to the web version of this article.)



Table 4
Performance comparison of proposed iPVP-DRLF and the SOTA predictors.

Classifier Training Testing Blind

Acc (%) AUC SE (%) SP (%) MCC Acc (%) AUC SE (%) SP (%) MCC Acc (%)

iPVP-DRLF 88.25 0.933 89.00 87.50 0.765 87.16 0.916 89.19 85.14 0.744 66.52
VacPred-DPC 75.50 0.800 70.00 81.00 0.510 80.41 0.840 82.43 78.38 0.610 59.91
VacPred-PSSM 81.75 0.860 76.50 87.00 0.640 86.49 0.930 90.54 82.43 0.730 62.99

Note: The best performance value of each column is highlighted in bold for clarification.

Fig. 3. Performance comparison of different PVPs prediction software. A presents the comparison of iPVP-DRLF with the SOTA predictor VacPred-PSSM on training, test and
blind datasets. B shows the benchmark results of iPVP-DRLF and different published software using blind dataset.
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dictive model are statistically significant with an accuracy boost of
about 6.5 %. Furthermore, the gap between SE and SP of our model
is smaller, which indicates that iPVP-DRLF has a more balanced
ability to identify positive and negative samples. It is also worth
noting that both VacPred-DPC and VacPred-PSSM use 400-
dimensional feature vectors, while ours is 63-dimensional, which
is approximately-one-sixth of the former. This significantly
reduces the computational cost.

To verify the robustness of iPVP-DRLF, we further tested it using
a blind dataset. In this section, we compared its performance not
only with VacPred, but also with seven SOTA protein subcellular
localization prediction tools, including PProwler 1.2, TargetP 1.1,
Plant-mSubP-DPC, BaCelLo, pLoc-mPlant, Predotar v1.03 and
Plant-mPLoc. For a fair comparison, the blind dataset collected by
Yadav et al. was used to test all the compared predictors. The accu-
racy scores for the seven subcellular localization prediction tools
on the blind datasets came from reference [13]. As shown in
Fig. 3B, iPVP-DRLF outperformed all the compared models with
an accuracy of 66.52 %, which is an approximately 6.6 % and
3.5 % improvement compared with VacPred-DPC and VacPred-
PSSM, respectively. Among the protein subcellular localization pre-
dictors, PProwler 1.2 achieves the best performance with an Acc
score of 41.85 %. Overall, these predictors performed poorly, prob-
ably because they were not designed specifically for PVPs. The
above analysis clearly suggests the practical applicability of iPVP-
DRLF over other methods. ROC curves were drawn (Fig. 2F) to visu-
ally depict the predictive efficiency of iPVP-DRLF. The AUC values
obtained by fivefold cross validation and independent testing are
0.933 and 0.916, respectively. Although the developed predictor
shows favorable performance, we do observe that our model also
does not perform as well on the blind data as it does on the training
and independent test data. Thus, there is still some room to
improve the generalization ability.
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3.5. Webserver implementation

The iPVP-DRLF is freely available at https://lab.malab.cn/~acy/
iPVP-DRLF. The online server helps researchers determine whether
their query protein sequences are plant vacuolar proteins. Here, we
provide a simple introduction to server usage. The user first needs
to paste or type protein sequences into the text box on the left and
then click the ‘‘Submit” button for prediction. Notably, only FASTA-
formatted sequences are supported as inputs for prediction. We
have also provided an example of FASTA-formatted sequences in
the input box. After the calculation is complete, the prediction
results will be shown in a tabular format on the right. To reset
the model and start new tasks, the ‘‘Resubmit” button can be
clicked and the above-mentioned steps can be repeated to obtain
new prediction results. Detailed step-by-step instructions on how
to use the iPVP-DRLF server are available on the interface of the
webserver. Furthermore, the datasets employed in this study can
be downloaded from the web server to validate our findings or per-
form other research.

4. Conclusion

This research covered a rarely explored area of protein sequence
analysis in bioinformatics, that is, the computational identification
of PVPs. Based on existing methods, we tackled this problem by
combining classic sequence features and deep representation fea-
tures to encode plant vacuole protein sequences. We found that
deep representation learning features are more informative and
help plant vacuole protein identification than the commonly used
classic sequence features. Moreover, we have proposed a more
informative feature representation scheme by integrating and
learning from both deep learning embedding features (BiLSTM
and UniRep) and classic sequence descriptors (DDE and DPC). Sub-

https://lab.malab.cn/%7eacy/iPVP-DRLF
https://lab.malab.cn/%7eacy/iPVP-DRLF
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sequently, these multi-view features were fused and fed into the
LGBM classifier to construct the final predictive model. Application
of the model shows favorable cross-validation, independent test
and blind test accuracies of 88.25 %, 87.16 % and 66.52 %, respec-
tively, all outperforming existing PVP predictors. Furthermore,
the UMAP feature visualization demonstrates that the deep repre-
sentation learning feature plays a more important role than the
classic features in the model predictions. To facilitate the relevant
research community, a user-friendly online webserver was imple-
mented for iPVP-DRLF and made available for public use. Because
of the current lack of highly accurate models specifically dedicated
to PVP prediction, our study provides a complete methodology and
benchmark and lays a foundation for further research in the future.
We anticipate that iPVP-DRLF could serve as a powerful technique
that could be used as a supplement to hands-on wet experiments
for PVP identification and that its use could facilitate the elucida-
tion of associated biological function mechanisms.
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