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Only a small fraction of individuals exposed to Mycobacterium tuberculosis
develop clinical tuberculosis (TB). Over the past century, epidemiological studies

have shown that human genetic factors contribute significantly to this interindi-

vidual variability, and molecular progress has been made over the past decade

for at least two of the three key TB-related phenotypes: (i) a major locus control-

ling resistance to infection with M. tuberculosis has been identified, and (ii) proof

of principle that severe TB of childhood can result from single-gene inborn errors

of interferon-g immunity has been provided; genetic association studies with pul-

monary TB in adulthood have met with more limited success. Future genetic

studies of these three phenotypes could consider subgroups of subjects defined

on the basis of individual (e.g. age at TB onset) or environmental (e.g. pathogen

strain) factors. Progress may also be facilitated by further methodological

advances in human genetics. Identification of the human genetic variants con-

trolling the various stages and forms of TB is critical for understanding TB

pathogenesis. These findings should have major implications for TB control, in

the definition of improved prevention strategies, the optimization of vaccines

and clinical trials and the development of novel treatments aiming to restore

deficient immune responses.

1. Introduction
Tuberculosis (TB) remains a major public health problem, as Mycobacterium
tuberculosis infects an estimated one-third of the world’s population, resulting

in approximately 8.6 million new cases of TB and approximately 1.3 million

deaths in 2012 [1]. TB bacilli are transmitted by the inhalation of aerosolized

droplets generated by the coughing of a patient with active TB. A substantial

proportion of subjects do not become infected despite sustained high levels

of exposure, as shown by negative tuberculin skin test (TST) and/or interferon

(IFN)-g release assays (IGRAs), and hence never develop disease (figure 1).

About 5% of infected individuals develop clinical TB within 2 years of infection,

either without latency or after a very short latent phase (figure 1) [2,3]. This ‘pri-

mary’ TB is particularly common in children, running an acute course and often

associated with extrapulmonary disease owing to dissemination of the bacillus

in the bloodstream [4,5]. However, most people infected with M. tuberculosis
develop latent TB infection (LTBI). LTBI is characterized by positive TST

and/or IGRA and an absence of overt clinical signs (figure 1) [2,6,7]. Most sub-

jects with LTBI (approx. 90–95%) never develop clinical disease. The remaining

5–10% develop clinical TB later in life, typically owing to reactivation of the
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Figure 1. A schematic of the natural history of human infection by M. tuberculosis, and the subsequent development of clinical TB. Despite sustained high-level
exposure, a substantial proportion of subjects (approx. 10 – 20%) do not become infected, and hence never develop disease. About 5% of infected individuals
develop clinical TB within 2 years of infection; this ‘primary’ TB is particularly common in children, and could be associated with extrapulmonary disease. The
remaining persons infected with M. tuberculosis develop latent TB infection (LTBI). Only a minority of subjects with LTBI (approx. 5 – 10%) develop clinical TB
during their lifetime, typically owing to reactivation of the original infection. (Online version in colour.)
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original infection. This ‘reactivation’ TB is predominantly a

chronic pulmonary disease of adults, resulting in extensive

lung damage and the efficient airborne transmission of bac-

teria. Hence, individuals susceptible to infection display

three clinical presentations: (i) not entering LTBI (primary

TB), (ii) remaining with LTBI (silent infection) or (iii) exiting

from LTBI (reactivation TB).

Clinical and epidemiological surveys conducted since the

1910s have provided strong evidence that each step underlying

infection or disease is controlled by host genetic factors [8–10].

Familial aggregation studies have provided the most convin-

cing evidence [9,10]. In families with an index sputum-

positive TB patient, spouses with family histories of TB were

found to develop manifest TB more frequently than those

without such histories [10]. Twin studies have also shown

much higher concordance rates for monozygotic than for dizy-

gotic pairs for clinical TB (combining primary and reactivation

TB) [10,11]. In the seminal study conducted by Kallmann and

Reisner in New York State, 308 twin pairs in which one of the

pair was a confirmed index TB case were studied [11]. In this

sample, the percentage of twin siblings of index cases develop-

ing manifest TB (defined on the basis of clinical, chest X-ray

and sputum examinations) was 66.7% for monozygotic twins

(52/78) and 23% (53/230) for dizygotic twins [11]. Interest-

ingly, similar percentages were obtained when the sample

was subdivided into groups on the basis of the known history

of exposure of the twin siblings to a known active TB patient

(table 1). It has long been known that the incidence of TB is

particularly high in newly exposed populations [9], such as

African populations and native Americans [12]. Similarly, the

susceptibility to M. tuberculosis infection of an exposed individ-

ual, as measured by the TST, has been shown to be correlated

with the region of ancestry of the individual concerned [13,14].

As for clinical TB disease, familial studies, including twin

studies, have shown TB infection phenotypes (mostly TST

result, considered as a quantitative trait) to be highly heritable

(more than 50%, as detailed in §2).

Furthermore, a long series of experimental studies in var-

ious animal models, beginning in the 1930s, has also

established the importance of host genetic background for

determining the outcome of infection with M. tuberculosis
(reviewed in [7,15,16]). In mice, a key antimycobacterial

locus (the Bcg locus) has been shown to be allelic to

Nramp1 [17]. Knockout mice showed that CD4 T cells were

required for immunity to M. tuberculosis and that the three

most important antimycobacterial molecules required for

M. tuberculosis destruction by phagocytes were tumour necro-

sis factor (TNFI-a), IFN-g and nitric oxide synthase 2

[7,15,18,19]. Human studies have confirmed most of these
findings through demonstrations of an increase in the risk

of TB in AIDS patients [20,21], in patients on anti-TNF treat-

ment [22], and in patients with genetic defects impairing IFN-

g immunity [8,23,24]. These studies have clearly demon-

strated the critical importance of CD4-mediated immunity

and of the interleukin (IL)-12/IFN-g loop in baseline resist-

ance to M. tuberculosis, but the reasons for which

individuals otherwise displaying full immune competence

develop TB remain largely unknown. In this context, the

identification of genetic variants increasing the risk of TB con-

stitutes a powerful approach to deciphering the mechanistic

basis of TB pathogenesis. We provide here an overview of

the principal human genes known to underlie the interindivi-

dual variability of susceptibility at each of the three main

steps in the natural course of M. tuberculosis infection. We

also discuss the contribution of genetic research to the

development of new approaches to combat TB.
2. Genetic control of tuberculosis infection
There is no direct test for infection with M. tuberculosis and the

phenotype of M. tuberculosis infection is inferred exclusively

from quantitative measurements of antimycobacterial immu-

nity. These assays cannot distinguish a possible anamnestic

response to M. tuberculosis from persistent infection with the

bacillus. The TST is the most widely used method [25]. The

skin induration generated by the TST is caused by the accumu-

lation of histiocytes and T cells around intradermal deposits of

M. tuberculosis antigens. More recently, two in vitro blood

assays, measuring either the secretion of IFN-g by lymphocytes

or the frequency of IFN-g producing blood cells in response to

M. tuberculosis antigens (IGRAs), have been developed [26].

TST and IGRAs assess different aspects of antimycobacterial

immunity and are not fully concordant in predicting infection

with M. tuberculosis [27]. Little or no reactivity in these tests in

individuals exposed to M. tuberculosis is indicative of innate

resistance to M. tuberculosis infection. In household studies,

30–50% of contacts with heavy short-term exposure do not

become infected [28,29], revealing substantial heterogeneity in

susceptibility to infection. We and others have focused on

TST and IGRA results as quantitative traits and have shown

heritability to be high for the results of both tests following

exposure to M. tuberculosis. In Gambia, a study of healthy

twins estimated the heritability of TST responsiveness and

quantitative IGRA reactivity at 71% and 39%, respectively

[30]. The heritability of quantitative TST reactivity in young

healthy children exposed to an active TB case has been esti-

mated at 92% in Chile [31]. In a South African familial



Table 1. Proportion of monozygotic and dizygotic twins of index cases with TB, as a function of the history of exposure of the co-twin to a known active TB
patient, from the study by Kallmann & Reisner [11].

monozygotic co-twins dizygotic co-twins

number of TB
cases

total
number

% of TB
cases

number of TB
cases

total
number

% of TB
cases

history of exposure 36 52 69.2 46 175 26.3

without known

exposure

16 26 61.5 7 55 12.7

total 52 78 66.7 53 230 23.0
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sample from an area of hyperendemic TB disease, the heritabil-

ity of quantitative IFN-g release responses was estimated to be

between 43 and 58%, depending on the nature of the stimulat-

ing antigen [32]. Likewise, the heritability of the frequency of

antigen-specific IFN-gþCD4þ and IFN-gþCD8þ has been esti-

mated at 53–74% [32]. A complex segregation analysis of

TST reactivity in related household contacts of TB index cases

in a Colombian population provided evidence for a major

codominant gene accounting for approximately 65% of TST

variability [33]. By contrast, a family study conducted in

Uganda reported a lower estimate of heritability for IGRA

responses (approx. 17%) [34]. However, as IGRA reactivity

was adjusted for TST response in this study, this lower estimate

of heritability may reflect genetic components common to the

TST and IGRA responses. More recent data from Uganda care-

fully adjusted for shared environment yielded higher estimates

for the heritability of IGRA response (approx. 30%) [35].

Despite the strong evidence in favour of an impact of gen-

etic factors on the assays used for LTBI, only a small number of

studies have aimed to identify the genetic variants underlying

susceptibility to M. tuberculosis infection. TST reactivity was the

phenotype studied in all these studies. Candidate gene associ-

ation studies have focused on TST response as a binary trait,

defined according to various thresholds (0, 5 or 10 mm). In a

large study of 3622 TST-positive individuals and 244 TST-nega-

tive healthy controls in Ghana, an IL10 promoter haplotype

(22849A/21082A/2819C) was found to be significantly

more frequent in TST-positive than in TST-negative subjects

(15.3% versus 9.7%, odds ratio (OR) ¼ 2.09 (1.2–3.5), p ¼
0.012) [36]. This haplotype was also associated with low

levels of circulating IL-10, suggesting a role for IL-10 in the

initial host response to M. tuberculosis. However, the similarity

of age distribution between TST-negative and TST-positive

subjects was not shown. Consistent with the findings for the

sample from Ghana, the prevalence of TST negativity was

found to be 1.5 times higher in individuals carrying the

high-level IL-10-producing genotype GG at single nucleotide

polymorphism (SNP) 21082A.G than in individuals carrying

the AA and AG genotypes, in an indigenous population from

Brazil [37]. Additional associations of cytokine genes with TST

reactivity in the Brazilian sample have yet to be replicated.

In Uganda, a genome-wide (GW) linkage analysis reported

results suggesting that persistent TST negativity (defined as a

TST , 10 or 5 mm, according to age and HIV status) was

linked to chromosomal regions 2q21–2q24 and 5p13–5q22

[38]. A study of TST reactivity in a sample of multiplex families

from South Africa identified two major loci affecting TST-posi-

tivity per se (TST1) and the intensity of TST reactivity (TST2)
[39]. TST1 was identified by focusing on the phenotype of TST

positivity versus TST negativity (i.e. TST ¼ 0), and maps to

chromosome 11p14 (lod score ¼ 3.81, p ¼ 1.4� 10–5). A

second phenotype studied was the size in millimetres of the

skin induration in TST-tested subjects. The size of the induration,

considered as a quantitative trait, was impacted by a locus on

chromosome 5p15 which was termed TST2 (lod score ¼ 4.00,

p ¼ 9 � 10–6). The most parsimonious explanation for the role

of these two loci is that TST1 reflects innate resistance to infection

with M. tuberculosis whereas TST2 reflects T-cell-mediated

antimycobacterial immune responses. Unexpectedly, it was sub-

sequently discovered that a locus affecting the production of

TNF by blood cells in response to bacillus Calmette–Guérin

(BCG) and BCG plus IFN-g, TNF1, is genetically indistinguish-

able from TST1 [40]. This raises the exciting possibility that

innate resistance to M. tuberculosis infection may involve a

TNF-mediated effector mechanism. Such a possibility dovetails

neatly with the function of TNF in macrophage activation

during early stages of infection. No GW association study

(GWAS) has yet been performed for M. tuberculosis infection.
3. Genetic control of severe primary tuberculosis
About 5% of infected individuals develop clinical TB within

2 years of infection (figure 1), either without latency or after

a very short latent phase [3]. This ‘primary’ TB is particularly

common in children, some of whom develop a haematogen-

ous disseminated form (referred to here as ‘severe primary

TB’) [2]. Severe primary TB was, by far, the most frequent

form in children in areas of endemic disease before BCG vac-

cines and antimycobacterial antibiotics became available,

resulting in high rates of mortality in children under the age

of 2 years [9,23,41]. The risk of severe primary TB remains

highly dependent on age at primary infection, decreasing

from 10 to 20% for children under the age of 1 year to less

than 0.5% for children over the age of 5 years [4,5]. These

severe forms are mostly either miliary or affect the central ner-

vous system (causing meningitis, in particular), and they

remain life-threatening conditions [4,5]. BCG vaccination pro-

vides some protection against severe disseminated TB in

childhood, but this protection is incomplete [42]. The develop-

ment of antibiotics has greatly decreased childhood mortality

due to TB, but more than 80 000 children still die from TB

each year [43]. One of the fundamental unresolved questions

in the field of childhood TB therefore concerns the nature of

the predisposition to the development of severe clinical

forms in only a minority of infected children. The findings
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obtained in the last decade have provided the first clue to the

riddle, by showing that at least some cases of severe TB can be

explained by single-gene inborn errors of immunity.

The first molecular evidence that childhood TB might

reflect a Mendelian predisposition came from the observation

of severe TB in children with classical primary immunodefi-

ciencies (PIDs) [44]. In particular, a substantial number of

children with chronic granulomatous disease (CGD) were

diagnosed with severe TB in several countries [45–49]. In a

recent survey investigating the occurrence of mycobacterial

diseases in CGD patients, TB was found to be rather

common in patients living in countries in which TB is ende-

mic [50]. However, CGD is a rare disorder characterized by

a high prevalence of multiple infectious diseases. Further pro-

gress towards an understanding of the genetics of severe TB

came from the study of the syndrome of Mendelian suscepti-

bility to mycobacterial diseases (MSMDs), which is defined

by a selective vulnerability to weakly virulent mycobacterial

species, such as BCG and environmental mycobacteria [51].

MSMD patients also often suffer from non-typhoidal, extra-

intestinal salmonellosis. Since 1996, germline mutations in

seven autosomal (IFNGR1, IFNGR2, IL12B, IL12RB1, STAT1,

IRF8, ISG15) and two X-linked (NEMO, CYBB) genes have

been discovered in MSMD patients [8,52–55]. High levels

of locus and allelic heterogeneity have resulted in the defi-

nition of 17 different disorders, accounting for about half

the known cases [56]. These defects are physiologically

related, as they all result in an impairment of IFN-g

immunity. Several MSMD patients, particularly those with

IFN-gR1 [57,58] and IL-12p40 [59] deficiencies, have been

shown to suffer from infections due to both weakly virulent

mycobacteria and M. tuberculosis, raising the question as to

whether the TB observed in these patients could also be

attributed to a monogenic predisposition.

The first answer to this question came when several siblings

of MSMD patients carrying the same genetic defect as the index

case were found to display severe TB as their sole infectious

phenotype. This situation was initially observed in a child

with partial IFN-gR1 deficiency, who was a sibling of an

MSMD patient [60], and was subsequently observed in a

male subject from a large multiplex X-linked kindred

carrying a specific mutation of CYBB impairing the IFN-

g-dependent respiratory burst in macrophages [53]. However,

the most common genetic defect identified in patients with

severe TB to date is complete IL-12Rb1 deficiency [61]. In one

family, an IL-12Rb1-deficient sister of a patient with MSMD

developed abdominal TB [62]. Several children with severe

TB and complete IL-12Rb1 deficiency in the absence of a famil-

ial history of infections with weakly virulent mycobacteria have

been identified [63,64]. In a more systematic search for IL12RB1
mutations in 50 children with severe TB, two patients (4%) with

complete IL-12Rb1 deficiency were identified [24]. Overall,

these results provided proof of principle for monogenic predis-

position to severe TB, and raised the possibility that a

substantial proportion of children with severe TB carry

single-gene inborn errors of immunity. This proportion has

been estimated at up to 45% by theoretical calculations [23],

and can now be determined experimentally, by whole-exome

and whole-genome sequencing. These findings have already

paved the way for new treatments based on physiopathology.

While until recently it was difficult to envision how point-of-

care genotyping could be implemented in TB diagnosis,

recent advances in hand-held PCR technology now suggest
patient genotyping as a viable tool even in low- and middle-

income countries [65,66]. The best example is provided by

patients with IL-12Rb1 deficiencies presenting TB owing to

impaired IFN-g production, for whom treatment with recombi-

nant human IFN-g, in addition to antimycobacterial drugs, has

been shown to be effective [67].
4. Genetic control of pulmonary tuberculosis
Most people infected with M. tuberculosis present LTBI and do

not develop primary TB (figure 1). Epidemiological studies

have indicated that approximately 5–10% of individuals with

LTBI go on to develop active TB during their lifetime, this risk

decreasing with increasing time since infection [7,68]. Molecular

epidemiology studies have shown that active TB due to reactiva-

tion of the original strain can occur decades after the initial

infection [69]. The progression of infection within a subject

from LTBI to pulmonary TB (PTB) reflects an impairment of

host resistance to M. tuberculosis. This process may be triggered

by acquired immunodeficiency, such as HIV infection or

anti-TNF treatment. However, in subjects without overt immu-

nodeficiency, the pathogenesis of reactivation remains unclear.

As mentioned above, there is strong evidence that the develop-

ment of PTB is influenced by host genetic factors. This genetic

control is also likely to be different from that involved in pri-

mary TB [23,70]. Indeed, the study of genetic susceptibility to

adulthood PTB has proved more difficult than that of suscepti-

bility to severe childhood TB. In particular, no variants of genes

from the IL12/IFN-g circuit have been convincingly associated

with PTB as yet. Current knowledge resulting from attempts to

identify the genetic variants associated with PTB points to

underlying heterogeneity, possibly due, at least in part, to the

long-standing, multistep relationship between M. tuberculosis
and its human host, through the natural history of PTB disease

[71,72]. In particular, it is possible that specific subgroups of

individuals with PTB have certain genetic risk factors, whereas

other subgroups have other genetic risk factors. Such subgroups

could potentially be defined on the basis of individual factors,

such as clinical characteristics, or extrinsic factors, such as

pathogen variability.

The vast majority of studies conducted to date to deter-

mine the molecular basis of PTB susceptibility have been

association studies investigating the role of specific candidate

genes. Most classical genetic association studies investigating

PTB have focused on candidate genes, and a number of

common risk variants have been reported in particular in

immunity-related genes such as those encoding DC-SIGN,

Toll-like receptors 1 and 2, vitamin D receptor, TNF, IL-1b

or some HLA class II molecules [73]. However, there has

been a lack of consistency between most of the reported

results of independent studies [73,74]. One of the most con-

vincing findings was the identification of associated

polymorphisms of the NRAMP1 gene (alias SLC11A1), the

human orthologue of the murine Nramp1 gene [17]. Follow-

ing the initial association reported in a Gambian population

[75], a meta-analysis of a large number of studies showed

that several NRAMP1 polymorphisms were significantly

associated with PTB in African and Asian populations, but

not in populations of European descent [76]. Two studies

also provided evidence of a role for NRAMP1 in early-onset

TB. The first showed significant linkage to the NRAMP1
gene in a large aboriginal Canadian family in which an
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outbreak of TB occurred [77]. In a follow-up study, common

polymorphic alleles of NRAMP1 were shown to be strong

risk factors for TB (OR ¼ 3.13 (1.54–6.25)) in children living

in Texas, mostly of Hispanic and African origin, resulting in

an allelic association acting in the opposite direction to that

observed in adults [78]. These observations are consistent

with the hypothesis that NRAMP1 polymorphisms affect

the speed of progression from infection to TB disease,

accounting for the high frequency of some common alleles

in patients with pediatric disease and the paucity of patients

with the same alleles among TB cases with disease onset

during adulthood. Overall, these studies provide strong sup-

port for a role of NRAMP1 in TB, with an effect that is

heterogeneous across populations, epidemiological settings

and clinical phenotypes. They also highlight the importance

of considering age at TB onset in these analyses. Generally,

in the field of infectious diseases, stronger genetic effects

are more pronounced in early-onset cases than in late-onset

cases [70]. For example, in leprosy the association of genetic

variants with disease has been shown repeatedly to be

highly age-dependent [79,80].

The concept of stronger genetic effects associated with

early-onset disease was further supported by the positional

cloning of the first major locus conferring predisposition to

PTB, which was found to be linked to chromosome region

8q [81]. Refined association mapping of the linked region

identified variants of the TOX gene as strongly associated

(OR ¼ 3.09(1.99–4.78)) with the development of early-onset

PTB (before 25 years of age) in populations from Morocco

and Madagascar [82]. TOX encodes a nuclear factor involved

in the development of T cells [83], particularly the CD4þ T

cells [84,85] critical for immunity to mycobacteria [20]. Con-

versely, GWASs on PTB, considered as a single phenotype,

have met with limited success to date. A first GWAS

performed on a large sample from Gambia and Ghana ident-

ified a single SNP with a weak effect (OR ¼ 1.19 (1.12–1.26))

located in a ‘gene desert’ on chromosome 18 as a risk factor

for PTB [86]. Further imputation of the original Ghanaian

data identified a second locus on chromosome 11p13 as pro-

tective against TB [87]. The main protective SNP allele was

well replicated in the Gambian sample but displayed only

borderline associations in Indonesian patients and in a very

large sample (more than 10 000 subjects) of subjects from

Russia [87]. Another GWAS recently conducted in a South

African population confirmed the protective effect of the

chromosome 11p13 factor but identified no new risk loci of

GW significance [88]. Finally, a GWAS in Asian populations

identified an independent TB risk locus in chromosome

region 20q12, only in patients defined as ‘young cases’

(OR ¼ 1.73 (1.42–2.11)) [89]. Based on the observed age

distribution of this latter study, young cases were defined

as having an onset of TB before the age of 45 years, although

more refined analyses with lower age thresholds showed that

higher deviations of p-values from the null hypothesis were

observed with younger age cut-offs despite the lower

number of cases in each subset [89]. Overall, a striking feature

of these GWASs is the lack of replication of the PTB

susceptibility factors previously detected in candidate gene

analyses [8,73,74]. Overall, the GWAS results suggest that

common variants may have a limited impact on predis-

position to adult PTB, at least when considered as a single

phenotype, and point to underlying heterogeneity, possibly

in phenotype definition.
5. Perspectives
TB was long considered to be purely infectious, but there is

increasing evidence to suggest that this disease also reflects

host genetic vulnerability. However, the precise nature of

the genetic factors involved remains largely unknown. Sev-

eral non-mutually exclusive explanations can account for

the difficulties experienced in identifying the causal variants,

especially in GWASs. Genetic heterogeneity may play a role,

together with a complex mode of inheritance involving

incomplete penetrance and modifier genes [90,91]. Likewise,

the contribution of rare variants to TB pathogenesis is attract-

ing attention for two main reasons: (i) conceptually, rare

variants bridge the gap between Mendelian and complex

inheritance, and may account for the major loci identified

through linkage studies [56,70,92]; (ii) experimentally, these

variants abound in the genome and can now be studied by

whole-exome and whole-genome sequencing [93,94]. How-

ever, the phenotypic heterogeneity of TB-related traits

causes more serious problems. For example, three measure-

ments of immune reactivity are currently used to detect

infection with M. tuberculosis. However, the results of these

tests display limited concordance, and each assay captures

a different aspect of the antimycobacterial response [27].

MSMD probably provides the best example of the critical

interplay between phenotype and genetic control. The syn-

dromic phenotype is MSMD, but the identification of the

underlying genetic defects was greatly facilitated by estab-

lishing endophenotypes (e.g. specific patterns of cytokine

production such as IL-12 and IFN-g [95]), guiding sub-

sequent genetic analysis. Endophenotypes are more closely

related to gene function and are likely to be generally

useful for the dissection of TB phenotypes. In PTB, the

most commonly used phenotype-defining characteristic is

the presence of M. tuberculosis in the sputum of patients,

regardless of the other clinical, microbiological and demo-

graphic covariables. This approach completely ignores the

dynamic nature of pulmonary TB, the likelihood of different

stages of this process being under different genetic controls,

as shown in a mouse model of BCG infection [96], and the

possible impact of the M. tuberculosis strain on LTBI and clini-

cal outcome [97–99]. The need for improvements in the

definition of a more homogeneous and more refined TB phe-

notype for genetic studies is also demonstrated by the strong

impact of age at onset of disease on our ability to detect

genetic effects in clinical TB [78,82].

Traditional genetic approaches will also benefit from a

better understanding of the molecular mechanisms of TB

pathogenesis throughout the infectious cycle. For example,

transcriptomic studies, including the search for loci involved

in the expression of genes and/or microRNAs (expression

quantitative trait loci, eQTL) in cell- or tissue-specific studies

[100], based on RNA-seq in particular [101], are of major

importance. A transcriptomic analysis of peripheral blood

cells identified a neutrophil-driven IFN-a/b-inducible tran-

script signature in individuals with active PTB [102]. This

blood signature was validated in independent studies

[103–105], and was shown to be different from that of several

infectious and pulmonary diseases [102,106], providing new

insights into the most relevant pathways and candidate

biomarkers for investigation in TB [107]. Some eQTLs associ-

ated with variation in gene expression levels in dendritic cells

infected with M. tuberculosis [108] have also provided
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interesting candidate loci that remain to be tested for

association with TB infection phenotypes. It is also possible

that somatic mutations and epigenetic effects have a substan-

tial impact on clinical susceptibility to TB, particularly in

patients with late-onset disease [70]. Epigenetic mechanisms

play a critical role in the immune system [109], and their

investigation, particularly through GW analyses of the

methylome [110,111], should provide new insight into the

genetic basis of infection and clinical TB [112]. These epige-

netic factors may be influenced by environmental and/or

other host factors, such as diet, vitamin status or ageing

[113,114], leading to additional possible gene � environment

interaction effects. One of the main challenges in the next few

years will be the integrated analysis of all these different

sources of genomic information [115,116]. Finally, studies of

various animal models, including zebrafish [90,91], rodents

[15,16,117] and non-human primates [117,118], will be essen-

tial to provide critical information complementary to that

obtained in human studies [7].

In the principal countries in which TB is endemic, disease

control is based largely on passive case identification and

drug treatment. This approach has proved effective for

decreasing case mortality and human suffering, but the

impact of current TB control on global TB trends is less

clear [119–121]. The emergence and spread of extremely

drug resistant strains resistant to the antibiotics currently

available are warning signs that additional approaches will

be required to halt endemic TB [122]. The availability of an

effective vaccine against post-primary TB would provide us

with a useful tool for decreasing TB transmission. Unfortu-

nately, recent vaccine trials have yielded disappointing

results [123,124], possibly reflecting our incomplete under-

standing of intrinsic vulnerability to TB as (i) mice that are

genetically more resistant to M. tuberculosis infection benefit

more from BCG vaccination than their susceptible counter-

parts [125], (ii) antimycobacterial immunity in humans is

highly heritable and, thus, has a strong genetic component

[30–32] and (iii) TB patients are more likely to suffer sub-

sequent episodes of TB than would be expected on the
basis of population incidence, strongly suggesting that TB

patients have a susceptibility that cannot be overcome by con-

ventional vaccination and/or antibiotics [126]. The strong

positive selection of T-cell epitopes by M. tuberculosis across

clinical strains presents an additional hurdle for vaccine

development [127]. Taken together, these experimental data

and observations in natura suggest that any effective TB vac-

cine must take into account the genetic susceptibility of

patients if it is to trigger a protective response. Likewise,

new therapeutic approaches based on the complementation

of a specific immunodeficiency identified by human genetics

should also have a positive complementary impact on the

classical treatment of TB. For example, young patients devel-

oping disseminated TB during primary infection owing to the

impaired production of IFN-g (such as those with IL12RB1
mutations) would benefit from targeted treatment with

recombinant IFN-g [67]. Finally, the recent discovery of

TST1 as a locus with an impact on intrinsic resistance to infec-

tion with M. tuberculosis provides another example for the

usefulness of human genetics in TB control [39]. Once ident-

ified, the molecular mechanisms underlying TST1 might

constitute attractive targets for the prevention of infection

by drug-based or vaccine interventions. The prevention of

infection is the gold standard for stopping the TB endemic

and studies of host genetics are an important weapon in

the war against TB.
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