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Abstract

Previous studies indicate that lying consumes cognitive resources, especially working mem-

ory (WM) resources. Considering the dual functions that WM might play in lying: holding the

truth-related information and turning the truth into lies, the present study examined the rela-

tionship between the information storage and processing in the lie construction. To achieve

that goal, a deception task based on the old/new recognition paradigm was designed, which

could manipulate two levels of WM load (low-load task using 4 items and high-load task

using 6 items) during the deception process. The analyses based on the amplitude of the

contralateral delay activity (CDA), a proved index of the number of representations being

held in WM, showed that the CDA amplitude was lower in the deception process than that in

the truth telling process under the high-load condition. In contrast, under the low-load condi-

tion, no CDA difference was found between the deception and truth telling processes.

Therefore, we deduced that the lie construction and information storage compete for WM

resources; when the available WM resources cannot meet this cognitive demand, the WM

resources occupied by the information storage would be consumed by the lie construction.

Introduction

Deception is an intentional attempt to make the receiver believe something that the sender

knows is untrue [1–4]. Extensive studies have established that when individuals are trying to

conceal a truth, they need to decide how to respond, lying or being honest, to the information

contained in a communicative interaction. And this judgment is made based on the truth-

related information retrieved from memory [4–7]. If the decision is to deceive, individuals

should construct lies based on the truth-related information before they respond [8]. Whereas,

if individuals decide to tell the truth, they do not need this construction process, and can give

the truthful responses. Thus, researchers have proposed that the deception process demands

more attention and memory resources than truth telling [9–12]

The development of technology has boosted deception studies using the techniques of

electroencephalogram (EEG), event-related potentials (ERP), and Functional magnetic
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resonance imaging (fMRI), etc. In the ERP-based deception studies, P3 component is com-

monly used as an index to reveal the influence of the cognitive process during the deception.

The P3 is considered to be a maximal positive-going potential in a time range between 250 and

500 ms after the stimulus onset, and is thought to reflect the processes involved in attention

allocation and memory updating [13–15]. It has been found that the effect of deception on the

P3 amplitude is different when the studies use different tasks. When the tasks involve the stim-

ulus significance and attention orientation to the truth-related information, such as the guilty

knowledge test (GKT), the amplitude of the P3 signal significantly increases by the probe stim-

ulus with the concealed information [16,17]. However, the P3 amplitude decreases when the

tasks involves the information processing during the deception [18–22]. In these studies, using

an old/new recognition task or the differentiation of deception paradigm, participants need to

give appropriate responses according to the instruction. Thus, they have to turn the truth

stored in the memory into lies. It makes lying more cognitive demanding than truth telling,

and this high workload during the deception process is assumed to suppress the P3 amplitude.

Considering that these ERP studies involve both the information storage and processing in the

working memory(WM), these results indicate that WM is heavily involved in the deception

process. Moreover, fMRI studies also reveal that deception-related brain regions are associated

with WM [23–25]. Christ’s group utilized an activation likelihood estimate (ALE) method of

meta-analysis and identified the relationship between deception and each part of executive

control system [23]. They compared the deception ALE map with the ALE maps of WM,

inhibitory control, and task switching; and found that some brain areas which were activated

during the deception were implicated to a greater degree in WM than in inhibitory control

and task switching. These brain areas included the right prefrontal cortex, inferior parietal cor-

tex, and the junction of the left middle frontal and precentral gyri. Thus, they proposed that

WM played an integral role in the deception.

WM is believed to be a system for the “simultaneous processing and storage of information”

[26,27]. By this definition, we can infer that WM has the dual functions in the deception pro-

cess: holding the information of truth and turning the truth into lies. Moreover, it has been

also clear that the WM is limited in capacity [28]. Thus, it is interesting to know how WM

resources are assigned to the information storage and processing during the deception process.

For example, when there is a large amount of information to remember, the information stor-

age demands a lot of WM resources, and the WM is not sufficient for the information process-

ing in deception. Under this circumstance, would the performance of deception be impaired

due to the lack of WM resources, or be ensured by taking up the WM resources demanded by

information storage? In addition, according to the Activation-Decision-Construction-Action

Theory (ADCAT) of deception, deception can be regarded as a top-down process involving

four components: activation, decision, construction and action [4,7]. Individuals encode the

context of a communicative interaction and activate relevant information from long-term

memory in the activation component. In the decision component, according to the retrieval

information and the liar’s goals, the individuals decide whether to lie. In the construction com-

ponent, a lie is constructed on the basis of the truth-related information. Finally, in the action

component, liars will deliver the prepared lies to the receiver(s). This theory reveals that the

information storage is continuous during the deception, while the information would be trans-

formed into lies in the construction component. According to the ADCAT, the current study

focuses on the construction component of deception and aims to figure out the relationship

between the information storage and processing.

Moreover, due to the fact that the P3 amplitude is related to both the attention allocation

and task load [14,29], previous studies based on P3 component shed little light on the relation-

ship between lying and WM. To solve this problem, a new index for WM capacity, the
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amplitude of the Contralateral Delay Activity (CDA), is introduced [30–33]. In a visual WM

task, participants are presented with a bilateral array of items, and are instructed to remember

items in one hemifield. After a retention interval, the memory is tested with a test array. After

recording the ERPs while participants performed this task, CDA can be constructed by sub-

tracting the ipsilateral activity from the contralateral activity. Researchers find that the CDA

amplitude is directly modulated by the number of items in memory, and can be used as an effi-

cient index for the maintenance of information in memory. Whereas, few research has exam-

ined the relationship between the WM and deception based on CDA data.

In addition, in the response period of many previous deception studies, participants are

instructed to recognize the stimulus, and then decide how to respond to this stimulus. Consid-

ering that deception components are combined with many potential cognitive processes, such

as transforming the truth, analyzing the social context, and inhibiting physiological responses

[7], the previous ERP results may involve various cognitive processes due to the complex task

design. According to the ADCAT, truth-related information is used to make up lies in con-

struction component, which imposes greater cognitive load than truth telling [4,7], and we

assume that the construction component is predominantly associated with the WM. There-

fore, in this study, we used the CDA as the index to examine the relationship between the WM

and the deception construction.

The task in this study was designed based on the old/new recognition paradigm in the

visual WM research, and the memory tasks in the deception research [18,34–38]. To avoid the

interference of the complex cognitive processes, this study employed a simple memory task.

The cue of deception was located at the beginning of each trial, and the participants could

know how to respond (deception or truth telling) before the question period. Thus, the test

period could be mainly associated with the construction component of deception. In addition,

the CDA amplitude was used as the index in this study to exclude the potential interference of

other cognitive processes. We assumed that when the participants tried to give a deception

response to the question presented, they would suffer a high WM load resulting from the lie

construction process. This high WM load might impair the ability to store enough information

in WM, and lead to a low CDA amplitude. Thus, we predicted that the response process,

deception or truth telling, would modulate the CDA amplitude during the memory test.

Methods

Ethical statement

Participants in this experiment signed written informed consent according to the 1964 Decla-

ration of Helsinki at the beginning of the experiment. All procedures were approved and per-

formed in accordance with the guidelines and regulations of the Ethics Committee of Zhejiang

University.

Participants

There are 22 volunteers participated in this experiment (mean age 22 years, s.d. 1.77, 11

females). All these participants had no history of psychiatric or neurological illness, and had

normal or corrected to normal vision.

Procedure

Participants were seated at a distance of 70 cm from a 17-inch monitor in a sound-attenuated

room. The stimulus bank (Fig 1A) comprised eight shapes. All of the stimuli were presented in

black against a grey background. Each trial began with the onset of a centrally displayed
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fixation for 200 ms (Fig 1B). Next, a colored arrow pointing to either the left or right visual

hemifield was presented at the center of the screen for 300 ms. Participants were instructed

that they should give a deceptive response to the following test period if they saw a red arrow,

or give an honest response if they saw a green arrow. This rule was counterbalanced across par-

ticipants. After a variable delay, which ranged from 400–600 ms, participants were presented

with a brief bilateral memory array of the stimuli chosen from the stimulus bank for 500 ms.

Participants were instructed to keep their eyes fixated while remembering the items in the

cued hemifield. The memory array consisted of 4 or 6 different items in the 2×3 grids pre-

sented in each hemifield. Then a 500 ms centrally displayed fixation was inserted and was

followed by a test array. In the test period, there was one item appeared in each hemifield. Par-

ticipants needed to report whether the item in the cued hemifield had been displayed in the

memory array, with accuracy rather than response speed being stressed. Participants should

respond “yes/no” with the “F” or “J” button. Then there was a 2000 ms blank interval before

the next trial. The task consisted of both low- and high-load trials. There were 240 trials under

each load condition with a total 480 trials which was presented pseudo-randomly. Before the

formal task, there were at least 15 trials for practice to ensure that the participants understood

the instructions.

EEG recording and data analysis

EEG signal was recorded using a 64-channel Quick-scalp with silver chloride electrodes (Neu-

rosoft, Inc. Sterling, USA) and analyzed by a NeuroScan system, Electrodes were located

according to the international 10–20 system with a left-mastoid reference. Signal was band-

pass filtered from 0.05 to 100 Hz, and sampled at 1000 Hz. Electrode impedances were kept

below 10 kO. Vertical electrooculogram (VEOG) and horizontal electrooculogram (HEOG)

were recorded with two pairs of electrodes, one pair placed above and below the left eye, and

another pair placed beside the two eyes. The EEG was referenced offline to the average signal

of electrodes on the left and right mastoid. Trials with the amplitude of HEOG exceeding

±50 μV was further removed. The continuous EEG data were segmented into epochs from

200ms before to 2000ms after the memory array onset for all conditions. The 200ms pre-stim-

ulus served as the baseline. The EEG was detrended, and the baseline was corrected. Epochs

exceeding the range of −100~100 μV at any channel except HEOG and VEOG were rejected as

artifacts. The contralateral waveforms were computed by averaging the activity recorded at

right hemisphere electrode sites when subjects were cued to remember the left side of the

Fig 1. Experimental procedure used in the current study. A) Eight shapes in the stimulus bank. B) The

sequence of events in both low-load and high-load trial: in this low-load task, the participants should lie to the

stimulus in the left hemifield; in this high-load task, the participants should be honest to the stimulus in the right

hemifield.

https://doi.org/10.1371/journal.pone.0181007.g001
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memory array, with the activity recorded from the right hemisphere electrode sites when they

were cued to remember the left side. According to Christ’s research [23], five pairs of electrode

sites (F3/F4, FC3/FC4, C3/C4, CP3/CP4, P3/P4) were chosen for the CDA analysis. The CDA

was measured by subtracting the ipsilateral activity from the contralateral activity. The aver-

aged CDA waveforms were smoothed by applying a low-pass filter of 30 Hz (zero-phase, 24

dB/octave).

Within each condition, gender differences were compared on all RT and accuracy measures

using independent samples t-tests. In no case were significant differences found. Conse-

quently, data were collapsed across gender in subsequent analyses. The behavioral data were

analyzed by a repeated measures ANOVA with the task load (4 or 6 items to remember) and

response type (deception or truth telling) as two within-subject factors. And the individual’s

visual WM capacity was computed using a formula “K = S×(H-F)”[39,40], where K is the num-

ber of items stored, S is the number of items in the memory array, H is the hit rate, and F is the

false alarm rate. Only the trials with correct responses were used in the ERP analysis. The aver-

aged amplitude of a measurement window of 1200–2000 ms after the onset of the memory

array, namely a time window of 200–1000 ms after the onset of the test array, was taken for

analysis. And a repeated measures ANOVA was conducted for the CDA amplitude, with the

task load, response type and electrode as within-subject factors. In addition, a Bonferroni post-

hoc analysis was conducted, if necessary.

Results

Behavioral data

The behavioral results of RT and accuracy were shown in Fig 2. The 2 (memory load) × 2

(response type) repeat measures ANOVA on accuracy found significant main effects for both

the task load (F(1, 21) = 54.26, p< 0.01, partial η2 = 0.72) and response type (F(1, 21) = 22.07,

p< 0.01, partial η2 = 0.51). Accuracy was lower in the high memory load than the low memory

load, and was also lower under the deception condition than the truth telling condition. There

was no interaction between memory load and response type. A parallel 2 (memory load) ×2

(response type) repeat measures ANOVA on RT showed similar main effects for the task load

(F(1, 21) = 8.95, p< 0.01, partial η2 = 0.30) and response type (F(1, 21) = 13.79, p< 0.01, partial
η2 = 0.40). RTs were longer in the high memory load than in the low memory load, and were

longer under the deception condition than under the truth telling condition. There was no

interaction between memory load and response type. The results of the WM capacity compu-

tation were shown in Table 1. And the 2 × 2 repeat measures ANOVA revealed the main effects

Fig 2. Task performance in this study. Error bar shows one standard error of the mean. **: p < .01; *: p <
.05.

https://doi.org/10.1371/journal.pone.0181007.g002
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for the task load (F(1, 21) = 234.94, p< 0.01, partial η2 = 0.92) and response type (F(1, 21) =

36.12, p< 0.01, partial η2 = 0.63).

ERP data

The ERP results were shown in Fig 3. The 2 (memory load) ×2 (response type) × 5 (electrode)

repeat measures ANOVA revealed main effects of response type (F(1, 21) = 27.80, p< 0.001,

partial η2 = 0.57), memory load (F(1, 21) = 10.68, p< 0.001, partial η2 = 0.91), and electrode

(F(4, 84) = 3.97, p = 0.005, partial η2 = 0.16). There was a significant interaction between

response type and memory load (F(1, 21) = 7.91, p = 0.010, partial η2 = 0.27) (Fig 4). Post-hoc

analysis showed that the CDA amplitude in the high memory load was significantly higher

than that in the low memory load under both the deception and truth telling conditions (p<
0.001). Whereas, the CDA amplitude was lower under the deception condition than under the

truth telling condition in the high memory load (p< 0.001).

Discussion

This study was designed to figure out the relationship between the information storage and

processing in the construction component of deception, using CDA analysis. Consistent with

the previous findings [33,41–43], we found that the CDA amplitude was significantly higher

under high-load condition than under low-load condition. Moreover, a significant difference

in the CDA amplitude was also found between deception and truth telling in the high-load

tasks, while the low-load tasks did not show such difference. Further analysis found that the

CDA amplitude was significantly suppressed by deception process in the high-load task.

The current study extended previous studies in at least three aspects. Firstly, to our best

knowledge, this is the first deception study based on CDA, instead of P3 amplitude. Consider-

ing that P3 is associated with both the attention allocation and WM in the task [14,29], the

CDA amplitude analysis could be directly modulated by the amount of information stored in

memory, and exclude the potential interference of other cognitive processes. The results

obtained in this study offer more convincing evidence for the thesis that WM is associated

Table 1. The results of the WM capacity computation.

WM load response type WM capacity

means(SD) 95% CI

low deception 3.41(0.15) 3.34–3.47

truth telling 3.65(0.13) 3.59–3.71

high deception 4.10(0.32) 3.96–4.25

truth telling 4.39(0.21) 4.29–4.48

https://doi.org/10.1371/journal.pone.0181007.t001

Fig 3. The mean CDA (Contralateral minus Ipsilateral) results for the task conditions. Since the result

patterns were similar across the analyzed five electrode pairs, so the figure showed the results on the Fz as

the representative. The arrow shows the time when the test array presented, and the time window of average

CDA amplitude is also marked.

https://doi.org/10.1371/journal.pone.0181007.g003
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with the deception. Secondly, we manipulated two levels of WM load (4items for low-load

task, and 6items for high-load task) during the deception process, by adopting the old/new rec-

ognition paradigm. The study could examine the difference in cognitive demand of deception

between high-load and low-load conditions. Thus, it directly examined how the information

storage and processing influenced WM allocation in the lie construction. Thirdly, in most

deception research, participants should make a decision (to lie or not) and respond to the sti-

muli during the same test period. But in this study, participants knew whether to lie when they

recognized the colored arrow, well before the presentation of the question. According to the

ADCAT, we assured that the test period was mainly associated with the construction compo-

nent. Thus, the results of the test period in this study mainly reflected the construction compo-

nent of deception.

Because CDA amplitude could be used as an efficient index for the amount of information

stored in memory, the change of the CDA amplitude between deception and truth telling

could reveal the change of information storage during the lie construction in this study. The

high-load (6-item) task showed a higher CDA amplitude than the low-load (4-item) task. This

was consistent with the results of the WM capacity computation in the behavioral data analy-

sis, and supported the claim that participants had the ability to keep more information in the

WM when they had to remember more items during the high-load task [44,45]. The CDA

amplitudes showed no significant difference between deception and truth telling in the low-

load task, because the participants needed to remember 4 items both under these two condi-

tions. Whereas, according to the behavioral data analysis, the computed WM capacity was sig-

nificantly lower when the participants lied than told truth in the low-load task. We assumed

that the behavioral performance was affected by many cognitive processes, such as recognition,

attention, memory, inhibition. The low behavioral performance in deception tasks was due to

the potential influence of the cognitive processes mentioned above. And many of these pro-

cesses were excluded from the CDA analysis when we subtracted the ERP signals. The CDA

amplitude remained stable in both the deception and truth telling response processes when

task load was low, which revealed that the CDA amplitude was a better index for the WM

capacity than the behavioral data, and the amount of information stored in WM was compara-

ble when participants lied or told truth in the low-load tasks. Moreover, in the high-load tasks,

we found that the CDA amplitude significantly decreased when participants lied, which was

consistent with the results of the behavioral data analysis. This result showed that participants

could keep more information in the WM when they gave honest response than when they

deceived in high-load tasks. Previous studies revealed that participants needed to make up lies

Fig 4. The interaction between the response type and memory load in the CDA analysis. Error bar

shows one standard error of the mean.

https://doi.org/10.1371/journal.pone.0181007.g004
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based on the truth-related information in the WM when they tried to lie[7,8], so that this con-

struction process consumed the WM resources. Considering the limitation of the WM capac-

ity, we assumed that the WM was insufficient for both the information maintenance and lie

construction during the deception in the high-load tasks. Thus, the WM resources used to

maintain information was consumed by the lie construction when participants lied in high

workload, and participants could not store as much information in the WM as they did in the

honesty tasks. As a result, the CDA amplitude decreased when participants lied in the high-

load tasks. In contrast, in the low-load tasks, less information needed to be stored in WM, and

thus more WM resources could be used for the following deception. The information storage

was not affected by the information processing in the test period in the low-load task, and this

was why the CDA amplitude showed no significant decrease when participants deceiving,

compared with the truth telling.

The CDA results obtained in this study could better indicate that lie construction consumed

WM resources, and the information storage and processing competed for the limited WM

resources in the construction component. When only a few information was retrieved and

maintained in WM for the incoming deception, the WM resources were sufficient for both

information storage and processing during the lie construction. But if a large amount of in-

formation needed to be stored in WM for deception, WM might be insufficient for the lie

construction. In this situation, when participants tried to give a deception response, lie con-

struction would compete for extra WM resources and thus occupy the WM resources that

information storage would have consumed. Thus, the information storage in the WM would

be impaired by the lie construction during the deception process.

Conclusion

In summary, this study manipulated the memory load during the deception task, and used the

CDA amplitude as an efficient index to examine the relationship between WM and deception.

This study found that the lie construction decreased the amount of information maintained in

WM when participants lied in a high-load task, and it provided a directly evidence that sup-

ported the claim that WM participated in the deception process. Furthermore, the results

revealed that WM played a role in the construction component of deception, which refined

the previous claim. It could be assumed that the information storage and processing competed

for the limited WM resources during the deception process. If there was too much information

to store, the lie construction will occupy the WM resources demanded by the information stor-

age, as the result of WM resource shortage, and the amount of information stored in WM

decreased. But how cognitive system assigns WM resources to the information storage and

processing during the lie construction still remains unclear. And we cannot examine the rela-

tionship between the WM and other deception components. In addition, because the CDA

amplitude directly tracks the amount of stored information in the WM, it may play an impor-

tant role in the deception researches. Considering the difference between the results of the

CDA analysis and the capacity computation in behavioral data, we realize that an independent

and efficient method is necessary to test individual’s total WM capacity, and this may make

the results of the future study more reliable. It will be expectant that future studies will look

into the deception, and focus on the cognitive process of each deception component. This may

help us understand the inner cognitive mechanism of deception.
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