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Abstract

Modeling of interstitial fluid flow involves processes such as fluid diffusion, convective transport in extracellular matrix, and
extravasation from blood vessels. To date, majority of microvascular flow modeling has been done at different levels and
scales mostly on simple tumor shapes with their capillaries. However, with our proposed numerical model, more complex
and realistic tumor shapes and capillary networks can be studied. Both blood flow through a capillary network, which is
induced by a solid tumor, and fluid flow in tumor’s surrounding tissue are formulated. First, governing equations of
angiogenesis are implemented to specify the different domains for the network and interstitium. Then, governing equations
for flow modeling are introduced for different domains. The conservation laws for mass and momentum (including
continuity equation, Darcy’s law for tissue, and simplified Navier–Stokes equation for blood flow through capillaries) are
used for simulating interstitial and intravascular flows and Starling’s law is used for closing this system of equations and
coupling the intravascular and extravascular flows. This is the first study of flow modeling in solid tumors to naturalistically
couple intravascular and extravascular flow through a network. This network is generated by sprouting angiogenesis and
consisting of one parent vessel connected to the network while taking into account the non-continuous behavior of blood,
adaptability of capillary diameter to hemodynamics and metabolic stimuli, non-Newtonian blood flow, and phase
separation of blood flow in capillary bifurcation. The incorporation of the outlined components beyond the previous
models provides a more realistic prediction of interstitial fluid flow pattern in solid tumors and surrounding tissues. Results
predict higher interstitial pressure, almost two times, for realistic model compared to the simplified model.
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Introduction

Although heart and cardiovascular diseases were the primary

causes of death for several decades, more than 12 million new

cancer cases were reported around the world in 2011, making it

the new leading cause of death. More than 85% of cancer

incidents involve solid tumors. The condition of the disease

aggravates or the treatment process becomes inefficient as the drug

delivery to the present solid tumors is usually incomplete. In fact,

the main barrier to successful drug delivery to solid tumors is their

abnormal and complicated vasculature [1]. The high interstitial

pressure and low intravascular pressure near the tumor affect drug

transport, causing slow flow through the tissue and low filtration of

drugs from vessels. Therefore, better understanding of tumor

formation is crucial in developing more effective therapeutics [2].

For this purpose, nowadays, solid tumor modeling and simulation

results are used to predict how therapeutic drugs are transported

to tumor cells by blood flow through capillaries and tissues. This

facilitates identifying better methods for delivering targeted

anticancer therapies [3,4].

Solid tumor growth can be characterized in two different

phases: avascular and vascular. Relying only on diffusion from

nearby vessels to supply oxygen and nutrients, the first phase

usually continues until a tumor reaches the diameter of a few

millimeters [5]. To grow further, a solid tumor needs its own blood

supply system, in the form of, and supplied by, a capillary network,

which is deemed as the emergent of second phase. Both of these

are complicated processes which take place in a wide range of

spatial and temporal scales. This multi-scale nature of tumor

formation makes the governing equations involved in the

mathematical modeling highly complex to solve. Multi-scale

modeling involves: the convection and diffusion of fluid flow in

normal and tumor tissues at the largest scale, blood flow

distribution through a network generated by tumor-induced

angiogenesis at the middle scale, and blood flow convection in

capillaries by considering non-continuous behavior of blood and

adaption of capillary diameter at the smallest scale (Figure 1).

Modeling of diffusion and convection of fluid flow is common in

solid tumor tissue while considering the domain to be a porous

medium with a uniform source and sink of blood flow.

Maintaining this consideration, Jain et al. [6–8] used a model of

a spherical tumor that had continuously distributed vasculature in

the presence of the lymphatic system. The main assumption used

to calculate pressure distribution in their model is that the net flow
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into the interstitial space from the vasculature is balanced by the

efflux to the lymphatic system through Starling’s law.

In the model proposed by Netti et al. [9], tumor vasculature was

treated as an equivalent permeable vessel embedded in a uniform-

pressure medium. Simulations were used to examine the effects of

vessel leakiness and compliance, as well as the interstitial fluid

pressure. Soltani et al. [2] developed a mathematical model of

interstitial fluid flow using a numerical element-based finite

volume method for modeling the continuity equation in the

porous media of spherical tumors. They introduced two new

parameters: the critical tumor radius and critical necrotic radius.

They also applied their model to different geometries of tumors to

study the effects of tumor shape and size in drug delivery [10].

None of these earlier works considered the effects of the tumor-

induced network generated by tumor angiogenesis on fluid flow in

normal and tumor tissues. In these works, in order to have

reasonable results comparable to or verifiable by experimental

data, a reasonable constant estimation with uniform distribution is

made for intravascular pressure.

Stephanou et al. [11] have examined flow modeling in a tumor-

induced capillary network. They used continuous and discrete

mathematical models of angiogenesis, described by Anderson and

Chaplain [12], for generating a capillary network. The continuous

model uses differential equations and is based on the mass

conservation equation and chemical kinetics [12]. The discrete

method of angiogenesis modeling uses a similar set of equations as

that of the continuous model but with different interpretation of

the coefficients, movement probabilities [12]. This method is

capable of modeling the growth and motility of endothelial cells.

Thus Stephanou et al. [11] performed a Newtonian fluid flow

simulation through 2D and 3D rigid capillary networks in order to

investigate chemotherapy treatment efficiency. Wu et al. [13]

presented a numerical model that combines intravascular,

transvascular, and interstitial fluid movements in 3D capillary

networks originating from tumor-induced angiogenesis. The

mentioned models do not take into account the non-Newtonian

rheological nature of blood in capillaries or remodeling of

microvessels in tumor-induced networks.

Blood is a complex fluid and blood flow study in different sizes

of vessels shows that blood has non-Newtonian behavior [14,15]

and has interactions with vessel’s wall even in large vessels [16].

Small size of capillaries compared to the size of red blood cells

causes a non-continuous blood flow. The non-continuous behavior

of blood includes variation of blood viscosity with tube diameter

and hematocrit – the fraction of the total volume of blood

occupied by red blood cells – and an unequal fraction of

hematocrit between the branches of capillary bifurcation. The

capillaries adapt their diameter based on signals received from

hemodynamic stimuli such as wall shear stress, pressure, and

metabolic processes. The non-continuous behavior of blood in

capillaries and structural adaptation of the vasculature has also

been incorporated into models including capillary networks [17–

19]. Owen et al [17] developed a multi-scale model of vascular

tumor growth linking vascular adaptation, blood flow, oxygen, and

growth factor transport at the tissue scale to the subcellular and

cellular dynamics of normal and cancerous cells. In their most

recent study [20], they extended the work to a 3D model.

Figure 1. Schematic of different scales of simulated solid tumor growth.
doi:10.1371/journal.pone.0067025.g001
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Stephanou et al. [18] modeled an adaptive network associated

with tumor-induced angiogenesis and considered the effect of

phase separation of blood flow in bifurcation and non-Newtonian

behavior of blood. They investigated the effects of this remodeling

on drug delivery to tumor cells. McDougall et al. [19] introduced

several improvements in a model presented in [18], by examining

the flow of a non-Newtonian fluid in a dynamic adaptive network.

They developed a mathematical model that simultaneously

combines vessel growth with blood flow through a capillary. In

the mentioned works, only intravascular blood flow was studied

and for the sake of simplicity the intravascular flow was considered

to be independent from the interstitial flow surrounding the

capillaries.

Wu et al. [21] developed a mathematical model of tumor

microcirculation, which coupled microvasculature and interstitial

space perfusion, and combined intravascular and interstitial flow

by vascular permeability. In their work, only the vessels located

inside the tumor region were considered to adapt their diameter

based on the compliance method presented by Netti et al. [9]. In

the adaptation method used by Wu et al. [21], the effects of

hemodynamic and metabolic stimuli were not considered, and

their compliance method was implemented only in vessels inside

the tumor tissue; normal tissue vessels were assumed to have a

constant diameter.

In spite of the valuable body of work performed in simulation of

fluid flow in normal and tumor tissues, previous studies have not

examined the interaction of interstitial flow through tissue and

intravascular flow through adaptive capillary network. To address

this shortcoming, this work introduces a mathematical model that

simultaneously couples interstitial fluid flow with convective non-

continuous blood flow through vessels by considering a remodeling

network based on hemodynamic and metabolic stimuli. The other

significance of presented method is calculating intravascular

pressure distribution and values in tumor and normal tissues

instead of assuming constant pressure.

This paper describes a non-continuous blood flow model

through a capillary network induced by a tumor combined with

interstitial flow in normal and tumor tissues in 2D, taking into

account the extravasation flux of fluid across the vasculature. First,

the governing equations of angiogenesis are implemented to

specify a capillary network in the interstitial domain. A discrete

method initially presented by Anderson and Chaplain [12] is used

to create the vascular network in both normal and cancerous

tissues. The governing equations are then introduced for blood

flow through the capillary network and fluid flow in interstitium.

Finally, the effect of the capillary network on interstitial fluid flow

is investigated, considering three approaches for simulating blood

flow in the network; 1) the governing equation for interstitium is

solved without considering capillary network, as in [2,8,10]; 2)

similar to the approach used in [11,13], the tumor-induced

network is presumed to have rigid capillaries, and blood flow is

calculated in the network by mass conservation at each junction; 3)

the capillaries are assumed to adapt their diameter in response to

signals received from metabolic and hemodynamic stimuli. The

remodeling method presented by Pries et al. [22] is used for

formulating capillary adaptation. For this reason, phase separa-

tion, based on the method presented by Fung, is involved in the

third approach [23] and also non-Newtonian behavior of blood,

based on the formula presented by Pries et al. [24], is implement-

ed. Results show that fluid flow modeling in normal and tumor

tissues with a vascular network added by non-continuous behavior

of blood and adaptability of capillary predicts higher pressure

levels compared to previous work on interstitial flow [2]. Also

intravascular pressure distributions show that considering uniform

distribution for pressure is not a reasonable assumption as may

result in totally different values for intravascular pressure.

Mathematical Model of Angiogenesis

The mathematical model used for generation of the network is

based on the work of Anderson and co-workers [12]. To generate

the networks, two initial conditions for the number of endothelial

cells in the parent vessel are considered: 5 endothelial cells and 10

endothelial cells. Results of capillary network formation are shown

in Figures (2) and (3). These networks are used for further studies

in the next section.

Flow Simulation in Capillary Networks
The analysis of blood flow in capillary networks is generally the

same as the analysis of other networks, but with a few significant

differences. These differences are due to the permeability of

vessels, changeable diameters of vessels, non-continuous behavior

of blood in micro-scale vessels, and the porous nature of the

medium surrounding the vessels. In this section, the governing

equations for a network and porous media are presented. Then the

models used for the non-continuous behavior of blood and vessel

adaptation are introduced.

A network of blood vessels and electrical resistors are very

similar. Pressure and electrical potential play the same role in this

analogy. Volume flow rate and electrical current have similar roles

as well. Wong et al [14,15] used this analogy for mathematical

modeling of coronary arteries with atherosclerosis and provided a

simple, elegant, non-invasive, and optimum method in terms of

computational cost to predict flow properties for geometrically

complex pathology at micro-scale levels. By assuming that the

rheological parameters are known, the numerical method – a

linear analysis – is utilized in calculating the flow rate in each

element and pressure value at each node. The flow rate in each

vessel is calculated by applying mass (or volumetric flow rate)

conservation law at each junction of the network. The equation

representing the volumetric flow rate for an interconnecting point

like c (Figure 4) in the network can be written as

PN
k~1

Qk
c bk~0 ð1Þ

where the index k refers to adjacent nodes and N is the number of

adjacent nodes. In 2D simulation for a fully connected network, N

is 4, and bk is a positive integer ‘19 or ‘09, which describes whether

nodes c and k are connected (bk = 1) or not connected (bk = 0).

Qk
c is the net flow rate for each capillary and includes the flow

through the capillary and transvascular flow from each capillary.

As shown in Figure (5), Qout is net flow rate and related to Qc, and

Qin is inlet flow and related to Poiseuille flow, Qb. By

implementing mass conservation law to an element of a vessel,

we have

dQk
c ~dQk

b,c{dQk
t,c ð2Þ

where

Qk
b,c is the blood flow through each capillary, and

Qk
t,c is the transvascular flow (the extravasation fluid flux from

the vessels).

Based on Equation (1), when the calculated value of the flow

rate is positive, the flow comes into the node and when it is

negative, the flow goes out of the node.

Capillary Network Flow in Tumor Microvasculature
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The transvascular flow rate is calculated by Starling’s law,

which represents the role of hydrostatic and oncotic pressures in

the movement of fluid across capillary membranes. Starling’s law

[23,25] is calculated by.

Qk
t,c~pDL Lp Pb{Pi{ss pb{pið Þð Þ ð3Þ

where

Pi is the interstitial pressure,

Pb is the intravascular pressure,

pb is the osmotic pressure of the plasma,

pi is the osmotic pressure of the interstitial fluid,

Lp is the hydraulic conductivity of the vessel wall,

ss is the average osmotic reflection coefficient for the plasma

proteins.

D is the vessel diameter, and

L is the vessel length.

By substituting Equation (3) into Equation (2), the differential

equation is obtained as follows

dQk
c ~dQk

b,c{pDLP Pb{Pi{ss pb{pið Þð ÞdL ð4Þ

The solution of the differential equation is mentioned by

Pozrikidis in [4]. For sake of simplicity, Pozrikidis considered that

the Pi is constant for decoupling it from the interstitial flow and

solving it in isolation. Also he assumed that the vessel diameter is

Figure 2. The results of discrete sprouting angiogenesis. Five initial sprouts move toward the tumor on the right of the domain.
doi:10.1371/journal.pone.0067025.g002
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constant during the simulation. The solution leads to an integral

equation. In our work, the interstitial pressure and vessel diameter

changes are considered. For simplicity, we considered the average

of Pb and Pi in Starling’s Law for each segment. Therefore,

integrating both sides of the Equation (4) results in

ð
dQk

c ~

ð
dQk

b,c{

ð
pDLP Pb{Pi{ss pb{pið Þ

� �
dL ð5Þ

Qk
c ~Qk

b,c{pDLPL Pb{Pi{ss pb{pið Þ
� �

ð6Þ

where

Pb is the average blood pressure in vessels, calculated by

Pc
bzPk

b

2
, and

Pi is the average interstitial fluid pressure outside of the vascular

element, calculated by
Pc

i zPk
i

2
.

Figure 3. The results of discrete sprouting angiogenesis. Ten initial sprouts move toward the tumor on the right of the domain.
doi:10.1371/journal.pone.0067025.g003
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Blood flow in capillary tubes has low Reynolds number, much

less than 1. For such a low Reynolds number, Poiseuille’s law can

be applied. Poiseuille’s experiment shows the relationship between

the flow rate Qk
b,c and the driving pressure DP in a tube of

diameter D and length L. Theoretical analysis leads to the

following equation:

Qk
b,c~

p

128

DPbD4

Lm
ð7Þ

where

DPb is calculated by Pc
b{Pk

b , and Pc
b and Pk

b are corresponding

blood pressures at each node.

By substituting Equation (7) into Equation (6):

Qk
c ~

p

128

DPbD4

Lm
{pDLPL Pb{Pi{ss pb{pið Þ

� �
ð8Þ

Calculation of transvascular flow rate depends on intravascular

pressure in capillaries and interstitial pressure in normal and

tumor tissues. The intravascular pressure is found by solving the

mass conservation equation in the network by applying Poiseuille’s

equation for flow in capillaries as mentioned. The interstitial

pressure for peripheral tissue of a vascular network is found by

solving the governing equation for fluid flow through a porous

medium. In fact, Equation (3) couples blood flow in the network

and fluid transport in the tissue around the network.

Normal and tumor tissues have properties like those of a porous

medium. One of the earliest formulations for flow transport in

porous media is Darcy’s law. Darcy’s empirical observations show

that the fluid velocity in porous media is proportional to the

pressure gradient; therefore, fluid transport in the porous media

can be described by the following equation [7,23]:

Vi~{K+Pi ð9Þ

where

Pi is the interstitial pressure,

K is the hydraulic conductivity of the interstitium,

Vi is the interstitial fluid velocity.

The mass balance equation for a steady state incompressible

fluid shows that the divergence of the velocity is zero, or

mathematically,

+:Vi~0 ð10Þ

This equation is acceptable for porous media when there is no

fluid source or sink in the medium, but biological tissues have

sources and sinks. For instance, between the interstitial space and

the blood or lymph vessels, fluid is exchanged; therefore, the

steady state incompressible form of the continuity equation must

be modified as in [2]

+:Vi~wb{wL ð11Þ

where

wb is the rate of fluid flow per unit volume from blood vessels

into the interstitial space, and.

wL is the rate of fluid flow per unit volume from the interstitial

space into lymph vessels.

It should be noted that Equation (11) in its general form is

applicable to any kind of biological tissue, whether normal or

cancerous. In this simulation, the value for lymph vessels is

neglected. The blood vessel terms (or fluid source terms) can be

evaluated through Starling’s law as follows:

wb~
LPS

V
Pb{Pi{ss pb{pið Þ
� �

ð12Þ

where
S

V
is the surface area per unit volume of tissue for transport

in the interstitium. Other terms in Equation (12) were introduced

previously in this section.

The mass conservation equation is obtained for normal and

tumor tissues with a capillary network by adding a source term for

mass flow to the right-hand side of the continuity equation

wherever there is a capillary; otherwise, the right-hand side of the

continuity equation is simply zero, or mathematically

+:Vi~

LPS

V
Pb{Pi{ss pb{pið Þ
� �

for existence of blood source

0 otherwise

8<
:

ð13Þ

Figure 4. Schematic representation of blood flux at each
vascular node.
doi:10.1371/journal.pone.0067025.g004

Figure 5. Schematic representation of blood flux through
capillary or transformation from capillary and related param-
eters.
doi:10.1371/journal.pone.0067025.g005
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Combination of the continuity equation and Darcy’s law results

in

{+:K+Pi~

LPS

V
Pb{Pi{ss pb{pið Þ
� �

for existence of blood source

0 otherwise

8<
:

ð14Þ

when hydraulic conductivity, K, is constant:

{+2Pi~

LPS

KV
Pb{Pi{ss pb{pið Þ
� �

for existence of blood source

0 otherwise

8<
:

ð15Þ

Applying the appropriate boundary conditions and also using all

the constants mentioned in Table (1), the governing equation,

Equation (15), can be used to calculate interstitial fluid pressure in

both normal and tumor tissues. As shown in Figure (6), a no-flux

boundary condition is considered for the right-hand side of the

domain and upper and lower limits of the domain, i.e.,

+Pi~0 ð16Þ

For the left-hand side of the domain near the parent vessel, the

constant value of pressure is considered.

Equation (1), by considering Equation (8), and Equation (15),

should be solved simultaneously to find the intravascular, Pb, and

interstitial, Pi, pressures.

The solution can be obtained numerically to find intravascular

pressure and interstitial pressure and other related parameters

such as velocity and flow rate. The iterative numerical method,

Gauss–Seidel method [26], is applied to solve the system of

equations for intravascular pressure. A finite difference method is

applied to discretize Equation (15). The discretized form of the

governing equations, in their general form, is then linearized and

solved explicitly by an iterative procedure. This iterative method

can be called semi-implicit, as during the solution, the most

updated values of pressures are used. The algorithm for the

procedure and discretized form of the equations are described in

Section 4.

3.1 Blood Viscosity in Capillaries
As mentioned, Poiseuille’s law can be used for Newtonian flow,

but blood has significant non-Newtonian properties at low

Reynolds numbers. Blood viscosity in capillaries depends on the

vessel diameter and hematocrit. To take advantage of Poiseuille’s

law’s simplicity and use it to show the behavior of blood, it is

helpful to define the apparent or effective viscosity of blood,

according to Equation (7), by.

mapp~
p

128

DPD4

LQb

ð17Þ

Pries et al. [24,27] used data obtained from the results of 18

studies of human blood and combined the data with a parametric

description of apparent blood viscosity relative to the plasma

viscosity to define a mathematical function for apparent viscosity.

They introduced this parameter as the relative apparent viscosity.

A description of relative apparent viscosity as function of the tube

diameter and hematocrit is as follows [24]:

mrel~ 1z m45{1ð Þ (1{H)C

(1{0:45)C{1

D

D{1:1

� �2
" #

D

D{1:1

� �2

ð18Þ

m45, the relative apparent blood viscosity for a fixed hematocrit of

0.45, is given by.

m45~6e{0:085Dz3:2{2:44:e{0:06D0:645 ð19Þ

where

D is the vessel diameter (in mm),

C describes the shape of viscosity dependency on the

hematocrit, defined as

C~ 0:8ze{0:075D
� �

{1z
1

1z10{11D12

� �
z

1

1z10{11D12
ð20Þ

and

mapp~mplasma
:mrel ð21ÞFigure 6. A schematic of calculated domain for fluid flow

simulation.
doi:10.1371/journal.pone.0067025.g006

Table 1. Material properties used in numerical simulations, as
taken from [2].

Parameter Normal Tissue Tumor Tissue

Lp[cm/mmHg s] 0.3661027 2.8061027

K[cm2/mmHg s] 8.5361029 4.1361028

S/V[cm21] 70 200

pB[mmHg] 20 20

pi[mmHg] 10 15

s 0.91 0.82

doi:10.1371/journal.pone.0067025.t001
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The two parameters, hematocrit and vessel diameter, affecting

blood viscosity are dependent on blood flow characteristics such as

velocity, wall shear stress, and pressure in vessels. These

dependencies are described in the next sections.

3.2 Phase Separation at Capillary Bifurcations
Since mrel depends on H, the hematocrit distribution has a

significant role in simulating the hemodynamic characteristic of

the capillary network. In general, H distribution at a vessel

bifurcation depends on the flow velocity in each branch. The total

red blood cell fraction in the feeding vessel of a bifurcation that

goes into one of the daughter branches is not essentially the same

as the fractional blood flow going into that branch. It has been

shown that all the hematocrit goes into the branch with the faster

velocity at bifurcations if the velocity at that branch goes beyond a

certain limit. This phenomenon – also referred to as plasma

skimming – was observed early on by Krogh to describe the

skimming of the cell-poor marginal fluid layers of an arteriole

feeding vessel by its smaller side branch [28]. Three related

experimental evidences support this model [29]: (i) The red cells

are not in general distributed proportionally to blood volume flow,

unless the hematocrit in the daughter vessels differs from that of

the inflow vessel. (ii) When blood flow is divided equally between

the daughter vessels, the red cell flow is not distributed evenly. (iii)

There is a critical fractional blood flow to a daughter vessel below

which it receives no red cells. Fung [23] proposed a theoretical

model to describe this phenomenon. Extending Fung’s conclusions

[23] results in the distribution rules of H, as follow (see Figure 7)

for definitions, assuming Ub2$Ub3$Ub4) [30]:

a) Blood flow from one (two) node (s) into one (two) node (s)

(Figure 7a).

Hi~ max(H1,H2 ) H3zH4~Hi

Ub3

Ub4
§Ucr : H3~Hi

Ub3

Ub4
ƒUcr :

H3

H4
~f

Ub3

Ub4

8>><
>>: ð22Þ

b) Blood flow from three nodes into one node (Figure 7b)

Hi~ max (H1,H2, H3 ) H4~Hi ð23Þ

c) Blood flow from one node into three nodes (Figure 7c)

Hi~H1 H2zH3zH4~Hi

Ub2

Ub4

§Ucr :

Ub2

Ub3
§Ucr : H2~Hi

Ub2

Ub3
vUcr :

H2

H3
~f

Ub2

Ub3

8>><
>>:

Ub2

Ub4

vUcr :

H2

H3
~f

Ub2

Ub3

H2

H4
~f2 Ub2

Ub4

8>><
>>:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð24Þ

where Hi denotes H at node i, f is a phenomenological parameter

that accounts for the strength of the non-symmetry of the

hematocrit distribution at bifurcations [30], and Ucr is the critical

ratio of the velocities of the branches, above which, the total

hematocrit goes to the faster branch [30]. Here, the hematocrit in

the parent vessels and their joint nodes with the connected induced

network is assumed to be a constant 0.45.

3.3 Vessel Diameter Adaptation
Capillaries are able to continuously adapt their diameter in

response to the functional requirements of the tissues that

capillaries supply [22]. Each vessel responds locally to physical

and biochemical stimuli. In fact, wall shear stress and intravascular

pressure created by blood flow lead to remodeling of the vessel

diameter. The biochemical stimuli such as the metabolic stimulus

are also able to remodel the capillary network. For each vessel in

the network, the change of its diameter (DD) for a time step (Dt) is

assumed to be proportional to the stimulus term, its initial

diameter, and the time step [22]:

DD~Stot
:D:Dt ð25Þ

Stot includes the influences of the wall shear stress (Swss), the

intravascular pressure (Sp), and a metabolic mechanism depending

on the blood hematocrit (Sm). Each stimulus is next briefly

discussed.

3.3.1 Wall shear stress. Experimental observations show

that to maintain a specific level of wall shear stress, the vessels

adapt their diameter. Murray [31] showed that when the

volumetric blood flow rate in each vessel is proportional to the

cube of the capillary diameter, the energy consumption for

pumping the blood to the circulatory systems is minimal. The wall

shear stress in a capillary vessel is given by

tw~
32Qm

pD3
ð26Þ

Based on Equation (26), to satisfy Murray’s law, wall shear stress

needs to be approximately constant in vessels [32]; therefore, when

each vessel senses wall shear stress, it adjusts its diameter to

achieve a uniform level of stress. Experimental observation [22]

shows that vessel diameter increases when wall shear stress

Figure 7. Schematic of different patterns of blood flow in
networks a) Blood flow from one (two) node(s) into one (two)
node(s). b) Blood flow from three nodes into one node. c) Blood flow
from one node into three nodes.
doi:10.1371/journal.pone.0067025.g007

Capillary Network Flow in Tumor Microvasculature

PLOS ONE | www.plosone.org 8 June 2013 | Volume 8 | Issue 6 | e67025



increases. This stimulus is described by the following logarithmic

law:

Swss~log10 twztref

� �
ð27Þ

where tw is the actual wall shear stress in a vessel segment

calculated by Equation (26), and tref is a small constant included

to avoid singular behavior at low wall shear stress values.

3.3.2 Intravascular pressure. Shear stress values differ

significantly between arterial and venous vessels. The values in the

arterial system are always greater than those in a venous one [22].

Studying structural adaptation, Pries et al, suggested a preset

relationship between local intravascular pressure and wall shear

stress [33]. They showed that increasing intravascular pressure

decreases vessel diameter. To consider the corresponding stimulus

of intravascular pressure, they suggested a negative sensitivity

represented by the following equation:

Sp~{log10te ð28Þ

in which te is the wall shear stress resulting from the blood

pressure, Pb, based on the experimental data on rat mesenteries

[33]. As shown in Figure (8), this wall shear stress increases, in a

sigmoidal shape, as pressure increases.

te~10{8:6: exp {5000: log10 log10Pbð Þ½ �5:4
h i

ð29Þ

In this equation, pressure and stress are obtained in mmHg and

Pa, respectively. As shown in Figure (8), for pressure less than

10 mmHg, Equation (29) is not applicable. Instead, the value of

1.4 Pa is considered.

3.3.3 Metabolic hematocrit-related stimulus. The meta-

bolic requirement of tissue can affect and control the vessel

diameter. A drop in oxygen supply or other metabolic material

stimulates the vessel to increase its diameter to enhance perfusion.

Pries et al. [34] suggested adding a stimulus dependency to the

volumetric flux of red blood cells passing through a vessel

(represented by QbH ), thus, increasing this volumetric flux

decreases stimuli effect. This stimulus is once again described by

a logarithmic law, given by

Sm~log10

Qref

QbH
z1

� �
ð30Þ

where Qref is the largest value of Qb in the network. In this

simulation, the flow rate of parent vessels corresponds to Qref.

3.3.4 Vascular adaptation. The total signal for diameter

adaptation is represented in the model by the following equation,

which remodels the structure of the capillary network

Stot~SwsszkpSpzkmSm{ks ð31Þ

Here, the parameter kp is introduced to indicate the adaptive

response sensitivity of vessel diameter to changes in intravascular

pressure [22]. km is the sensitivity of the adaptive response of the

vessel diameter to changes in metabolic state [34].

The vessel has a tendency to reduce in size in the absence of

positive growth stimuli. The shrinking tendency, ks, is applied to

show this tendency [22]. Finally, by substituting Equations (27),

(28), and (30) into Equation (31), the model for vessel adaptation is

given by the following equation:

DD~
log10 twztref

� �
{kp log10tezkmlog10

Qref
QbH

z1
� �

{ks

2
4

3
5DDt ð32Þ

Numerical Simulation
Intravascular pressure is numerically calculated at each node by

integrating Equations (1) and (8), and then Pb in each node (c) is

given by

P
qz1
b,c ~

P4
k~1

D4
k{c

128mk{cL
{Dk{cL Lp

� �

P
q
b,kzDk{cL Lp

P
q
i,czP

q
i,k

2
{ss pb{pið Þ

 !
2
66664

3
77775:bk

c

P4
k~1

D4
k{c

128mk{cL
zDk{cL Lp

� �
:bk

c

ð33Þ

where q is the number of iterations. This procedure leads to a set of

linear equations for the nodal pressures. These equations can be

solved numerically using the Successive Over-Relaxation (SOR)

algorithm. Once nodal pressures are known, Equation (7) can be

used to calculate the flow rate in each capillary element in turn.

The interstitial pressure is found by solving Equation (15). The

iterative numerical method is used to solve the discretized form of

Equation (15), given as

P
qz1
i,c ~

P4
k~1

P
q
i,kzL2 LpS

KV
Ac,k Pb

q{ss pb{pið Þð Þ
� 	

P4
k~1

4zL2
LpS

KV
Ac,k

� � ð34Þ
Figure 8. Shear stress induced by intravascular pressure in a
range of intravascular pressure flows in circulatory system.
Equation is derived by Pries et al. [33] with curve fitting from
experimental results obtained on rat mesentery vessels.
doi:10.1371/journal.pone.0067025.g008
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where q again is the number of iterations, and A is 1 or 0,

describing the existence of a blood source. To solve this equation,

the SOR algorithm is used.

4.1 Algorithm for Calculating Fluid Flow in Capillary
Network with Remodeling

A systematic flow chart such as one shown by Wong et al.

[16,35] is illustrated for each approach in Figures (9), (10) and (11)

to clarify the computational techniques involved in this paper.

The fluid flow calculation in capillary vessels includes a set of

non-linear equations. For this reason, an iterative procedure is

applied to solve the fluid flow and remodeling equations in a

capillary network. The algorithms of three approaches used in this

paper for interstitial pressure calculation are shown in Figures (9),

(10) and (11). Relative error mentioned in these figures is defined

bymax X N{X oð Þ=X oð Þ, where X can be each of Pb,Pi and D

and index N is used for a calculated parameter in the current step

and o is used for a calculated parameter from the previous step.

Figure (9) shows procedures of fluid flow calculation in normal

and tumor tissues without a network. Figure (10) shows calculation

procedures for the second approach, fluid flow through a capillary

network with rigid vessels. For this purpose, the capillary diameter

is prescribed using a method presented by Wu et al. [13] and the

hematocrit in the vessels is assumed to be constant and equal to

0.45. The viscosity for each segment is calculated based on

Equation (18). Figure (11) shows the algorithm of the third

approach, model assuming a non-continuous behavior of blood

and adaptability of capillary diameters for blood flow calculation

through capillary network and fluid flow in tissue. The network

pruning mentioned in Figures (10) and (11) is necessary before

solving the fluid flow equations. This is achieved by removing the

network segments which do not make a loop, i.e. those which have

less than two neighbors. This procedure is carried out throughout

the entire network repeatedly until all isolated segments are

removed.

Model Parameterization and Simulation Details

5.1 Initial Conditions
The 2D domain (shown in Figure 6) considered for the

computational simulation studies is a square of length L = 2 mm,

and the parent vessel from which the vascular network grows is

located at the left edge of the domain. The tumor is located along

the right edge of the domain. The equations for tumor-induced

capillary growth are solved numerically on a 1006100 (x,y) square

grid.

Pi
0 is initialized to be zero, and Pb

0 is considered to be 1330 Pa,

based on boundary condition explained on section 5.2.2.

Figure 9. Algorithm for calculating interstitial pressure in
tissue without considering capillary network.
doi:10.1371/journal.pone.0067025.g009

Figure 10. Algorithm for calculating interstitial pressure in tissue and blood flow through capillary network with rigid vessels.
doi:10.1371/journal.pone.0067025.g010
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5.2 Intravascular Flow Model Parameters
In order to simulate the fluid flow in capillaries, several

important physical and biological parameters must be first

estimated.

5.2.1 Vessel diameter. The initial diameter of each capillary

segment is assumed to be 12 mm, and for the parent vessel it is

28 mm, a value that stays constant during the remodeling

procedure. During the remodeling process, allowable diameter

changes are in the range of 4 mm to 24 mm [36].

5.2.2 Adaptation parameters and phase separation. Para-

meters used for the adaptation model and phase separation presented

in Equations (22) to (24) and (32) are listed in Table (2).in which Qref is

the flow rate in the parent vessel, calculated by Equation (7) assuming

D = 28 mm, L = 2 mm, and DP = 1950 Pa (15 mmHg) (the pressure

drop across the parent vessel), and mapp = 0.0031Pa.s calculated by

Equation (18). The plasma viscosity, mplasma is assumed to be

1.261023 Pa.s. The discharge hematocrit H = 0.45 is assumed to

stay constant in the parent vessel [22]. The intravascular pressure, Pb,

is an important factor in the vascular remodeling process. In this

simulation, inlet and outlet pressures are chosen in the hope of

guaranteeing that the average intravascular pressure is around

2660 Pa (20 mmHg), based on the physiological values reported in

the literature [7]. Taking into account the physiological condition at

microvascular scale results in considering 3325 Pa (25 mmHg) for

inlet and 1330 Pa (10 mmHg) for outlet pressures.

5.3 Interstitial Flow Model Parameters
The material properties for tumor and normal tissues used for

interstitial flow calculation are taken from the simulation study of

Soltani et al. [2] and are shown in Table (1).

Figure 11. Algorithm for calculating interstitial pressure in tissue and blood flow through capillary network with adaptable vessels
and non-continuous behavior of blood.
doi:10.1371/journal.pone.0067025.g011

Table 2. Parameter values used in the adaptation.

Parameter Value Reference

tref [Pa] 0.103 [22]

Qref [mm3/s] 4.87e-3 Calculated based on network situation

kp [1/s] 0.1 [18]

km [1/s] 0.07 [18]

ks [1/s] 0.35 [18]

Ucr 2.5 [30]

f 0.5 [30]

doi:10.1371/journal.pone.0067025.t002
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Results

As mentioned, three approaches are used for calculating

interstitial pressure in a cancerous tissue. First, the results of the

first approach introduced in Figure (9) are presented for normal

and tumor tissues without a network. Then the results of the

second and third approaches, shown in Figures (10) and (11) for

two different capillary networks, are presented.

In order to show the effect of capillary network on the fluid flow

in normal and tumor tissues, the tumor’s interstitial fluid flow is

simulated without considering such a network. The intravascular

pressure, Pb, is assumed to have a uniform distribution in the

domain and is held constant throughout the simulation. A 3D plot

of the interstitial pressure distribution is shown in Figure (12a).

Figure (12b) shows the corresponding 2D contour of interstitial

pressure. The calculated interstitial pressure of a 0.2-mm radius

solid tumor located in a 2 mm62 mm domain (Figures 12a and

12b), reached a maximum value of approximately 500 Pa.

Next, the results of fluid flow in normal and tumor tissues are

presented in presence of the capillary network induced by the

tumor. The networks shown in Figures (2) and (3) are used for

simulating the blood flow. Resulted networks based on discrete

method agree well qualitatively with the experiments done in

animal corneal models [37,38] and mathematical model presented

by Anderson et al. [12,39]. The pruned networks are illustrated in

Figures (13a) and (13b) for different initial values of endothelial

cells.

The obtained pruned network is used for fluid flow calculation

for the second approach based on the algorithm introduced in

Figure (10). The 3D graph of interstitial pressure is shown in

Figures (14a) and (15a) for different numbers of endothelial cells.

The corresponding 2D contour is also illustrated in Figures (14b)

and (15b). This method results in higher pressure values in the

solid tumor region for both networks. The maximum value of the

interstitial pressure was initially higher than 700 Pa for the

network with 5 endothelial cells and 800 Pa for the network with

10 endothelial cells.

For a more realistic simulation of the system, the effects of non-

Newtonian blood rheology, non-uniform distribution of hemato-

crit in bifurcation due to non-continuous behavior of blood, and

remodeling of the network due to adaptability of capillary are

coupled to the second approach. The procedure of solution is

shown in Figure (11). Figures (16) and (17) show the fluid flow for a

network with both adaptive and rigid capillaries, depicting a

uniform distribution of flow in the adaptive capillary network. To

further illustrate these results, another pruning method was

applied to eliminate the capillaries that have a flow rate of less

than 1% of the network’s maximum flow rate. In the first

approach, many capillaries near the tumor were eliminated;

however, in the remodeled network, these capillaries were largely

retained. Results for intravascular pressure in the two cases are

presented in Figures (18) and (19). The pressure at the right side of

domain – the solid tumor region – is higher than that of the rigid

network. In fact, based on Starling’s law, the higher intravascular

pressure can increase the transvascular flow and slightly affect

interstitial flow.

Figures (20a) and (21a) show the interstitial pressure in normal

and tumor tissues when the adaptation method and phase

distribution in the network are also considered (third approach).

The corresponding 2D contours are illustrated in Figures (20b)

and (21b). Results show higher pressure levels compared to other

cases discussed earlier in this study. The calculations predict initial

pressure values of around 1100 Pa for the network with 5

endothelial cells and 1200 Pa for the network with 10 endothelial

cells.

Discussion

To accurately predict the efficacy of chemotherapy, researchers

must be able to calculate the interstitial and intravascular pressure

of tumors with reasonable precision. In many studies, the

intravascular pressure is considered to be constant in the fluid

flow model which obviously is far from reality. This study

simultaneously investigates the fluid flow in a tumor-induced

capillary network and the interstitial fluid flow in normal and

tumor tissues. For all simulations, a rectangular 2D domain,

shown in Figure (6), is considered, in which a circular tumor is

Figure 12. A 3D graph (a) and the contour (b) of interstitial pressure in the computational domain for both normal and tumor
tissues in which uniform distribution and constant values for intravascular pressure are assumed. The maximum pressure is around
500Pa in the tumor region.
doi:10.1371/journal.pone.0067025.g012
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located on one side and the parent vessel is located on the opposite

side.

The results based on first approach (Figure 9) or simulation of

fluid flow in tissue without network showed that the interstitial

pressure is at its maximum at the center of the tumor and

diminishes towards the periphery. In tumor tissue, capillaries are

more permeable. This high permeability results in more extravas-

cular flow based on Starling’s law. Contrary to normal tissue, lack

of lymphatic system and above mentioned high extravascular flow

result in the high level of interstitial pressure in tumor tissue. The

high elevation of interstitial pressure is observed in previous works

[2,10], Jain et al. [8], and in the experimental results of Arifin

et al. [40] and Huber et al. [41].

Results show that the number of endothelial cells does not

significantly affect the intravascular pressure and fluid flow

distribution as the final structures of the networks are almost

independent of the endothelial cell numbers. As described earlier,

two approaches – rigid and adaptable capillary networks – were

investigated. The flow distribution, specially for remodeled

networks (Figures 16b and 17b), is similar to flow distribution

observed in the literature [18,12]. The results show irregular blood

Figure 13. The vascular network after pruning for a network with five (a) and ten (b) endothelial cells in parent vessel. The green lines
show the pruned network. The blue lines are killed segments that do not make a loop.
doi:10.1371/journal.pone.0067025.g013

Figure 14. The 3D graph (a) and the contour (b) of interstitial pressure in the computational domain for both normal and tumor
tissues for a network with 5 endothelial cells in the parent vessel. The figure is obtained by simulating blood flow through a vascular
network found by the discrete sprouting angiogenesis method, with rigid capillaries and continuum properties of blood and coupling by fluid flow in
tissue. The maximum pressure is around 700Pa in the tumor region.
doi:10.1371/journal.pone.0067025.g014
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vessels which is similar to the results visualized by Heine et al. [42]

by DiI labeling method.

The comparison of blood flow illustrated in Figures (16) and (17)

for the two networks show that the blood flow in the capillary

network for the remodeled network has a more logical distribution

than those with rigid capillaries; it is due to considering vessels’

adaptation to metabolic and hemodynamic stimuli. Considering

metabolic stimuli causes blood flow in the vessels far from parent

vessels. Hemodynamic stimulus, especially intravascular pressure,

prevents shunt fluid path [34].

The reasonable distribution of blood flow in the remodeled

network, which leads to a declined blood-flow resistance far from

the parent vessel, increases the value of intravascular pressure in

the network especially near the tumor, as shown in Figures (18)

and (19). The existing blood vessels are immature [42]. Immature

blood vessels together with the elevated intravascular pressure lead

to an increase in the transvascular flow rate, based on the Starling’

Figure 15. The 3D graph (a) and the contour (b) of interstitial pressure in the computational domain for both normal and tumor
tissues for a network with 10 endothelial cells in the parent vessel. The figure is obtained by simulating blood flow through a vascular
network found by the discrete sprouting angiogenesis method, with rigid capillaries and continuum properties of blood and coupling by fluid flow in
tissue. The maximum pressure is around 800Pa in the tumor region.
doi:10.1371/journal.pone.0067025.g015

Figure 16. Fluid flow in simulated rigid network and adapted network for network with 5 endothelial cells. In adapted network, some
segments eliminated because their diameter is small and they pass very low flow. In both cases, when a segment’s flow rate is less than 0.01 of the
maximum flow rate in the network, this segment is pruned.
doi:10.1371/journal.pone.0067025.g016
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law which subsequently affects the interstitial pressure. These

results are in a good agreement with experimental results

presented by Chauhan et al. [43]. Also, intravascular pressure

distributions show that considering uniform distribution of source

terms with constant intravascular pressure is not a reasonable

assumption as may result in totally different values for intravas-

cular pressure.

Results of interstitial pressure distribution for both networks and

two approaches are shown in Figures (14a), (15a), (20a), and (21a).

The two approaches to blood flow modeling through capillaries

considered in the fluid flow simulation for both networks show

significantly different results than those for the case without a

network (i.e. uniform distribution of source terms with constant

intravascular pressure [2,10]). Results of constant vessel size

(Figures 14a and 15a) show an approximately 1.5 times increase

on the maximum pressure resulting from uniform distribution of

source terms with constant intravascular pressure. The differences

between the two networks are due to the higher density of vessels

close to the tumor region. The maximum value of interstitial

pressure has a good agreement with the numerical simulation of a

brain tumor reported by Tan et al. [44] in which the geometry is

reconstructed from the magnetic resonance images of a primitive

neuroectoderma tumor. Generally, in brain, the capillaries have

more rigid characteristic than other capillaries. The simulated

Figure 17. Fluid flow in simulated rigid network and adapted network for network with 10 endothelial cells. In adapted network, some
segments eliminated because their diameter is small and they pass very low flow. In both cases, when a segment’s flow rate is less than 0.01 of the
maximum flow rate in the network, this segment is pruned.
doi:10.1371/journal.pone.0067025.g017

Figure 18. Intravascular pressure in two cases: rigid network and adaptive network for network with 5 endothelial cells. Adaptive
network shows higher pressure near the solid tumor. This pressure can affect interstitial flow in this region.
doi:10.1371/journal.pone.0067025.g018
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pressure is around 900 Pa in their work. Results are also similar to

the simulation results of Zhao et al. [45].

The interstitial pressure calculations based on the third

approach (Figures 20a and 21a) – an adaptable capillary to blood

flow through capillaries– show pressure levels approximately 1.5

times greater than that of the rigid network and more than 2 times

greater than that of the uniform distribution of source terms with

constant intravascular pressure. Measurements of 6 different

HT29 tumors by Heine et al. [42] show a mean interstitial

pressure of 1190 Pa that support simulation results in the present

study with value around 1200 Pa shown in Figures (20a) and (21a).

The interstitial pressure for normal and tumor tissues without a

network shows a regular distribution (Figure 12b), but the

evaluation of contours in Figures (14b), (15b), (20b), and (21b)

indicates that the regular distribution of pressure is altered due to

irregular source terms of mass flow to the tissue. The recent

reports published by of Chauhan et al. [43] and Arifin et al. [46]

show this phenomena. They validated the used numerical method

by some in vivo images.

Conclusions
One of the main results of this study is that contradictory to

previous works in the interstitial flow, the intravascular pressure is

not fixed and will be updated during the solution.

The interstitial pressure in the case of tumor-induced capillary

network was observed to be higher than what was shown in the

case of no network, as well as those reported by our group where a

uniform distribution of source terms with constant intravascular

pressure was assumed. The maximum value of interstitial pressure

has a good agreement with the numerical simulation of a brain

tumor reported by Tan et al. [44].

The method with adaptive capillary network showed the highest

interstitial pressure in the tumor region. This method assumed the

capillary diameter to be an adaptable function of hemodynamic

and metabolic stimuli. Considering the adaptability of vessels and

non-continuous behavior of blood leads to a more-uniform blood

flow distribution compared to the case of a rigid capillary network.

In the method with adaptive capillary network, capillaries far from

a parent vessel experience a non-negligible flow, whereas in the

Figure 19. Intravascular pressure in two cases: rigid network and adaptive network for network with 10 endothelial cells. Adaptive
network shows higher pressure near the solid tumor. This pressure can affect interstitial flow in this region.
doi:10.1371/journal.pone.0067025.g019

Figure 20. The 3D graph (a) and the contour (b) of interstitial pressure in the computational domain for both normal and tumor
tissues for a network with 5 endothelial cells in the parent vessel. Figure is obtained by simulating blood flow through a vascular network
found by the discrete sprouting angiogenesis method, with adaptable capillaries and non-Newtonian and non-continuous properties of blood and
coupling by fluid flow in tissue. The maximum pressure is above 1100Pa in the tumor region.
doi:10.1371/journal.pone.0067025.g020
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case of a rigid capillary network, many of these capillaries are

eliminated because of their low flow rates. The results of

maximum interstitial pressure are compared with recent experi-

mental data for HT29 tumor. The value of simulation is very close

to the experimental data. The high interstitial pressure in the

tumor region, which along with the low transvascular flow due to

low intravascular pressure in the heterogeneous capillary network

near the tumor region, plays a significant role in non-uniform

distribution of drug delivery to a solid tumor.
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