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Quantifying machine influence 
over human forecasters
Andrés Abeliuk*, Daniel M. Benjamin, Fred Morstatter & Aram Galstyan

Crowdsourcing human forecasts and machine learning models each show promise in predicting future 
geopolitical outcomes. Crowdsourcing increases accuracy by pooling knowledge, which mitigates 
individual errors. On the other hand, advances in machine learning have led to machine models 
that increase accuracy due to their ability to parameterize and adapt to changing environments. To 
capitalize on the unique advantages of each method, recent efforts have shown improvements by 
“hybridizing” forecasts—pairing human forecasters with machine models. This study analyzes the 
effectiveness of such a hybrid system. In a perfect world, independent reasoning by the forecasters 
combined with the analytic capabilities of the machine models should complement each other to 
arrive at an ultimately more accurate forecast. However, well-documented biases describe how 
humans often mistrust and under-utilize such models in their forecasts. In this work, we present a 
model that can be used to estimate the trust that humans assign to a machine. We use forecasts made 
in the absence of machine models as prior beliefs to quantify the weights placed on the models. Our 
model can be used to uncover other aspects of forecasters’ decision-making processes. We find that 
forecasters trust the model rarely, in a pattern that suggests they treat machine models similarly 
to expert advisors, but only the best forecasters trust the models when they can be expected to 
perform well. We also find that forecasters tend to choose models that conform to their prior beliefs 
as opposed to anchoring on the model forecast. Our results suggest machine models can improve the 
judgment of a human pool but highlight the importance of accounting for trust and cognitive biases 
involved in the human judgment process.

Many high stakes intelligence decisions rely on accurate predictions. Forecasting future political and economic 
events is notoriously difficult. The forecasts of individuals tend to be inaccurate and unreliable, even if they 
are experts1. When tracked over time, experts exhibit forecasting accuracy not significantly better than a ran-
dom guess in many domains, including politics2. Two solutions have emerged that reliably improve prediction 
accuracy: eliciting and aggregating forecasts from a pool of forecasters (crowdsourcing) and using machine 
learning to improve time-series models. Combining even a small number of judgments can lead to stark, stable 
improvements in accuracy3. Statistically aggregating large pools of public forecasts has recently been shown to 
improve upon individual forecasts4. Concurrently, advances in machine learning have led to improvements in 
feature identification and prediction, provided data is available and favorably structured5. Finally, recent work on 
human–machine ensemble methods shows that aggregating a crowd of forecasts together with machine models 
can outperform each of the individual components6,7.

We present the results of a hybrid system aimed at harnessing the unique benefits of crowdsourcing and 
machine models. We address open questions about the efficiency of human–machine combinations. Do human 
forecasters incorporate model predictions in ways that improve their own forecasts, or does bias in their reac-
tions hurt performance? In this work, we study the problem of measuring the influence of machine models on 
the human-generated forecasts in a hybrid forecasting platform. In order to learn the weight that users assign 
to machine forecasts, we propose a model that compares the forecasts of users who are exposed to the machines 
with those who are not. We analyze the weights to uncover patterns about how humans interact with the machine 
models throughout the course of an eight-month-long forecasting tournament. We show how individuals assign 
weights, quantify the degree of (dis-)trust in the models, and test the extent to which cognitive biases are preva-
lent. We conclude by analyzing the impact of trust and biased processing on our systems’ performance.
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Crowdsourcing predictions.  Crowdsourcing, a method of engaging many individuals, often via a net-
work, to jointly perform a task, has been demonstrated to solve a variety of innovative and strategic problems8. 
These methods have become popular among organizations because they can perform complex tasks quickly and 
cheaply. Under the right circumstances, crowdsourcing can achieve a level of collective intelligence when dis-
parate knowledge or skills are combined to perform in seemingly intelligent ways. A successful crowd includes 
engaged members who are motivated to improve their performance possibly by competing against one another 
as well as a diversity of appropriate knowledge and expertise9. Harnessing a crowd is particularly efficient when 
the knowledge to solve a certain task is broadly dispersed and not necessarily identifiable in advance10.

One common use of crowdsourcing is to forecast future outcomes by collecting forecasts from large groups 
of individuals about the same outcomes sometimes over a long timeframe. Crowdsourced forecasting requires a 
system capable of tracking individual performance and motivation over time9. Individual inputs can be combined 
in adept ways including adjusting for detectable biases and leveraging the better forecasters and newer forecasts 
in the pool11,12. In a recent political forecasting tournament 13, combining independent forecasts led to substantial 
improvements in accuracy and reliability. Crowdsourcing can improve upon individual judgments because it: a) 
amalgamates disparate knowledge, b) cancels individual errors, and c) builds credibility of the group judgment14. 
This “wisdom of the crowd“ (WOC) effect has been demonstrated as a successful approach in diverse domains15, 
even including solving complex, multi-faceted problems16. The benefits of such combinations can be achieved 
with non-expert populations17.

Human versus machine prediction.  Recent gains in computational power paired with advances in 
machine learning and modeling methods suggest that computers may be a suitable alternative to accurately pre-
dicting many economic and political outcomes. Machine prediction has advanced from the typical assumptions 
(e.g., linearity) to create more flexible tools that adjust to changes in the data. Real-time availability of data allows 
model parameters and predictions to be responsive to data changes. For example, adaptable feature selection and 
noise reduction techniques help improve upon static models. Indeed, recent works describe such advances in 
machine-generated prediction accuracy18.

Both WOC and machine models have a number of limitations. WOC relies not just on the pool sharing suf-
ficient knowledge about the topic, but also on the diversity of knowledge and expertise which can be difficult 
to assess. Human pools are also prone to cognitive biases that impact the quality of their judgments. Individual 
biases like base-rate neglect and overconfidence, as well as group biases like social influence, can negatively 
impact the judgment of opinion pools19. Machine-generated predictions succeed in certain settings, especially 
when an outcome is autoregressive, but show limited success when causal factors are not well understood or 
multi-faceted. Other limitations arise from time-series with more difficult structures, such as zero-inflated 
time-series20.

Developing a hybrid system.  Prediction problems that are relevant for political and economic decision-
making rely on a complex global system with poorly understood causal structures. Moreover, applicable data 
sources vary in volatility, structure, and format. Two methods have been proposed for combining judgmental 
(subjective) and statistical (objective) forecasts: adjustment and combination21. We take a “hybrid” approach by 
building a system aimed at leveraging the strengths of machine models and crowdsourcing to balance generaliz-
ability across data sources and problem-types with the flexibility to tackle new, unforeseen problems. We make 
machine time-series predictions available to human forecasters to help them anchor on a statistical estimate 
based on historical base rates and recent trends. Empirical tests have found structured combinations of judg-
mental adjustments to model predictions improve upon time-series models when the data is highly volatile17.

Successful hybrid systems have been demonstrated in modeling infectious disease trajectories using social 
signals22 and expert forecasts23. The success of such a hybrid approach hinges on whether human forecasters 
trust and choose to utilize the model predictions. Despite recent advances in machine modeling in the forecast-
ing domain, there has been ample research in recent years showing that humans have a reluctance to embrace 
machine models. Clinicians are reluctant to rely on statistical methods for high stakes decisions, like mental 
health diagnoses, despite accumulated evidence showing the superiority of statistical methods across studies24. 
Forecasters put more weight on advice from human experts than statistical models, and discount models more 
when the same advice is labeled as a statistical prediction25. Algorithm aversion, a phenomenon where people 
punish machine models disproportionately to humans for making the same mistakes, can inhibit the adoption 
of machine models in forecast generation and may ultimately lead to suboptimal forecasts26–28.

Hybrid forecasting requires individuals to combine the model prediction with their beliefs. Our hybrid sys-
tem (called SAGE29), allows forecasters to choose how to weight the model prediction to maximize the diversity 
required for the WOC effect. However, this freedom raises concerns about suboptimal and biased information 
processing. Specifically, individuals might overweight either the advice or their preexisting beliefs. Our system 
is designed to invoke the anchoring heuristic by exposing forecasters to a formalized, impartial baseline. How-
ever, anchoring can lead to systematic under-adjustment from the advice. Conversely, egocentric discounting 
is prevalent when individuals show a clear preference for congenial information. Confirmation bias is one such 
bias, resulting in overweighting confirmatory and discrediting conflicting information30.

Advice taking.  A key assumption in our hybrid system is that users will incorporate machine models 
with their own beliefs. Heeding advice tends to improve the accuracy of individual judgments and increases 
confidence31,32. Situational factors play a role in whether individual trust and use advice. The decision to use a 
piece of advice relies on both confidence in one’s beliefs and trust in the advice33. Generally, individuals over-
weight their own information and underweight the advice of others34. One concern is whether advice impacts 
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how people form judgments. One study made advice available at different stages and found it has a smaller 
impact on research (termed “hypothesis generation”) than it has on judgment formation (termed “hypothesis 
testing”)35. Advice usage also changes with experience; as judges gain experience, they evaluate advice more 
carefully and are more likely to use it when it is helpful34.

Not surprisingly, judges evaluate advisers based on their expertise32. However, other factors influence the 
evaluation of advisers even when performance does not vary. Judges evaluate the experience of an adviser relative 
to themselves and only use advice when it achieves a perceived gain in expertise34. There is growing evidence that 
human judges view statistical advice differently than human advice. When the same information is described as 
either human or statistical, judges adjust less toward the statistical advice25. The reasons for human preference 
are debatable and may include an egocentric bias36, anchoring on pre-existing beliefs37, and better access to self 
or human justifications38.

Social influence.  In a hybrid system, it is also important to account for the influence users have on one 
another. Influence modeling is the body of work concerned with understanding how consensus is reached 
through the exchange of information among rational actors. Social influence can be beneficial or harmful within 
a large network. In forecasting, whether influence is beneficial to prediction is an open question. The benefit of 
social influence is a function of the group’s initial belief ’s distance from the correct outcome39. When the group 
begins further away from the true outcome, the group benefits more from social influence. Consistent with our 
findings, earlier work shows a decreasing social influence effect as the distance from the initial beliefs increases38. 
However, social influence can also be harmful; it can produce herd-behavior or social loafing, decrease diversity, 
and lead to inaccurate forecasts40.

Most work on social influence is devoted to the study of influence coming from other (human) participants. 
Our model takes a new approach by quantifying the influence of independent machine forecasts. We build upon 
the DeGroot model41. The DeGroot model leverages a network, where nodes are individuals and edges indicate 
information sharing between individuals. The DeGroot model is an iterative model that, at each step, updates 
each individual’s belief by calculating a simple average among their neighbors. Several extensions to this model 
have been presented. For example42, one adjustment to the model considers the process by which opinions 
form43 provides an optimal solution to a specific type of game. Indeed, while a Bayesian information aggrega-
tion rule may be more appropriate, it’s not clear that agents would use such a complex computation. Further, 
there is experimental evidence supporting that the DeGroot model is a good approximation of the underlying 
aggregation process44,45.

Quantifying machine influence.  In this work, we study forecasts about geopolitical events. These fore-
casts are created on a hybrid forecasting platform29, Synergistic Anticipation of Geopolitical Events (SAGE), 
designed for this purpose. One of the key innovations of SAGE is that it allows forecasters to interact with 
computer-generated output during their process of generating forecasts. This computer-generated output can 
take the form of historical data pertaining to the question, or machine models that show a machine-generated 
prediction regarding its outcome. We assigned users to two conditions: a treatment condition where forecasters 
are exposed to machine models and a control condition where machine models are absent (both are shown in 
Fig. 5). In both conditions, participants saw historical data charts.

Belief updating is a process in which individuals start with prior beliefs about a subject, and then update them 
as new information is made available. One widely used process for combining the priors and new information 
is the DeGroot model of belief updating41, described above. Despite its simplicity, DeGroot’s model generates 
accurate theoretical predictions of opinion formation in social networks46,47, and acts as a reasonable non-
Bayesian one-step update rule48.

Here we use DeGroot’s model to quantify the influence of being exposed to machine forecasts when produc-
ing predictions on our platform. We assume that agent i’s forecast, yi,t , at time t is a weighted combination of his 
prior belief xi,t and the current machine forecast mt , i.e.,

where 1− αi is the weight that the agent assigns to the machine forecast, and α determines the individual’s 
confidence in their own belief.

In many experimental studies of judge-advisor systems (JAS) with human advisors38,49 or algorithmic ones50, 
participants explicitly reveal their prior beliefs with the option to update them as new information is revealed. 
In our experimental design, agents’ prior beliefs are not directly observable, and thus, we need to infer them 
with a statistical approach. We use the control group, as opposed to individual forecasters, to estimate the prior 
beliefs of the group. We further assume the population is homogeneous, such that priors are normally distrib-
uted as Xi,t ∼ N (µt ,�t) , where the mean and variance can be approximated from the realized forecasts of the 
control group. This with Equation (1) yields agents’ forecasts when exposed to machine models. This can be 
represented as

The following example illustrates how influence perpetuates our system. Reviewing one specific question: “What 
will be the South Korean Won to one U.S. Dollar daily exchange rate on 29 June 2018?”. Naturally, new informa-
tion about the price is available each day, which consequently can change the prior beliefs and the machine model 
predictions. Figure 1 depicts an example of the effects of being exposed to a machine forecast in one question, 
by comparing the distribution of forecasts between the control and treatment group at two different times. The 

(1)yi,t = αi,txi,t + (1− αi,t)mt ,

(2)Yi,t ∼ N (αtµt + (1− αt)Mt ,α
2
t �t).
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figure shows the probability distribution projected on the correct option (hence, closer to one is more accurate) 
for one question at a specific time window. At the beginning (left figure), both the control and treatment group 
have similar distributions; as time goes by (right figure), the control group forecasts’ (i.e., prior beliefs) shift 
towards the correct option, however, participants exposed to the machine forecasts remain closer to the machine. 
This example shows a clear shift of mean and decrease of variance as a consequence of exposing participants to 
a reference forecast. The empirical evidence suggests that the weights participants put on the machine models 
are going to vary across time as a function of both the available information and the updated machine forecasts.

Model estimation.   To estimate the weights on prior beliefs ( α ), we train the model for each question using 
a rolling window using three different settings (see “Methods” section for more details). That is, for each question 
q we use maximum likelihood estimation to find αq,t for each day t, using all the forecasts in the corresponding 
time window to infer the average weight α forecasters assign to their prior beliefs. Model estimation is detailed 
in the “Methods” section. We incorporate forecast skill into our model to account for interactions between 
highly and less engaged users. Knowledge and expertise plays a role in the differential discounting of advice38, 
and highly skilled forecasters interact with information and environments differently than typical forecasters51. 
To incorporate expertise in our analysis, we identify high and low skilled forecasters by assessing the prediction 
accuracy of users on a set of independent forecasting questions. Participants from both conditions also produced 
forecasts on a set of 126 independent questions, mostly categorical, that had no historical data or machine fore-
casts available—due to inaccessible data, impediments in ingesting data or response format. These independent 
items allow us to split the population into low (lower 50th percentile) and high (upper 50th percentile) levels of 
skill, based on participants’ accuracy in terms of normalized Brier scores (see definition of Brier score in Meth-
ods). We estimated a different prior for each of the two skill levels using the control group. This estimate enables 
us to quantify the machine influence uniquely for each question and subpopulation.

Results
Empirical validation of model.   Social influence studies on the wisdom of the crowds have shown that 
aggregated knowledge of individual information narrows the diversity of predictions without improvements in 
accuracy40,52. In our experimental setting, we have replaced “social influence” taking the form of an aggregate, 
with “machine influence” taking the form of a machine model prediction. The key difference is that machine 
forecasts are independent of the forecasts produced by the participants. Thus, we expect not only a decrease in 
diversity/variance, but a shift of the mean opinion when influenced by machine forecasts. Our model quantifies 
these two effects with a single parameter α . Notice also that, based on Equation (2), the model always predicts 
a decrease of variance given by the relationship α2σ 2

T = σ 2
C , where σ 2

T , σ
2
C are the variance of the treatment 

and control condition, respectively. Indeed, when comparing the mean variance of forecasts between condi-
tions across all questions, we find a significant (p-value < 3e − 30 with a t-test) decrease from σ 2

T = 0.073 to 
σ 2
C = 0.052.

Cognitive hypotheses.  Next, we analyze the observed weights to explore plausible cognitive mechanisms 
that drive the use and discounting of machine models and quantify their effects on the accuracy of users’ predic-
tions. First, we present our hypotheses and in the following section, we present the results in a single analysis 
that addresses each hypothesis concurrently. We divide our hypotheses into two subcategories—strategies and 
biases—to analyze both the intentions and reactions of the users. First, we break down whether individuals 

Figure 1.   The figure shows the probability distribution projected on the correct option (hence, closer to one 
is more accurate) for the same question at two different time windows. The reference line represents the model 
prediction, and the colored histograms correspond to the two conditions. This example corresponds to the 
following question: “What will be the South Korean Won to one U.S. Dollar daily exchange rate on 29 June 
2018?”.
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intend to use the model and whether trust increases when the model is better. Then, due to the complexity of 
combining machine models with one’s prior beliefs, we cannot ignore the likelihood that estimates reflect biases 
in information processing. We test whether users are over-reliant on a) the model (anchoring) or b) their prior 
belief (confirmation bias).

User strategy.  Do users trust the model predictions? Figure 2 shows the distribution of α s, i.e. the weight par-
ticipants put on their prior beliefs compared to machine predictions. The distribution is highly skewed towards 
1 with an average α of 0.86, suggesting that participants are not very likely to incorporate the new information 
into their predictions. Such discounting of advice is consistent with prior work showing an “egocentric” bias in 
social settings34,38,49, where participants place similar high weights on their own opinion over others’ advice. The 
reputation of an adviser is another important indicator of trust in advice. It is easier to lose trust than it is to gain 
it49, and in a similar setting, assessors are sensitive to the accuracy and calibration of probabilistic forecasts53. 
Finally, we include difficulty into our model because advisees tend to overweight advice for difficult tasks and 
underweight advice for easy tasks54. We use the question’s difficulty based on the Brier scores (see Methods) of 
the control group forecasts. Brier scores are a measure of accuracy, which is naturally used to assess the quality of 
a probabilistic forecast. Our two primary hypotheses are that model’s trust should decrease (higher α ) for more 
difficult questions, and when the reputation of the models is lower. We define the reputation of a model as it’s 
average Brier score on all resolved questions.

Savviness.  Are users savvy in choosing when to use the model? Can they perceive which models are more help-
ful? Our theoretical savviness hypothesis is that users will use the model when it performs better relative to the 
other human forecasters. We operationalize machine helpfulness as the percentage of people that had an inferior 
performance compared to the machine for a specific question and time window. We use the quantile metric55 to 
compare the performance of machine forecasts relative to the human forecasts, which essentially is the machine’s 
relative position on the cumulative distribution of the corresponding individual accuracy histogram (see Sup-
plementary Figure S3). Our primary hypothesis is that we will observe greater model influence (a lower α ) when 
the model is more helpful (relative to humans). Our secondary hypothesis is that forecaster’s skill will interact 
with helpfulness, so better forecasters should trust the model more when it’s more helpful.

Anchoring effect.  Anchoring is a judgmental bias describing how individuals under-adjust from arbitrary and 
random anchors when estimating a quantity, even when it is known that the anchor is arbitrary56,57. While 
there is debate about the mechanism(s) that produces anchoring effects, it is clear that increasing uncertainty 
and increasing effort decreases the impact of anchoring effects58,59. To quantify participant’s uncertainty we use 
variability (i.e. variance) of the group forecasts for a given question to measure the degree of consensus. Our 
primary hypothesis is that model influence should decrease (higher α ) for more uncertain questions. Our sec-
ondary hypothesis is that anchors will have an asymmetrical effect based on forecasting skill, so that better 
forecasters are more prone to adjust.

Egocentric discounting (confirmation bias).  Confirmation bias is the tendency to acquire or process new infor-
mation in a way that confirms one’s preconceptions and avoids contradiction with prior beliefs60. Here we 
account for the possible asymmetric nature of confirmation bias on the differential weighting by users on the 
machine models. It is thus an open question to determine whether confirmation bias plays an important role in 
hybrid forecasting systems. Our primary hypothesis is that trust in the model should increase (lower α ) when 
the models confirms the prior beliefs of the participants.

The distance or discrepancy between priors and a reference opinion is also known to have an impact on the 
change of opinion61. Thus, we measure the interaction between the Euclidean distance and confirmation bias. 

Figure 2.   Distribution of the weight users put on their prior belief, αs. The average α is 0.86, where α = 1 
means users ignored the models, and α = 0 means they used the model prediction as their own.
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Our secondary hypotheses are that (1) confirmation bias should be stronger for more skilled forecasters because 
more knowledge and experience is associated with stronger prior beliefs and greater egocentric discounting30,38; 
(2) confirmation bias should have an asymmetrical effect depending on the distance from the prior beliefs to 
the machine advice62.

Cognitive analysis.  Three regression models predicting prior belief relative to machine influence ( α ) are 
reported in Table 1. Our main dependent variable is the machine influence weight ( α ). We use the predictor 
variables defined above to test our cognitive hypothesis adding potentially confounding variables such as the 
lifetime of a question. Model 1 includes only our primary hypotheses. Models 2 and 3 are extensions to test our 
secondary hypotheses. Model 2 includes interactions with forecaster skill to test our secondary hypothesis on 
savviness and anchoring effects. Egocentric discounting’s secondary hypothesis is tested in Model 3 by adding an 
interaction between distance from model to prior and confirmation bias. To minimize collinearity between the 
predictors, we mean-centered the measures by converting them to z-scores. We highlight the following findings:

•	 User strategy. The baseline level of trust in users’ priors for high-skill forecasters are less than the levels in 
low-skill forecasters. More skilled forecasters put more weight in the machine models than lower-skilled 
forecasters. In all three models, this is observed by comparing the skill (low and high) coefficients. We vali-
date our hypothesis, finding forecasters trust their priors more and trust the machine advice less for more 
difficult questions. Moreover, we find trust is sensitive to the reputation of the model. When we account for 
changes in the model’s average performance (the model’s reputation), we find that users trust the model less 
after they see it perform poorly.

•	 Savviness. Forecasters are savvy enough to perceive when a machine model will be helpful. The negative 
coefficient for helpfulness indicates that as the machine models are more helpful, forecasters trust the models 
more. Moreover, there is evidence to suggest that high-skill users are savvier (approximately 4 times more) 
than low-skill users (see Model 2 in Table 1).

•	 Anchoring. The anchoring hypothesis indicates that increased uncertainty mitigates the effect size of model 
influence. The negative coefficients indicate that the relationship is reversed (i.e., more trust in the model for 
more uncertain questions). Regarding our secondary hypothesis, Model 2 highlights that better forecasters 
are more sensitive to the anchoring effects and higher uncertainty. Skilled users adjust more in the direction 
of the machine model as uncertainty increases.

•	 Confirmation bias. Our primary hypothesis on egocentric discounting is confirmed as trust in the machine 
model increases (i.e., lower α ) when the model confirms the prior beliefs of the forecasters. This is observed 
in the negative coefficients in all three models. Our secondary hypotheses are also validated by the significant 
interaction between confirmation, skill, and distance. Indeed, the effect size of confirmation bias is almost 
twice as large for low-skill forecasters. Second, we observe in Model 3, an asymmetric effect on distance 
when the model confirms the prior beliefs (distance×confirming = −0.057***) compared to cases when it is 
disconfirming (distance = −0.037***). Figure 3 depicts the relationships between distance, confirmation bias 
and skill. The interaction effect with confirmation bias is greater for low-skill forecasters and mostly negligible 
for high-skill users. Yet, the effect of distance is greater for high-skilled forecasters. Thus, suggesting that 
high-skilled forecasters are more flexible but less biased by confirmation when assigning trust to the machine 
models, consistent with superforecasters’ tendency to revise their forecast frequently and incrementally63.

Figure 3.   Relationship between weights α s and the distance between prior beliefs and the machine forecasts. 
The y-axis is shared between the two plots. The left plot shows the relationship for the high-skill users, and the 
right plot for the low-skill users. The blue color depicts when the machine forecasts don’t confirm the prior 
beliefs, and the orange color shows when the machine forecasts confirm the priors of the group.
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Assessing the impact of cognitive biases.  It is important to quantify the effect of the cognitive biases 
on the accuracy of the forecasts to assess the efficiency of our hybrid system. The main premise behind the SAGE 
system is that machine predictions will enhance human forecasters. However, machine models can harm the 
final forecasts if the human participants do not incorporate the advice from the machine models deliberately 
and effectively. Ecological rationality is achieved when the interaction between an environment and heuristics in 
decision-making enables effective behavior to be produced64. Providing end-users with objective evidence is not 
sufficient to assume it will be used well. Moreover, suboptimal decision processes can be overcome by the design 
of the decision structure. Thus, understanding barriers to how humans incorporate model predictions into their 
forecast is vital to unearthing possible policies and interventions that can increase the efficiency of the system.

Impact of model influence.  To asses whether the strategies and biases we observed are meaningful, we evaluate 
whether their impact is large enough to discriminate high-skill user’s from baseline influence. That is, we con-
sider a factor to have a meaningful impact if its associated coefficient is greater than half the difference between 
the mean baseline influence and mean weight of high-skill users, ≈ 0.04 . The difference between our high and 
low skill users, (Skill : low − Skill : high) , represents a ceiling to the effect size that should outpace the impact 
of biases on the system because better forecasters consistently excel in ability and are less prone to harmful 
biases51,63. The results in Table 1 indicate that confirmation bias (operationalized by the “confirming” and “dis-

Table 1.   Regression analysis. The dependent variable is the percentage weight on human beliefs ( α ). All 
independent variables were standardized, thus the coefficients describe how a one standard deviation change 
in a predictor variable affects the model influence. Binary predictors were dummy coded. Standard errors are 
displayed in parentheses. ***p < 0.01 ; **p < 0.05 ; * p < 0.1.

Variable Model 1 Model 2 Model 3

Skill:high
0.848*** 0.846*** 0.842***

(0.015) (0.015) (0.018)

Skill:low
0.932*** 0.930*** 0.943***

(0.015) (0.015) (0.017)

Uncertainty
− 0.011 − 0.0181*

(0.01) (0.010)

Difficulty
0.021* 0.023**

(0.012) (0.012)

Confirming
− 0.058*** − 0.06***

(0.017) (0.017)

Helpfulness
− 0.031*** − 0.032***

(0.010) (0.010)

Lifetime
0.002 0.002 0.006

(0.009) (0.009) (0.009)

Distance
− 0.060*** − 0.058*** − 0.037***

(0.008) (0.008) (0.011)

Machine reputation
− 0.021** − 0.021** − 0.025***

(0.009) (0.009) (0.009)

Interactions: distance × confirming
− 0.057***

(0.017)

Interactions with skill helpful × skill:high
− 0.046***

(0.013)

helpful × skill:low
− 0.015

(0.013)

Uncertainty × skill:high
− 0.011

(0.013)

Uncertainty × skill:low
− 0.003

(0.013)

confirming × skill:high
− 0.044*

(0.024)

confirming × skill:low
− 0.076***

(0.023)

Observations 526 526 526

R
2 0.165 0.171 0.183

Adjusted R2 0.152 0.155 0.167
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tance” variables) has a large effect on the weights in all models. Then, to a lesser extent, savviness (“helpfulness”) 
and trust (“machine reputation”) have a moderate impact on the model influence weights.

Impact on performance.  To evaluate the the impact of cognitive biases on forecast accuracy, we use the behav-
ioral patterns uncovered by our cognitive models in Table 1, to create a counterfactual framework to quantify the 
effects of the different biases. We use the following model trained on the data,

to predict the respective human and machine influence weights ( αs) for each question and time window. Then, 
according to Equation 1, we use the learned weights to infer the final prediction of users exposed to machine 
models. In other words, based on the prior beliefs, we simulate how these beliefs change when being exposed to 
the machine model’s advice. We use our framework to quantify the difference in accuracy between two artificial 
treatment groups exposed to machine models with the same prior beliefs, by modulating the coefficients associ-
ated with each cognitive bias.

Figure 4 depicts the impact of cognitive biases by measuring the percentage accuracy difference between 
forecasts done with the learned model and those attained by changing the coefficients, respectively. We per-
formed a parameter-based exploration of the β coefficients in Equation 3, one at a time, to quantify the effect 
on forecast accuracy. We use percent change in Brier scores as a measure of gain in accuracy, so positive values 
mean a decrease of accuracy. The vertical lines in the figure depict the learned coefficient based on the data. 
Finally, under the ecological rationality framework, the impact of the biases depends on the environment where 
the decision are being made, which can be represented by the distribution of the machine models performance 
relative to the humans’ prior beliefs (see Supplementary Figure S3). Thus, we asses the impact of the biases dif-
ferentiating between being exposed to low and high quality machine models based on the “helpfulness” variable. 
See Supplementary Figure S4 for the average impact on performance in our platform.

Looking at the confirmation bias and distance panels in Fig. 4, we first notice that, in contrast to confirma-
tion bias having the most impact on the weights that humans assign to machines, their effect on the accuracy 
is marginal and most importantly, driven mostly by the low-quality models. The intuition behind this is that if 
a high-quality model is confirming someone’s prior beliefs, then both the model and the human prior must be 
accurate. However, when a low-quality model confirms the priors, then trusting the model can only decrease 
accuracy. Thus, we conclude confirmation bias in our environment is detrimental to performance. Next, we look 
into trust in the model based on machine reputation. As expected, increased trust in the models (i.e., a lower 
coefficient) as a function of their past performance only improves accuracy when the models are helpful. What 
is important to highlight is that the potential gains of trust in reputation coming from high-quality models are 
balanced by the losses of low-quality models. We see a similar effect for the baseline influence levels, although, 
less symmetrical as the impact of low-quality effects is higher. So, unless users have a strong belief that machine 
models are going to outperform humans, high levels of trust in humans priors, as we observed, are desired. 
In terms of savviness, we find that the strategies the human forecasters deployed are able to infer the relative 

(3)
α = β1 + β2 confirming + β3 difficulty + β4 distance + β5 uncertainty + β6 reputation+ β7 helpfulness

Figure 4.   The impact of cognitive biases on forecast accuracy when exposed to high and low quality machine 
models. Each panel quantifies the impact (in terms of percentage Brier score difference) of exposing the control 
group to the machine models by changing the value of each of the coefficients (x-axis) in Eq. 3. The y-axis 
measures the difference in Brier scores, so positive values correspond to a decrease in accuracy, and negative 
values reflect an improvement. The colored lines show the medians; the shaded region depicts the interquartile 
range; the vertical line depicts the learned coefficient. The blue line depicts the impact on the questions that had 
high quality machine models, defined as those who performed better than 50% of individuals in the control 
group (i.e., “helpfulness” > 0.5); the orange line is the median change on questions with low quality machine 
models (i.e., “helpfulness”≤ 0.5).
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“helpfulness” of machine models (given the negative coefficient), and increasing this competence would have a 
positive impact on performance. Finally, we observe that difficulty and uncertainty show minimal impact and 
room for improvement.

Discussion
We investigate the problem of measuring how much trust human forecasters in a hybrid forecasting platform 
assign to a particular machine model. We develop a model that compares the forecasts of users who are exposed 
to the model with those who are not in order to learn the weight that the users assign to the model. Analyzing 
these weights helps uncover patterns about how humans interact with machine models throughout a forecast-
ing tournament. Studying the trust between humans and machines reveals that users who can identify when 
the model is helpful are more accurate. We also leverage these weights to detect confirmation bias in our system 
which is detrimental only when machine models under-perform.

We divide our cognitive hypotheses into two categories, strategic and biases. From the strategic analysis, we 
find that users engage with machine model predictions similarly to how individuals use expert advice. They use 
their own information the majority of the time and only incorporate the advice in certain situations—when the 
task is difficult3. Only the best human forecasters intuitively recognize when the model is more helpful compared 
to other questions. Our impact analysis suggests there are interventions that could improve the performance 
of our system. When the machine model works well, the model reputation and relative helpfulness show the 
most room for improvement. This provides an opportunity to improve the system by providing information to 
the human forecasters about how well the model is expected to perform for a given question, such as based on 
the data source and question format, as well as highlighting the questions that seem to be most uncertain. We 
could also develop training based on these results to aid forecasters in how to assess the performance of a model 
prospectively.

From the biases analysis, we find that confirmation bias has a stronger effect than anchoring implying that 
forecasters are influenced more by their prior than by the model prediction. Where the machine models are 
suboptimal, cognitive biases are most detrimental to the system. In these cases, users would do better to trust 
their prior and only use the model when the question is highly uncertain. These improvements can be achieved 
by nudging users in the correct direction, via interventions or statistical debasing. On the other hand, it is difficult 
to mitigate the impact of deficient prior beliefs. A more realistic intervention would be to improve the reliability 
of priors. A forecasting system can be improved by encouraging, if not requiring, human forecasters to conduct 
comprehensive research prior to making a forecast. A hybrid system could further assist users in accessing better 
information. Priors could also improve with careful matching of forecaster expertise to question topics. Addi-
tionally, providing information about which questions are more difficult for the model relative to the humans 
would help encourage anchoring on the model when it is appropriate and to do more research when it is not.

This is a first step towards quantifying the impact of algorithms on forecast generation. We acknowledge some 
limitations of our approach and propose future research directions. First, we clarify that while DeGroot’s model 
may be unrealistically simple and naive about the learning process for individual agents, we use it to model the 
change of opinion in a population, not a single individual. Our empirical validations suggest the model is a good 
approximation of the average impact of being exposed to new information in the form of machine forecasts. 
Nevertheless, future work should be devoted to modeling the heterogeneity of the population, exploring better 
approximations using Bayesian inference techniques, and using different distributions as priors like the Dirichlet.

Our ability to track user behavior over a long-term forecasting tournament allowed us to quantify how model 
influence develops over time. Unfortunately, there are trade-offs with what could be achieved in a narrow, con-
trolled environment. Primarily, it is difficult to decipher the difference between high confidence in the prior and 
low trust in the model. Both scenarios will produce an α close to 1.0. Additionally, we are unable to determine 
causality for some effects; notably, more engaged forecasters are better able to identify helpful models, or the 
ability to identify when a model is helpful makes a forecaster more accurate. We also cannot exclude that some 
factors deluge others, like we might have trouble detecting anchoring on the models because of the prevailing 
impact of confirmation bias. Future work should isolate the most relevant factors and biases in more targeted 
experimentation.

Finally, while our model is a major stride in quantifying model impact, we urge caution in generalizing to 
other settings. Research on trust in automation and algorithms often makes an assumption that all algorithms 
should be treated similarly. Trust in a model is governed by the ability of the model to serve the user’s needs. 
However, trust in humans and organizations is capricious and easily lost65. The results apply only to situations 
with similar model performance relative to humans. Appreciable changes to the structure or quality of models 
should alter trust in the models appreciably. Future research should explore how trust can be manipulated with 
increased transparency about the models’ past performance as well as studying the factors that affect how detect-
able model quality is to human judges.

As machine learning continues to progress, introducing data-driven algorithmic predictions to aid human 
decisions will become ubiquitous. For example, in bail decisions, large welfare gains are predicted by integrating 
machine predictions in the decision making process66. Algorithmic predictions are widely believed to outperform 
human predictions, and much attention has been devoted to the fact that humans fail to adjust their original 
judgments to incorporate the new information given to them. Yet, algorithms are far from perfect and do not 
necessarily beat humans in some deeply uncertain settings. Our results shed new light on the importance of 
accounting for situational factors that influence model reputation as well as biases in processing and aggregating 
evidence. In this setting, where model and human performance are comparable, the success of certain strategies 
and biases depends on their relative performance. The ability to detect when a model will be helpful is closely 
associated with the ability to make accurate forecasts, and overconfidence on algorithms may lead to detrimental 
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results. A deeper understanding of the interaction of multiple cognitive biases is needed to build the path for 
human–machine hybrid decision systems.

Methods
Experimental design.  The study was approved by the ethics committee of the USC University Park Insti-
tutional Review Board (USC UPIRB # UP-17-00527). Methods were carried out in accordance with relevant 
guidelines and regulations. Subjects gave written informed consent prior to participation. Participants were 
recruited by the Intelligence Advanced Research Projects Activity (IARPA) HFC Test and Evaluation Team. Par-
ticipants participated on a voluntary basis and did not receive compensation for their participation.

All of the forecasting problems in SAGE take the following form. First, each question pertains to a quantity. 
For example, the question pertains to a price prediction of Japan’s Nikkei 225 index. A list of all questions can 
be seen in Supplementary Table S2. Second, there is a time span for the questions to be answered. For a given 
question, these times are fixed for all users across the system. Third, the resolution criteria provides the user 
with an explicit link to the piece of evidence that will be used to decide the correct answer to the question, in 
this example Google Finance. Finally, users enter their forecasts by assigning a probability to a set of answer 
options. Each question contains between 2 to 5 answer options, inclusive. The answer options are non-overlapping 
and are generated based upon historical data values for the quantity in question. Users enter their forecasts by 
assigning a probability to each answer option. When the question closes, exactly one answer option is selected 
as the correct answer.

In Fig. 5a, we see information shown in the control condition. In this condition, users are exposed to the 
historical data of the quantity that they are asked to forecast in the form of a chart. The chart shown in the figure 
is the only information they are shown; no additional information such as summary statistics are provided. 
Furthermore, this chart is exactly what users on the site see.

Figure 5b shows additional information shown in the treatment condition. Here, users see all of the informa-
tion in the control condition, but the historical data is augmented with a machine prediction. The green line 
shows the machine model’s prediction about the quantity, and the shaded green region around it is the 95% 
confidence interval. This additional information can be used by the forecasters in generating their prediction, 
but it is not required or encouraged beyond the display of this plot.

User recruitment.  The participants of the study were recruited through public recruitment carried out on 
blogs, web sites, and other geopolitical forecasting platforms. Each member of this outsourced pool of people 
was randomly assigned to either the treatment or control condition. Recruitment was done exclusively before 
the beginning of the study. The study lasted approximately 7 months, in which new questions were added to 
the platform each week. Participation was unpaid and voluntary and relied purely on the engagement of users. 
Engagement was encouraged through the use of weekly emails notifying users of new questions. On the platform 
itself, a leaderboard was maintained to give credit to users who made accurate forecasts. Supplementary Table S1 
shows a summary of the participant in each of the conditions and the number of total predictions made. Sup-
plementary Figures S1–S2 depicts the demographic characteristics of the participants. We conducted a survival 
analysis to confirm that users in each condition showed no significant difference in attrition (see Supplementary 
Figure S5). Providing access to machine models did not influence engagement meaningfully.

Machine predictions.  Given that questions covered a broad set of geopolitical topics and different data 
sources, we used a general approach to forecast time series. Specifically, we use the AutoRegressive Integrated 
Moving Average (ARIMA) model to produce machine forecasts from the historical data relevant to each 
question. The parameter selection for the ARIMA model was done automatically using a standard R-package 

Figure 5.   Comparison of the information displayed in the two conditions in the SAGE platform on the same 
question. Panel A is our control condition which had access to historical data charts. Panel B is our experimental 
condition which also had access to machine model predictions.
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described in67. Recently, the M4 competition measured the performance of machine models across over 100,000 
problems, many related to the geopolitical events discussed in this paper. They found that general models, like 
the ARIMA one used in this work, perform the best across a wide array of problems, even in comparison to more 
complex machine learning models68,69.

While ARIMA is often used for obtaining pointwise estimates, here we need to generate probabilistic forecasts 
over the possible answers, i.e., the answer options shown in Fig. 5b. We do this by calculating the prediction inter-
vals under the somewhat standard assumption that the residuals are normally distributed and uncorrelated with 
each other. The resulting probabilistic forecasts are then shown to the human forecaster as indicated in Fig. 5b.

As new data for an active question became available, or existing data was updated, we updated the machine 
models with the latest data. This is done so that, in the treatment condition, the machine model that is presented 
to the users is based on the most recent version of the data. In both conditions, this is done so that the forecasters 
can make an informed forecast using the latest historical data.

An important note about our machine models. Most of the experimental work in the literature assume that 
machine models are superior to humans26,50. This is not true in this work. Due to the difficulty in predicting 
outcomes of geopolitical events, there are problems where machines under-perform compared to humans. Part 
of our analysis will focus on humans’ ability to identify models that performed poorly.

Model estimation.  Here, we formalize how to quantify the average weight that a population of forecasters 
puts on the machine models. Let Xi,t ,Yi,t be the prior and realized forecast of agent i at time t. Agent i arrives and 
his forecast is influenced by the current machine forecast Mt as follows,

where the key idea is to use the control group to estimate the group prior beliefs Xt . Thus, agents’ forecasts when 
exposed to machine models follows the following distribution,

We can now formulate the probability density, under the model, of seeing data (y1,m1), (y2,m2), . . . (yn,mn),

where V = (yi − αµt − (1− α)mt) . Then, to estimate the parameter α for each question, we use a non-linear 
optimization algorithm to maximize the log-likelihood. To avoid problems with the sparseness of data and 
singular matrices, we transform questions with multiple answer options into a binary question where the two 
answer options correspond to the probability of the correct option and the probability of the incorrect option, 
respectively.

Time window length.   Given that the duration of the questions varies greatly (mean is 53 days and stand-
ard deviation is 33) and longer questions have sparser forecasts, we use three different settings for the length of 
the time window when estimating on each question. Time windows with less than four forecasts per condition 
were discarded. Our three approaches consisted of: (1) Using a weekly rolling window; (2) Utilizing a rolling 
window of length equal to one fourth of the duration of each question. This setting is useful for long questions 
that have sparse forecasts; (3) Applying the maximum between weekly or quarterly time windows. Results pre-
sented here are using the last approach, however, the conclusions are consistent across all three approaches (Sup-
plementary Figures S6–S8 depict the results for all three settings).

Independent variables.  For evaluating accuracy, we extend the notion of Brier scores70 to account for 
ordinal questions. To address the fact that some forecasting questions have ordered outcomes, for example pre-
dicting the price of the Nikkei, we use a variant of the Brier score that uses the cumulative probabilities instead 
of the densities71.

Definition 1  (Brier Score). Given a question of duration T, forecasts pt = (pi,t , p2,t , . . . , pn,t) , 1 ≤ t ≤ T , and 
the actual outcome o ∈ �n , we use the Brier score B(p) as a measure of accuracy:

We define a dummy variable, ’confirming’, to represent whether the machine is supporting the beliefs of the 
group according to Definition 2 or not.

Definition 2  (Confirmation Bias). Let p = (p1, p2, . . . , pn) be a probability forecasts, we define 
x = (x1, x2, . . . , xn) ∈ �n as the closest extreme (i.e., where all the probability mass is assigned to one option). 
Formally,

Yi,t = αXi,t + (1− α)Mt

Xi,t ∼ N (µt ,�t),

Yt ∼ N (αµt + (1− α)Mt ,α
2�t).
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We define a machine forecast m to be confirming one’s prior beliefs if the new information is closer to your 
extreme probability than your priors, i.e.,

Skill	� Dummy variable representing if a user belongs to the top or lower 50th percentile on a 
set of independent forecasting questions.

Uncertainty	� Defined as the average of the diagonal elements in the covariance matrix for users fore-
casts from the control group.

Difficulty	� Average Brier score of users’ forecasts from the control group (i.e., priors beliefs ).
Confirming	� Confirmation Bias (Definition 2) between the model’s forecasts and the mean forecast 

from the treatment group.
Confirming	� Dummy variable representing the confirmation bias (Definition 2) between the model’s 

forecasts and the mean forecast from the treatment group.
Helpfulness	� Defined as the percentage of users from the control group that had an inferior perfor-

mance compared to the machine model.
Lifetime	� The percentage of days out of the total that a question has been open for forecasts.
Distance	� Average Euclidean distance, using the cumulative probabilities, between the machine 

model’s forecasts and the users’ forecasts from the control group.
Machine reputation	� Past performance of the machine models. Defined as the negative of the average Brier 

Score of the machine forecasts for questions that had resolved by the beginning of the 
current question.

Data availability
The data that support the findings of this study are available from the corresponding author upon request.
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