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ABSTRACT
Atg8-family proteins are the best-studied proteins of the core autophagic machinery. They are essential for
the elongation and closure of the phagophore into a proper autophagosome. Moreover, Atg8-family
proteins are associated with the phagophore from the initiation of the autophagic process to, or just prior
to, the fusion between autophagosomes with lysosomes. In addition to their implication in
autophagosome biogenesis, they are crucial for selective autophagy through their ability to interact with
selective autophagy receptor proteins necessary for the specific targeting of substrates for autophagic
degradation. In the past few years it has been revealed that Atg8-interacting proteins include not only
receptors but also components of the core autophagic machinery, proteins associated with vesicles and
their transport, and specific proteins that are selectively degraded by autophagy. Atg8-interacting proteins
contain a short linear LC3-interacting region/LC3 recognition sequence/Atg8-interacting motif (LIR/LRS/
AIM) motif which is responsible for their interaction with Atg8-family proteins. These proteins are referred
to as LIR-containing proteins (LIRCPs). So far, many experimental efforts have been carried out to identify
new LIRCPs, leading to the characterization of some of them in the past 10 years. Given the need for the
identification of LIRCPs in various organisms, we developed the iLIR database (https://ilir.warwick.ac.uk) as
a freely available web resource, listing all the putative canonical LIRCPs identified in silico in the proteomes
of 8 model organisms using the iLIR server, combined with a Gene Ontology (GO) term analysis. Addition-
ally, a curated text-mining analysis of the literature permitted us to identify novel putative LICRPs in mam-
mals that have not previously been associated with autophagy.
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Introduction

Autophagy is a cellular catabolic process allowing for the degra-
dation of numerous cytoplasmic components in a controlled
and specific manner through the action of protein receptors
that interact with Atg8/LC3/GABARAP-family proteins (here-
after refers as ‘Atg8-family proteins’).1

The term selective autophagy has been coined to refer to the
targeted degradation of organelles (mitophagy, reticulophagy
or pexophagy),2-4 bacteria and viruses (xenophagy),5 ribosomes
(ribophagy),3 lipid droplets (lipophagy)6 and protein aggregates
(aggrephagy).7 Due to the large variety of substrates, selective
autophagy employs various receptors able to recognize and
tether specific substrates to phagophores.

Various studies pointed out that the interaction between
receptors and Atg8-family proteins is mediated by an LC3-inter-
acting region (LIR), also known as LC3 recognition sequence
(LRS) or Atg8-interacting motif (AIM).8-15 Thus, the presence of
a LIR appears as a hallmark of the Atg8-interacting proteins.

The LIR corresponds to the shortest sequence required for
the interaction with an Atg8-family protein. Previously
described as the WxxL motif (where x can be any amino acid),

we and others recently extended this sequence to 6 amino acids
based on the multiple alignment of LIR sequences from pro-
teins described to interact in a LIR-dependent manner with
Atg8-proteins.10,16,17 Based on the in silico analysis of experi-
mentally verified functional LIR motifs, we redefined the
sequence of the LIR motif. The resulting consensus sequence—
referred to as the xLIR motif—is (ADEFGLPRSK)(DEGMSTV)
(WFY)(DEILQTV)(ADEFHIKLMPSTV)(ILV), where the resi-
dues marked in bold (positions 3 and 6) correspond to the
most crucial residues for the interaction with Atg8-family pro-
teins. An xLIR motif overlapping a region with the potential to
transit from a disordered to an ordered state provides a reliable
candidate for a functional binding motif.10,17,18

In addition to selective autophagy receptors, Atg8-family
proteins can bind a variety of proteins in an LIR-dependent
manner. Indeed, many LIR motif-containing proteins (LIRCPs)
are required for the formation of the autophagosome,16,19-22 or
vesicular transport,23,24 or they are proteins that are directly
targeted to the phagophore for autophagic clearance.25-27

It is worth mentioning that LIR motif-independent modes of
interaction with Atg8-family proteins have also been reported
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both in selective autophagy receptors and in other autophagy-
related proteins.28

In this report, we describe the use of the iLIR server17 com-
bined with a Gene Ontology (GO) term analysis to sort the
genes from 8 model organisms (Arabidopsis thaliana, Caeno-
rhabditis elegans, Danio rerio, Gallus gallus, Homo sapiens,
Mus musculus, Rattus norvegicus and Saccharomyces cerevisiae)
encoding proteins containing at least one xLIR motif inside an
intrinsically disordered region. The data have been collected in
the iLIR database (https://ilir.warwick.ac.uk), with the aim to
provide a useful resource to researchers interested in studying
the Atg8-family proteins interactome. Additionally, a curated
text-mining analysis of the literature permitted us to sort
human and mouse proteins known to be a part of the Atg8-
family proteins interactome or to be involved in pathways
linked to autophagy, and also to identify novel putative LICRPs
that have not been associated with autophagy previously.

Results and discussion

Content of the iLIR database

The iLIR database is a web resource freely available at
https://ilir.warwick.ac.uk. The website has been designed to
give the user an easy way to browse available data and perform
BLAST-based searches using a protein sequence of interest
against part or all the sequences available in the database for
proteins containing a similar xLIR motif. The website also pro-
vides hyperlinks to the UniProt database for each entry and the
possibility to download the data.

Within the iLIR database different functionalities are
organized under specific menus. The ‘LIRCPs’ menu gives

access to the full list of putative LIRCPs listed in the data-
base for the different model organisms analyzed. For a spe-
cific organism, data are presented in a table containing the
following information for each entry: (i) the UniProtKB
accession of the protein, (ii) the position, sequence and
position-specific scoring matrix score of the xLIR,17 (iii)
similar LIR motif in experimentally characterized LIRCPs
(if any), (iv) the name of the protein, and (v) the UniProt
derived GO terms associated with the molecular function,
biological process and cellular component classes. The full
table of data can be downloaded as an Excel file (Fig. 1).

The ‘Search’menu offers the user to screen their sequence of
interest for the presence of LIR (xLIR and WxxL) motifs using
the iLIR server as described elsewhere.17 In addition, the user
has the possibility to search in the database using specific key-
words: gene name, protein description or UniProt identifier.
The user may also look directly for the presence of similar pro-
teins with the ‘BLAST’ page using PSI-BLAST.29 The search
can be run against Swiss-Prot and TrEMBL entries from the
UniProt database (a total of 276,499 FASTA sequences). The
results page shows pattern positions in the query sequence and
the corresponding matching positions in the subject sequences
from the database along with the alignments between them.
Red asterisks match the position of the conserved xLIR motif
in the subject sequences. Subject sequences matched are named
by their UniProtKB accession number and a link permits the
redirection to the UniProtKB page for each entry (Fig. 2).

Finally, the ‘GO Annotation’ menu provides pre-computed
information relative to the GO terms distribution for the
LIRCPs identified for each organism. Three types of analyses
are available: (i) The ‘GO Slim’ submenu directs users to a list
of reduced GO terms and their abundance for each category in

Figure 1. Screenshot of an iLIR database data page. In the ‘LIRCPs’ menu, the user can access the full data available in the database for each model organism. The data are
arranged in a table giving various information for each entry, such as the Uniprot Accession ID and protein name, the position and sequence of the xLIR as well as the
position-specific scoring matrix (PSSM) score and the similarity of other validated LIR motifs. The data can be downloaded directly.
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a specific organism. The user can sort the entries based on their
counts or adjusted p-value. (ii) The ‘Distribution’ submenu
directs users to a bar chart view of the GO terms distribution
for each organism. (ii) The ‘Enrichment’ submenu permits the
visualization of the proportion of entries for each GO term for
the LIRCPs for any pair of species available in the iLIR database
(Fig. S1).

Prediction of the LIR-containing proteins (LIRCP)
in the proteome of model organisms

Using iLIR, a computational approach for predicting LC3-
interaction regions in proteins,17 we identified putative LIRCPs
from 8 model organisms (see Methods for details). We found
that the proportion of putative LIRCPs varies between 4% to

Figure 2. Screenshot of the iLIR database BLAST results page. Using the ‘BLAST’ menu, the user has the possibility to blast the sequence of interest against the
sequences for one or all organisms available in the database in order to identify similar putative LIRCPs. The results page gives the list of similar sequences
and the position of the putative LIR motif is indicated with red asterisks. The ‘sp’ and ‘tr’ preceding the FASTA header of the sequences producing a significant
alignment refer to UniProtKG/Swiss-Prot (reviewed and manually annotated sequences) and UniProtKG/TrEMBL (unreviewed, automatically annotated sequences
from large-scale screens), respectively.
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7% of the total ORFs for each organism but we observed no
correlation between the proportion of LIRCPs and the size of
the proteome (number of ORFs) (Fig. 3 and Table 1).

Text-mining analysis for the identification of novel LIRCPs
in mammals

In order to further investigate novel putative LIRCPs in mam-
mals, we first concentrated on the human and mouse pro-
teomes. Our batch analysis lead to the identification of 6087
and 4218 entries, respectively. Consecutively to the application
of the statistical significance for each GO slim category for
these organisms, we decided to eliminate the entries sorted as
‘non significant’ (adjusted p-value > 0.1) from the rest of the
analysis. This procedure permitted us to sort a total of 1766
and 1976 entries for the human and mouse proteome, respec-
tively, with a low to high significance level (p-adj � 0.1). We
made use of these significant hits for further analysis.

Previous studies have identified and described 31 proteins
encoded by the human, yeast and Arabidopsis thaliana
genomes involved in autophagy through their interaction with
at least one protein belonging to the Atg8-family and contain-
ing a functional, verified LIR motif.16,28,30 However, the LIR
motifs of a few of these proteins are not contained within an

intrinsically disordered region such as human ATG4B or yeast
Atg3 and Atg19.17 From the 31 verified LIRCPs, all 21 proteins
with a LIR motif within an anchor region have been success-
fully identified in our computational analysis, thus validating
the sorting procedure (these proteins constitute the group ‘A’
in the rest of the text) (Table S1).

From these proteins, we extracted their associated GO slim
categories for the 3 GO classes (Molecular Function, Biological
Process and Cellular Component). Totally, 26 different GO
terms were obtained (6 for the Molecular Function class, 8 for
the Biological Process class and 12 for the Cellular Component
class) (Fig. 4 and Table S1). We noticed that only 4 of these
proteins have been assigned to the GO term ‘GO:0006914jau-
tophagy’ as a Biological Process; other proteins have been
assigned to GO terms that can be related to autophagy such as
GO:0005739jmitochondrion, GO:0030904jretromer complex
(Cellular Component), GO:0006810jtransport (Biological Pro-
cess), GO:0005515jprotein binding and GO:0042277jpeptide
binding (Molecular Function). Additionally, various GO terms
not directly related to autophagy have been pinpointed such
as GO:0005634jnucleus, GO:0005576jextracellular region,
GO:0009986jcell surface, GO:0006457jprotein folding,
GO:0007049jcell cycle, GO:0004871jsignal transducer activity
or GO:0042562jhormone binding. This suggests that many
proteins whose original function is not related to autophagy
might interact with Atg8-family proteins in a way that remains
unknown. In order to test this assumption, we decided to
screen all the putative LIRCPs with a significant adjusted p-
value (sorted as previously described) for the human and
mouse proteomes, which are associated with at least one of the
26 GO terms correlated with the 21 experimentaly validated
human and yeast LIRCPs. Over 1,000 entries have thus been fil-
tered. A manually curated search of these entries using
PubMed, permitted us to sort 18 proteins already described to
interact with an Atg8-family protein, irrespective of further evi-
dence of a direct interaction (referred to hereafter as group ‘B’,
Table S2). Three of these proteins—GPSM1/AGS3,31,32

NCOA433 and MAPK8IP1/JIP134—had been shown to interact
directly (i.e., through in vitro studies) with some members of
the Atg8-family. The 15 remaining proteins—PICALM,35

PCM1,36 STAT1,37,38 UBQLN1 and UBQLN2,39,40 PEG3,41,42

HTT,43 SYNPO2,44 UBR4,45,46 MAP1S,47 BCL10,48 OFD1,36

FNIP2,49 APC50 and CSPG450—have been identified to func-
tion in complexes containing Atg8-family proteins in cellulo by
co-immunoprecipitation and/or colocalization experiments
(Table S2). In line with the functions of the LIRCPs containing
experimentally verified LIR motifs (Table S1), it appears that

Figure 3. Representation of the number of ORFs (bar chart, plotted on the left axis)
and percentage of putative LIRCPs identified (dot chart, plotted on the right axis)
for each of the model organisms analyzed.

Table 1. Summary of the numbers of putative LIRCPs and LIR identified for the 8 model organisms studied.

# ORF # LIRCPs LIR motifs % LIRCPs Ratio #LIRs:LIRCP

Human Homo sapiens 88479 5204 6087 5.88 1.17
Mouse Mus musculus 51130 3599 4218 7.04 1.17
Zebrafish Danio rerio 41102 2571 3007 6.26 1.17
Arabidopsis Arabidopsis thaliana 33350 1458 1592 4.37 1.09
Rat Rattus norvegicus 28849 2068 2425 7.17 1.17
Worm Caenorhabditis elegans 26595 1290 1526 4.85 1.18
Chicken Gallus gallus 17864 1215 1400 6.80 1.15
Yeast Saccharomyces cerevisiae 6693 332 363 4.96 1.09
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Figure 4. Distribution of the GO terms of the 21 human proteins listed in Kalvari et al. which have a verified xLIR in an intrinsically disordered region (see also Table S1).
MF, Molecular Function; BP, Biological Process; CC, Cellular Component.

Figure 5 . Distribution of the GO terms of the 756 human entries that have not been linked to autophagy-associated processes (see also Table S4). MF, Molecular Func-
tion; BP, Biological Process; CC, Cellular Component.
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the proteins interacting with Atg8-family members we sorted
can be related to the autophagy process in various ways. Some
of these Atg8-interacting proteins are selective autophagy
receptors for the targeting of specific cargos (e.g., NCOA4, PIC-
ALM, PCM1, STAT1),33,35,37,38 whereas others are degraded
themselves by autophagy (e.g., BCL10, OFD1).36,48 Yet some
others are implicated in the regulation of the autophagic pro-
cess (e.g., GPSM1/AGS3, MAPK8IP1/JIP1, UBQLN, PEG3,
HTT, SYNPO2, UBR4, MAP1S, FNIP2) (Table S2).32,34,39-47,49

In addition, our text-mining analysis permitted us to sort
256 supplementary entries corresponding to proteins that have
been demonstrated to be involved in the regulation of auto-
phagy, the degradation of specific substrates, or to be them-
selves degraded by autophagy without any evidence of
interaction with Atg8-family proteins (referred to hereafter as
group ‘C’, Table S3). These proteins have been described to
take part in a broad range of processes related to autophagy,
such as immunity (NFKBIA/IkBa,51 IRF1 [interferon regula-
tory factor 1],52,53 PPP1R13L/iASPP,54 EIF2AK2/PKR,55

RELA/NF-kB-p6556,57) or oncogenesis (BRCA1,58,59 MYC,60,61

RB1 [retinoblastoma 1],62,63 TSC2/Tuberin,64 FOXO1,65

XIAP66,67). A few posttranslational modification enzymes have
also been identified, such as 2 ubiquitin ligases (HERC168,69

and XIAP66,67), 4 kinases (PKD2/polycystin 2,70,71 MARK4,72

SIK2,73 CAMKK2/CaMKKb74), one deacetylase (HDAC475),
one methyltransferase (EHMT2/G9a76,77) and one phosphatase
(PTPN13/PTPL178) (Table S3).

Finally, we sorted proteins that have not been shown to be
linked to autophagy or associated pathways, totaling for the
human proteome 756 entries sharing their GO terms with the
21 human and yeast proteins that contain experimentally veri-
fied LIR motifs in an intrinsically disordered region (refers
hereafter as group ‘D’, Table S4). The most represented GO
terms are GO:0005634jnucleus (80.16%) for the Cellular Com-
ponent class, GO:0005515jprotein binding (40.87%) for the
Molecular Function class and GO:0016032jviral process
(4.76%) for the Biological Process class (Fig. 5). This observa-
tion suggest that these proteins are promising candidates for
further investigation.

Conclusion

Autophagy is a vital catabolic process for the maintenance of
cell and tissue homeostasis by the selective degradation and
recycling of macromolecules and organelles. In recent years,
great efforts have been made for the identification and charac-
terization of new receptors for selective autophagy, leading to
the discovery of the LC3-interacting region.8-10 Additional
studies showed that LIR-containing proteins (LIRCPs) partici-
pate in a broad range of autophagic functions such as the selec-
tive targeting of cargo for degradation, the initiation and
maturation of the autophagosome or vesicular transport.79

Given the need for the identification of novel LIRCPs, we used
the iLIR server to generate the iLIR database, a comprehensive
bioinformatics resource for all the putative LIRCPs identified
from the proteome of 8 model organisms. Our comprehensive
manual literature analysis of human and mouse proteomes
shows that our database includes already experimentally vali-
dated LIRCPs and novel putative functional LIRCPs.

Of course, there are some limitations to the iLIR database.
At the moment, the iLIR server is not able to predict the nonca-
nonical LIR motifs such as the one allowing for the interaction
between CALCOCO2/NDP52 and LC3C.80 Therefore the iLIR
database cannot currently offer the list of unconventional
LIRCPs.

In summary, we anticipate that the iLIR database will help
autophagy researchers to test their candidates of interest, and
elucidate the full set of LIRCPs in eukaryotes.

Methods

Proteomes of model organisms and prediction
of the LIR-containing proteins (LIRCPs)

We selected 8 model organisms: Arabidopsis thaliana, Caeno-
rhabditis elegans, Danio rerio, Gallus gallus, Homo sapiens,
Mus musculus, Rattus norvegicus and Saccharomyces cerevisiae.
The protein sequences encoding the complete genomes of these
model organisms were obtained from the UniProt database
(Uniprot.org, (2014). UniProt. [online] Available at: http://
www.uniprot.org/ [Accessed 06 February 2014]). A stand-alone
version of iLIR was employed to process the data in batch
mode and predict LIRCPs based on the presence of at least one
xLIR within an intrinsically disorderd region.

Gene Ontology (GO) enrichment analysis

The GO enrichment analysis was performed by downloading
the ID (identifiers) mapping data for each organism from Uni-
Prot. These data contains cross-references for a given UniProt
identifier with mappings to multiple databases such as Entrez-
Gene, RefSeq, GI, PDB, GO, PIR, NCBI-taxon, UniGene etc.
each recorded as an identifier of the respective database. We
also downloaded the Gene Ontology Protein Information
Resource slim generic categories from the online GO database
(Geneontology.org, (2014). GO Database. [online] Available at:
http://www.geneontology.org/ontology/subsets/goslim_generic.
obo [Accessed 19 June 2014].).

Using the mapping, GO slim and UniProt files together with
the list of LIRCPs for a model organism, we generated GO class
distribution files with counts of proteins having a particular
GO slim category. One distribution file for each GO top level
hierarchy (i.e., Biological Process, Cellular Component and
Molecular Function) has been generated.

We assessed the statistical significance of each GO slim cate-
gory of the model organisms using a hypergeometric test,
employed through the Perl module Math::Pari (Search.cpan.
org, (2014). Math-Pari-2.010808 Retrieved from: http://search.
cpan.org/CPAN/authors/id/I/IL/ILYAZ/modules/Math-Pari-
2.010808.zip.) based on the following criteria:

� Number of proteins assigned to a particular GO slim cate-
gory in the model organism (n)

� Number of putative LIRCPs assigned to the same GO slim
category in the model organism (x)

� Total number of proteins in the model organism (N)
� Total number of putative LIRCPs in the model organism

(k)
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The formula used for predicting the probability using hyper-
geometric test (h) is given below:81

h x;N; n; kð Þ D ½kCx�½N¡kCn¡x� 6 ½NCn�:

To control the false discovery rate, we have also generated
p-adjusted values employing the Benjamini-Hochberg method
from Perl’s Statistics::Multtest module (Search.cpan.org,
(2014). Statistics-Multtest-0.13. Retrieved from: http://search.
cpan.org/CPAN/authors/id/J/JO/JOKERGOO/Statistics-Mult
test-0.13.tar.gz.). Following the hypergeometric test and false
discovery rate correction, the GO distribution files were
updated with p-value and p-adjusted values. Then, the GO slim
categories data of model organisms was further classified based
on different cut-offs for p-adjusted (p-adj) values as:

(i) Highly significant, (p-adj <D 0.01)
(ii) Significant (p-adj > 0.01 and P-adj <D 0.05)
(iii) Low significance (p-adj > 0.05 and p-adj <D 0.1)
(iv) Not significant (p-adj > 0.1)

Web application

The iLIR database has been developed for making the list of
putative LIRCPs from the complete proteome of selected model
organisms available for researchers worldwide. This web
resource is based on well-established web technologies, includ-
ing HTML, CSS, JavaScript, PHP (v5.3.28), JpGraph (v3.5.0b1)
(Jpgraph.net, (2014). v3.5.0b1 Retrieved from: http://jpgraph.
net/download/download.php?pD5) and the Apache web server
technologies to develop and serve the web application.

Abbreviations

AIM Atg8-interacting motif
GO gene ontology
LIR LC3-interacting region
LIRCP LIR-containing protein
LRS LC3 recognition sequence
MAP1LC3/LC3 microtubule associated protein 1 light

chain 3
xLIR extended LIR motif
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