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Abstract

What determines the average length of a queue, which stretches in front of a service station? The answer to this question clearly
depends on the average rate at which jobs arrive at the queue and on the average rate of service. Somewhat less obvious is the fact
that stochastic fluctuations in service and arrival times are also important, and that these are a major source of backlogs and delays.
Strategies that could mitigate fluctuations-induced delays are, thus in high demand as queue structures appear in various natural
and man-made systems. Here, we demonstrate that a simple service resetting mechanism can reverse the deleterious effects of large
fluctuations in service times, thus turning a marked drawback into a favorable advantage. This happens when stochastic fluctuations
are intrinsic to the server, and we show that service resetting can then dramatically cut down average queue lengths and waiting
times. Remarkably, this strategy is also useful in extreme situations where the variance, and possibly even mean, of the service time
diverge—as resetting can then prevent queues from “blowing up.” We illustrate these results on the M/G/1 queue in which service
times are general and arrivals are assumed to be Markovian. However, the main results and conclusions coming from our analysis
are not specific to this particular model system. Thus, the results presented herein can be carried over to other queueing systems:
in telecommunications, via computing, and all the way to molecular queues that emerge in enzymatic and metabolic cycles of living
organisms.
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Significance Statement:

Resetting can expedite the completion of random processes. From stochastic optimization, via first-passage and search, and onto
chemical reactions: it has been repeatedly demonstrated that when stochastic fluctuations in the completion time of a random
process are large—stopping the process and starting it anew will shorten its completion time. Here, we demonstrate how this
general principle can be utilized to dramatically lower waiting times and improve overall performance of queueing systems (natural
and man-made). Random service time fluctuations are notorious for causing major backlogs and delays in such systems. Yet, we
show that when these fluctuations are intrinsic to the server—a remarkably simple service resetting protocol can reverse their
deleterious effects and significantly cut down queues and waits.

Queueing theory is the mathematical study of waiting lines (1, 2).
Ranging from the all familiar supermarket and bank, to call cen-
ters (3, 4), airplane boarding (5, 6), telecommunication and com-
puter systems (7–9), production lines and manufacturing (10), en-
zymatic and metabolic pathways (11–14), gene expression (15–19),
and transport phenomena (20–23), waiting lines and queues ap-
pear ubiquitously and play a central role in our lives. While the
teller at the bank works at a (roughly) constant rate, other servers,
e.g. computer systems (9), and molecular machines like enzymes
(24–26), often display more pronounced fluctuations in service
times. These fluctuations have a significant effect on queue per-
formance (1, 2): higher fluctuations in service times will result in

longer queues as illustrated in Fig. 1(A). Service time variability
is, thus a major source of backlogs and delays in queues (9), and
this problem is particularly acute when encountering heavy tailed
workloads (27).

Different strategies have been developed to mitigate the detri-
mental effect caused by stochastic service time fluctuations.
In particular, when considering single server queues, various
scheduling policies can be applied to reduce waiting times. For
example, computer servers can be designed to serve smaller jobs
first, rather than by order of arrival. While this policy can be
criticized from the standpoint of fairness, it does reduce average
waiting times by preventing situations where typically sized jobs
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Fig. 1. Backlogs and delays caused by service time fluctuations can be mitigated with service resetting. Panel (A): the mean number of agents—jobs,
customers, molecules, and so on—in a queue is sensitive to stochastic fluctuations in the service time provided by the server (computer, cashier,
enzyme, and so on). For a given arrival rate and mean service time, the queue stretching in front of a server whose service time distribution is more
variable will be longer on average. This fact is schematically illustrated by the blue and red servers whose service time distributions have equal means.
Yet, compared to the blue server, the larger variance of the red service time distribution leads to longer queues. Panel (B): in this paper, we show that
when large service time fluctuations are intrinsic to the server, resetting service and starting it anew can dramatically improve performance. This is
schematically illustrated by the red server whose service time distribution changed following the application of a service resetting policy (to be
described in the main text). Comparing to panel (A), it can be seen that both the mean and variance of the red service time distribution have been
reduced due to service resetting. The net outcome is a significant performance gain, which leads to shorter queues and waiting times.

(which are common) get stuck behind a single job that is very large
(9). In situations where service can be stopped and continued from
the same point at a later time, one can further improve perfor-
mance by implementing a policy in which only the job with the
shortest remaining service time is served (28). This policy can be
proven optimal under certain conditions (29).

The problem with the above-mentioned scheduling policies is
that they are ill-equipped to deal with situations where fluctua-
tions in service times are intrinsic to the server itself. These are in
fact prevalent. For example, stochastic optimization algorithms
can take wildly different times to solve two instances of the ex-
act same problem (30). Similarly, the time it takes an enzyme to
catalyze a given chemical reaction varies considerably between
turnover cycles — despite the fact that the incoming (substrate)
and outgoing (product) molecules are chemically identical (24–26).
Crucially, in these and similar cases the total service time of an in-
coming job is unknown a priori and the time remaining for a job in
service cannot be determined by simple observation. Size-based
scheduling policies are, thus impossible to implement, which
calls for the development of new and novel approaches to the
problem.

In this paper, we propose a complementary approach to solve
the problems caused by service time fluctuations in queueing sys-
tems. Namely, we show that implementing a simple service reset-
ting policy can reverse the deleterious effect of stochastic fluc-
tuations when the latter are large and particularly harmful. The
policy, which consists of random or deterministic resetting of the
service process, may seem counterintuitive at first. After all, no
benefit can possibly come from doing the exact same thing all
over again. However, here we show that when service time fluctu-
ations are intrinsic to the server itself, in the sense that jobs whose
service has been reset are assigned fresh service times, service re-
setting can be used to drastically improve queue performance as
illustrated in Fig. 1(B). Indeed, it has recently been shown that re-
setting has the ability to expedite the completion of random pro-
cesses: from stochastic optimization (31–33), via first-passage and

search (34–39), and onto chemical reactions (40, 41), and this gen-
eral principle is, hereby, exploited in the context of queueing.

A different way in which resetting can be used to affect queue
performance is by resetting of the jobs arrival process, which is in-
teresting to consider e.g. in the context of intracellular transport
(42). However, resetting the arrival process has no affect on ser-
vice time fluctuations, which is further compounded by the fact
that in most conventional queue structures the arrival process
is extrinsic to the system and is, thus not subject to control or
optimization. We, thus focus on queues with service resetting to
which we devote this paper. Before moving forward to develop the
theory and discuss examples, we mention in passing that the con-
cept of resetting is also relevant in the context of reliability theory
(43, 44) and income dynamics (45). Resetting also appears when
considering queues with catastrophic events (46–48). Note, how-
ever, that such catastrophic events lead to mass annihilation of
jobs (agents) from the queue. On the contrary, service resetting
conserves the number of jobs in the queue, as jobs whose service
was reset would still require full service before they can leave the
system. Thus, “resetting by catastrophe” should not be confused
with the service resetting policy that is introduced and rigorously
analyzed below.

The remainder of this paper is structured as follows. In the sec-
tion “Queues: Models and Preliminaries,” we provide a brief review
of the M/G/1 queuing model for which queue arrivals are Marko-
vian and service is general. This queue will serve as the main
modeling platform of this paper. We also review the Pollaczek–
Khinchin formula, which provides the mean number of jobs in
the M/G/1 queue at the steady-state, highlighting the sensitivity
of the latter to service time fluctuations. Finally we provide a short
overview of existing scheduling strategies aimed to mitigate ser-
vice time fluctuations. In the section “Queues with Service Re-
setting,” we discuss service resetting and formulate a model for
a single-server queue with service resetting. We show that the
latter can be mapped onto a standard model of a single-server
queue without service resetting, but with a modified service time
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distribution that depends on the underlying distributions of the
service and resetting times. In particular, for the M/G/1 queue, this
fact allows us to reapply the Pollaczek–Khinchin formula to study
how the mean number of jobs in the queue depends on the reset-
ting protocol. We focus on two prominent resetting protocols for
which we provide detailed analysis: In the section “M/G/1 Queues
with Poissonian Service Resetting,” we consider Poissonian reset-
ting, i.e. resetting at a constant rate. We show that when the
variability in the underlying service time distribution is high, the
mean number of jobs in the system obtains a minimum as a func-
tion of the resetting rate. This means that resetting can drasti-
cally improve queue performance. Similarly, in the section “M/G/1
Queues with Sharp Service Resetting,” we study resetting at fixed
time intervals (a.k.a. sharp resetting), and show that while this
resetting protocol leads to similar qualitative results, the fixed
inter-resetting time duration can be tuned to perform better than
any other stochastic resetting protocol (Poissonian resetting in-
cluded). In the section “Examples,” we illustrate the general re-
sults obtained for two well-established service time distributions,
namely the log-normal and Pareto distribution, which are consid-
ered respectively in the subsections “Log-normal service times”
and “Pareto service times.” Finally, in the section “Beyond the Mean
Queue Length,” we go beyond the mean to explore how service re-
setting affects the distribution of customers in the system. In par-
ticular, we show that the z-transform of this fundamental distri-
bution can be obtained analytically for the M/G/1 queue with ser-
vice resetting. We end in the section “Conclusions and Outlook.”

In what follows we use fZ(t), qZ(t) = 1 − ∫ t
0 dτ fZ(τ ), 〈Z〉, Var(Z),

and Z̃(s) ≡ 〈e−sZ〉 to denote, respectively, the probability density
function, the survival function, expectation, variance, and Laplace
transform of a non-negative random variable Z.

Queues: Models and Preliminaries
Consider a queuing system that is composed of a queue in which
jobs await to be served, and a server which serves one job at a time
according to a First-Come, First-Served policy (FCFS). A queue can
be identified as a stochastic process whose state space is denoted
by the set N = {0, 1, 2, 3,...}, where the value corresponds to the
number of jobs in the queue, including the one being served. In
particular, an M/G/1 queue, written in Kendall’s notation (1, 2 ,9),
consists of a single server and queue to which jobs arrive accord-
ing to a Poisson process with rate λ (1, 2, 9). Thus, the M in Kendall’s
notation stands for Markovian or memory-less arrival process. No
assumptions are made on the service time of jobs, which comes
from a general distribution, hence the G in Kendall’s notation. De-
noting the service time by the random variable S (for service),
whose density we denote by fS(t), we define the service rate μ ≡
1/〈S〉. It will prove convenient to introduce the utilization param-
eter ρ = λ/μ, which gives the fraction of time the server is working
(not idle) in the steady state (1, 2, 9). The model attains a steady
state as long as the arrival rate is smaller than the service rate, i.e,
ρ < 1. For ρ > 1, the queue grows indefinitely long with time and
the system does not attain a steady state. Thus, in what follows
we will assume ρ < 1.

The number of jobs in an M/G/1 queue fluctuates with time.
Thus, it is only natural to start the discussion with the average
of this observable. The mean number of jobs 〈N〉 in the system
(queue + server) is given by the famous Pollaczek–Khinchin for-
mula (1, 2, 9)

〈N〉 = ρ

1 − ρ
+ ρ2

2(1 − ρ )

(
CV2 − 1

)
, (1)

where ρ is the utilization, and

CV2 = Var(S)
〈S〉2

, (2)

is the squared coefficient of variation, or the variability in service
time. As expected, the mean number of jobs is a monotonically in-
creasing function of the utilization, with 〈N〉 tending to infinity as
ρ → 1−. Thus, low service rates lead to long queues. Note, however,
the appearance of CV2 in the second term of Eq. (1). This indicates
that the mean length of the queue is highly sensitive to stochastic
fluctuations in the service time, which is a nontrivial effect that
can be explained by the inspection paradox (9).

From the second term in Eq. (1), we see that the mean num-
ber of jobs is a monotonically increasing function of CV2. Note,
that when CV < 1, i.e. when service time fluctuations are relatively
small, the contribution of the second term is negative, leading to
shorter queues. On the other hand, when CV > 1, i.e. when service
time fluctuations are relatively large, the contribution of the sec-
ond term is positive, leading to longer queues. Importantly, there
can be a “piling up” of jobs due to high service time variability.
This can happen, for example, if short service times are occasion-
ally followed by extremely long service times. In such situations
CV2 is large, thus resulting in long queues even in low utilization.
It is, thus apparent that service time fluctuations are central to
the behavior of the M/G/1 queue, and their effect in other queu-
ing systems is similar.

Finally, we recall that the mean waiting time 〈T〉 of a job in the
queue, i.e. the time elapsed from arrival to the end of service, fol-
lows from Eq. (1) by using Little’s law (1, 2, 9), which states 〈T〉 =
λ−1 〈N〉. Thus, we have

〈T〉 = 1/μ

1 − ρ
+ ρ/μ

2(1 − ρ )

(
CV2 − 1

)
, (3)

and note that similar to the mean number of jobs, the mean wait-
ing time crucially depends on fluctuations in service time.

To deal with the detrimental effect caused by service time fluc-
tuations several different strategies have been developed. When
considering single server queues, the main tools at our disposal
are scheduling policies (a.k.a. service policies) (9). A scheduling
policy is the rule according to which jobs are served in a queue.
For example, servers can serve jobs according to the order of their
arrival as e.g. happens in the supermarket. This simple FCFS pol-
icy seems fair when working with people as customers. However,
when considering queues of inanimate objects, fairness is not nec-
essarily the most important requirement and other service poli-
cies can also be considered.

The FCFS policy is an example of a nonsize-based policy—the
server serves jobs based on their order of arrival rather than
their size. However, in situations where jobs sizes are known, one
can utilize this knowledge to devise size-based policies such as
Shortest-Job-First (SJF). According to this policy, once free, the
server chooses to work on the job with the smallest size, and
hence also the shortest service time. In terms of the average wait-
ing time of a job in the queue, the SJF policy performs better than
the FCFS policy (9). This can be understood intuitively. In the FCFS
policy, all jobs that arrive after a very large job will suffer from
a long waiting time. This will not happen in the SJF policy, where
extremely large jobs which are rare will not be selected for service
before jobs of typical size. The latter are much more common and
since they are served first they spend less time in the queue, re-
sulting in smaller waiting times on average compared to Eq. (3).

In the SJF policy, the server chooses the smallest job waiting in
the queue each time service is complete. This approach can be
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further developed allowing the server to inspect jobs’ sizes (in-
cluding the one in service) continuously in time—constantly
searching for the job with the shortest remaining service time. In such
a queue, an arriving job can preempt the job in service if its own
service time is lower. The service of the preempted job is resumed
later, starting from the point where it was stopped. The above pol-
icy is called Shortest-Remaining-Processing-Time (SRPT) (28), and
it was used e.g in web servers to reduce the waiting time of static
HTTP requests whose sizes have been shown to follow a heavy-
tailed distribution (9). It was proved in (29), that in single-server
queues where the service time of jobs is known and preemption
is possible, the SRPT policy is the optimal policy with respect to
minimizing the mean waiting time.

Having readily available knowledge of job sizes and their re-
maining service times, as well as the ability to preempt jobs, is a
luxury not shared by all queueing systems. For example, in nonde-
terministic algorithms, e.g. stochastic optimization methods, in-
puts of similar size can render significantly different run times
(30), and the same can happen for consecutive runs of the algo-
rithm using the same input. Size-based scheduling policies like
the SJF and SRPT are then inapplicable. Instead, we will hereby
show that in such cases the intrinsic randomness of the service
process can be exploited via service resetting to achieve similar
performance goals.

Queues with Service Resetting
In the section “Queues: Models and Preliminaries,” we reviewed
the nontrivial dependence that the mean number of jobs in an
M/G/1 queue has on service time fluctuations. Namely, large rel-
ative fluctuations lead to long queues. In this section, we analyze
the effect of service resetting on the mean and variance of the ser-
vice time. We emphasize that the analysis presented in this sec-
tion is agnostic to the arrival process. Thus, the results obtained
are not specific to the M/G/1 queue and apply broadly to queues
with general arrivals.

To understand how restarting service affects the overall service
time of a job, we consider two extreme scenarios. First, consider
a situation where fluctuations in service times are extrinsic to the
server. Thus, imagine a server that serves jobs of variable size at
a constant rate. In this case, the service time is determined exclu-
sively by the job size, i.e. the bigger the job the longer the service
time, and vice versa. An example of such would be a supermar-
ket cashier counter. The teller serves the customers at a (roughly)
constant rate, and the service time is determined by the number
of items each customer has. Thus, the fluctuations in service time
originate solely from the variability in the number of items each
customer brought. Imagine now that the teller decides to restart
service from time to time. Since restart does not affect the num-
ber of items one has, this strategy is clearly detrimental. The time
already spent in service is lost, while the customer’s required ser-
vice time remains unaltered. Thus, in this case, restart results in
wasted time and delays.

Now, consider a queue in which fluctuations in service times
are intrinsic to the server, i.e. a queue in which all jobs are (roughly)
identical but the time it takes to serve a job is nevertheless ran-
dom. Example of such would be a computer server, which runs
a stochastic algorithm. Such algorithms employ probabilistic ap-
proaches to the solution of mathematical problems, e.g. optimiza-
tion. The run time of such an algorithm can vary considerably
between runs. Importantly, stochastic fluctuations in run times
come from the probabilistic solution method. This means that run

times can be different even for two identical instances of the same
problem. Thus, resetting such an algorithm in its course of action
would result in a new and random run time, contrary to the case
of a teller in a supermarket.

Another example of a queue in which fluctuations in service
time are intrinsic to the server can be found in enzymatic re-
actions. In the context of enzymes, substrate molecules can be
viewed as customers, forming a “waiting line” to the enzyme
which acts as a server. Substrate molecules are identical, and re-
quire the same type of service: a catalytic process which converts
a substrate molecule to a product molecule. Yet, at the single-
molecule level, chemistry is stochastic as thermal fluctuations
render the service (catalysis) time random. It is often the case
that a substrate molecule unbinds the enzyme without complet-
ing service (40). In this case, service is reset, and a new and random
service time is drawn upon rebinding.

Before going forward with the analysis, we once again point out
that the two scenarios presented above are extremes in which the
service time of a job is set by factors which are either completely
extrinsic or completely intrinsic to the server. More generally, one
can think of situations where a mix of extrinsic and intrinsic fac-
tors affect the service time. While such distinctions are rarely
made or considered in traditional queueing theory, they have re-
cently taken center stage in the analysis of queues with job redun-
dancies (49). As explained above, understanding the source of ser-
vice time variability is also important when considering queues
with service resetting.

We proceed to consider queues in which service time fluctua-
tions are completely intrinsic to the server. As explained above, in
these queues resetting results in a newly drawn service time that
is added to the time already spent in service. In what follows, we
will quantify the effect of resetting on the mean and variance of
the total service time. We will then go on to show that in certain
situations resetting significantly expedites service, thus improv-
ing overall performance by shortening queues. This effect will be
discussed in the next section.

Let us consider a server with service resetting. Assume that
both the service and restart times are two independent and
generally distributed random variables. The total service time
under restart, SR, is then described by the following renewal
equation

SR =
{

S if S < R,

R + S′
R if R ≤ S,

(4)

where R is a random resetting time drawn from a distribution with
density fR(t), and S′

R is an independent and identically distributed
copy of SR. To understand this equation, observe that when service
occurs before restart, SR = S. However, if service is restarted at a
time R ≤ S, then service starts over with newly drawn service and
resetting times. In this case, SR = R + S′

R.
Service can be seen as a first-passage process which ends when

a job is served. A comprehensive framework for first-passage un-
der restart was developed in (36, 37). In the following, we show
how the results obtained there can be used to gain insight on the
general performance of queues with service resetting. We note
that these results were obtained in continuous time, which will
be considered henceforth. For an analogous set of results in dis-
crete time, please see the recently developed framework for dis-
crete time first-passage under restart (50).

Starting from Eq. (4), one can obtain the probability density
of SR in Laplace space (Methods). In what follows, we will first
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consider the first two moments of this distribution. These are
given by (Methods)

〈SR〉 = 〈min(S, R)〉
Pr(S < R)

, (5)

〈S2
R〉 = 〈min(S, R)2〉

Pr(S < R)
+ 2Pr(R ≤ S)〈Rmin〉〈min(S, R)〉

Pr(S < R)2
, (6)

where min(S, R) is the minimum between S and R, Pr(S < R) is the
probability of service being completed prior to restart, and Rmin =
{R|R = min(R, S)} standing for the random restart time given that
restart occurred prior to service. Finally, recall that the variance
in the service time is given by Var(SR ) = 〈S2

R〉 − 〈SR〉2, which will be
useful in the next section. Equations (5) and (6) assert that the
mean and variance of the service time under restart can be eval-
uated directly from the distribution of the resetting time and the
distribution of the service time without resetting. Importantly, in
cases where this cannot be done analytically, numerical methods
can be used to obtain 〈SR〉 and 〈S2

R〉 and as long as the distributions
of R and S are known or can be sampled from.

M/G/1 Queues with Poissonian Service
Resetting
Poissonian resetting, i.e. resetting with a constant rate, has been
extensively investigated (34–38) (see (39) for extensive review and
(51) for discussion on the connection with the inspection paradox).
As the name suggests, here resetting follows a Poisson process and
the number of resetting events in a given time interval comes from
the Poisson distribution. In this section, we quantify the effect of
Poissonian resetting on the mean and variance of the service time
in a general queueing system. With this result at hand, we special-
ize to determine the mean number of jobs in an M/G/1 queuing
system with service resetting.

Consider service resetting with rate r. In other words, we take
the restart time R in Eq. (4) to be an exponential random variable
with mean 1/r, which renders service resetting a Poisson process
with rate r. The mean and second moment of the service time can
then be derived using Eqs. (5) and (6), giving (Methods)

〈Sr〉 = 1 − S̃(r)

rS̃(r)
, (7)

〈S2
r 〉 =

2
(
r dS̃(r)

dr − S̃(r) + 1
)

r2S̃(r)2
, (8)

where S̃(r) = ∫ ∞
0 dt e−rt fS(t) is the Laplace transform of the service

time, evaluated at the restart rate r.
The utilization of this queue is then given by ρr = λ〈Sr〉, and

the squared coefficient of variation of the service time is CV2
r =

Var(Sr )/〈Sr〉2. We can now write the mean queue length in an
M/G/1 system with service resetting by replacing ρ by ρr, and CV2

by CV2
r , in Eq. (1). This yields

〈Nr〉 = ρr

1 − ρr
+ ρ2

r

2(1 − ρr )

(
CV2

r − 1
)
. (9)

Similarly, the mean waiting time 〈Tr〉 in the system can be derived
from Little’s law (1, 2, 9), yielding an analogous result to Eq. (3).

To better understand the effect of resetting on the mean queue
length, consider the introduction of an infinitesimal resetting rate
δr. Utilizing Eq. (7), we then find

〈Sδr〉 � 〈S〉 − δr
〈S〉2

2

[
CV2 − 1

] + O(δr2). (10)

As expected, the first term on the right hand side of Eq. (10) is the
mean of the original service time, i.e. without resetting. The second

Fig. 2. The mean (solid line) and CV (dashed line) of the service time
with Poissonian resetting as a function of the resetting rate. Plots were
made, using Eqs. (7) and (8), for an underlying service time taken from
the inverse-Gaussian distribution whose density is given by
fS (t) =

√
γ /2πt3e−γ (t−μ)2/2μ2t , t > 0. Here, μ = 2.5 and γ = 0.5. Observe

that the mean service time with resetting, 〈Sr〉, is minimized at an
optimal resetting rate r∗ � 2.092, which was found using Eq. (13). At this
optimal resetting rate we have CVr∗ = 1.

term gives the first order correction, and note that its sign is gov-
erned by CV2 of the original service time. Specifically, for CV2 > 1,
we have 〈Sδr〉 < 〈S〉 and vice versa. In other words, the introduction
of Poissonian resetting to an M/G/1 queue will reduce the mean
service time whenever the coefficient of variation of the original
service time is greater than unity.

In Fig. 2, we consider a representative example for the effect
of resetting on an M/G/1 queue with large fluctuations in service
time. Starting from a service time distribution with CV > 1, we
introduce resetting and plot the mean service time 〈Sr〉 vs. the re-
setting rate. As predicted by Eq. (10), we see that 〈Sr〉 initially de-
creases, obtaining a minimum at an optimal resetting rate r∗. In
addition, note that at this optimal resetting rate we have CVr∗ = 1.
Remarkably, this observation is not specific to the service time dis-
tribution considered in Fig. 2, but is rather a universal property.
Namely, it can be shown that (37)

CVr∗ = 1, (11)

for any resetting rate, 0 < r∗ < ∞, at which

d〈Sr〉
dr

∣∣∣∣∣
r∗

= 0. (12)

Substituting Eq. (7) into Eq. (12) yields

S̃2(r∗ ) − S̃(r∗ ) − r∗S̃′(r∗ ) = 0, (13)

which can be solved to obtain r∗. Combining Eq. (11) with the
Pollaczek–Khinchin formula given in Eq. (9), we have

〈Nr∗ 〉 = ρr∗

1 − ρr∗
. (14)

Note that the mean number of jobs at optimality is equivalent to
the mean number of jobs in an M/M/1 queue (9), for which the
service time is exponentially distributed with mean 〈Sr∗ 〉. We re-
turn to this point in the section “Beyond the Mean Queue Length,”
where we show that this result does not extend to the level of the
distribution of number of jobs in the system.

Comparing Eqs. (1) and (14), we observe that 〈N〉 > 〈Nr∗ 〉. One
can easily derive this inequality by substituting CV > 1 into Eq. (1).
This yields

〈N〉 = ρ

1 − ρ
+ ρ2

2(1 − ρ )
(CV2 − 1) >

ρ

1 − ρ
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>
ρr∗

1 − ρr∗
= 〈Nr∗ 〉, (15)

where in the last inequality we used the monotonicity of the func-
tion ρ

1−ρ
on the interval [0,1), and the optimality of r∗, which im-

plies 〈Sr∗ 〉 < 〈S〉 resulting in ρr∗ < ρ.
We, thus see that whenever CV > 1 for the original service time,

the mean number of jobs in the queue can be reduced by resetting
service at an optimal rate. When doing so, one also sets the coeffi-
cient of variation of the optimally restarted service time to unity.
Thus, resetting not only shortens the mean service time but also
reduces the relative stochastic fluctuations around this mean, hence
providing a double advantage.

M/G/1 Queues with Sharp Service Resetting
So far, we considered queues with resetting at a constant rate. In
what follows, we consider a different extensively investigated re-
setting strategy, namely sharp (a.k.a deterministic or periodic) re-
setting (37, 52–56). Strong motivation to study this strategy comes
from the fact that, in terms of mean performance, sharp resetting
either matches or outperforms any resetting strategy of the type
considered above Eq. (4) (Poissonian resetting included) (37).

To see this, let us now consider service which is reset at fixed
time intervals of length τ , i.e. when the received service time
reaches a certain threshold. This simply means that the resetting
time R in Eq. (4) is taken from the distribution fR(t) = δ(t − τ ), where
δ(t) is the delta function. Equations (5) and (6), can then be simpli-
fied to give (Methods)

〈Sτ 〉 =
∫ τ

0 dt qS(t)
1 − qS(τ )

, (16)

〈S2
τ 〉 =

[
2(1 − qS(τ ))

∫ τ

0
dt tqS(t)

+ 2τqS(τ )
∫ τ

0
dt qS(t)

]
/ [1 − qS(τ )]2

, (17)

where qS(τ ) = 1 − ∫ τ

0 dt fS(t) is the survival function associated
with the underlying service time.

The utilization of this queue is then given by ρτ = λ〈Sτ 〉, and
the squared coefficient of variation of the service time is CV2

τ =
Var(Sτ )/〈Sτ 〉2. We can now obtain the mean queue length under
service resetting by replacing ρ by ρτ , and CV2 by CV2

τ , in Eq. (1).
This yields

〈Nτ 〉 = ρτ

1 − ρτ

+ ρ2
τ

2(1 − ρτ )

(
CV2

τ − 1
)
. (18)

In Fig. 3, we consider a representative example for the effect of
sharp resetting on an M/G/1 queue with large fluctuations in ser-
vice time. Starting from the same service time distribution used
in Fig. 2 (CV > 1), we introduce resetting and plot the mean ser-
vice time 〈Sτ 〉 vs. the sharp resetting time τ . Once again, we ob-
serve that 〈Sτ 〉 obtains a minimum at an optimal resetting time
τ ∗. In addition, note that at this optimal resetting time we have
CVτ ∗ < 1. As for the case of Poissonian resetting, this observation
is not specific to the service time distribution considered in Fig. 3,
but is rather a universal property. Namely, it can be shown that
(37)

CVτ ∗ ≤ 1, (19)

for an optimal resetting time τ ∗, which brings 〈Sτ ∗ 〉 to a global min-
imum. As before, τ ∗ can be found by setting

d〈Sτ 〉
dτ

∣∣∣∣∣
τ ∗

= 0, (20)

Fig. 3. The mean (solid line) and CV (dashed line) of the service time
with sharp resetting as a function of the resetting time. Plots were made,
using Eqs. (16) and (17), for an underlying service time taken from the
inverse-Gaussian distribution whose density is given by
fS (t) =

√
γ /2πt3e−γ (t−μ)2/2μ2t , t > 0. Here, μ = 2.5 and γ = 0.5. Observe

that the mean service time with resetting, 〈Sτ 〉, is minimized at an
optimal resetting time τ ∗ � 0.501, which was found using Eq. (21). At this
optimal resetting time we have CVτ ∗ ≤ 1.

which by substitution of Eq. (16) into Eq. (20), boils down to

qS(τ ∗ ) − q2
S (τ ∗ ) + q′

S(τ ∗ )
∫ τ ∗

0
dt qS(t) = 0. (21)

Combining Eq. (19) with the Pollaczek–Khinchin formula given
in Eq. (18), we have

〈Nτ ∗ 〉 ≤ ρτ ∗

1 − ρτ ∗
. (22)

It is interesting to compare Eqs. (22) and (14). To this end, we re-
call that the mean first passage time under optimal sharp reset-
ting is always smaller or equal than that obtained under optimal
Poissonian resetting (37). Translating this result to the language
of queueing, we have 〈Sτ ∗ 〉 ≤ 〈Sr∗ 〉, which implies ρτ∗

1−ρτ∗ ≤ ρr∗
1−ρr∗

, by
monotonicity. We, thus have

〈Nτ ∗ 〉 ≤ 〈Nr∗ 〉. (23)

Equation (23) is of great importance as it reveals that sharp re-
setting offers an additional improvement compared to the Pois-
sonian resetting strategy. Once again, we see that whenever CV >

1 for the original service time, the mean number of jobs in the
queue can be reduced by resetting service at an optimal time.
When doing so, one also reduces the coefficient of variation of the
optimally restarted service time below unity. Thus, sharp reset-
ting further shortens the mean service time, while also reducing
the relative stochastic fluctuations around this mean compared
to Poissonian resetting. We now set out to illustrate the results
obtained in the sections “M/G/1 Queues with Poissonian Service
Resetting” and “M/G/1 Queues with Sharp Service Resetting” on
two case studies of particular interest.

Examples
To demonstrate the power of our approach, we now consider
two service time distributions, which are well-documented in the
queuing literature: log-normal and Pareto (57–62). Note that we in-
tentionally skip the exponential service time distribution as this
distribution is memory-less, and therefore, unaffected by service
resetting (51). In what follows, we first describe the effect of restart
in the case of log-normal service times and discuss Pareto service
times next.



Bonomo et al. | 7

Fig. 4. The mean service time with Poissonian (orange) and sharp (blue)
resetting, as a function of the resetting rate and reciprocal resetting
time. Plots were made, using Eqs. (7) and (16), for an underlying service
time taken from the log-normal distribution whose density is given by
Eq. (24). Here, 〈S〉 = 1 and σ = 1.05, yielding μ = −0.28125. The optimal
resetting rate, r∗, and resetting time, τ ∗, are indicated.

Log-normal service times
Consider the case of an M/G/1 queue whose service time S is log-
normally distributed

fS(t) = 1√
2πσt

e− (ln t−μ)2

2σ2 , (24)

for t > 0, where μ ∈ ( − ∞, ∞) and σ > 0. The survival function is
then given by

qS(t) = Pr(S > t) =
{

1
2 Erfc

(
− μ−log(t)√

2σ

)
t > 0,

1 t ≤ 0.
(25)

The mean and variance of the service time in this case are given
by

〈S〉 = eμ+ σ2
2 , (26)

Var(S) =
(
eσ 2 − 1

)
e2μ+σ 2

, (27)

such that

CV2 = eσ 2 − 1, (28)

which is independent of μ. In the discussion below, we set the
mean service time 〈S〉 to be fixed, and vary σ , which controls the
relative magnitude of fluctuations in service time via Eq. (28). Set-
ting 〈S〉 and σ , μ is uniquely determined by Eq. (26).

For Poissonian resetting, the mean service time is given by
Eq. (7), which requires the Laplace transform of the log-normal
distribution. The latter, does not have an analytical closed-form,
but it can be evaluated numerically for any choice of parameters.
In the case of sharp resetting, the mean service time is given by
Eq. (16), which requires the survival function qS(t) given in Eq. (25).
Here too, the mean service time under resetting can be computed
by numerical evaluation of the required integrals. In Fig. 4, we set
〈S〉 = 1 and σ = 1.05, and plot the mean service time under Pois-
sonian and sharp resetting. In both cases, a minimum is obtained
at an optimal resetting rate or time, depending on the resetting
scheme. Observe that the optimal mean service time under sharp
resetting is indeed lower than that obtained for Poissonian reset-
ting.

To find the optimal resetting rate in Fig. 4, we solve

H(〈S〉, σ, r∗ ) = 0, (29)

where H(〈S〉, σ, r∗ ) denotes the left hand side of Eq. (13). This gives
r∗ � 0.885 for the given parameters. A similar minimization pro-
cedure can be carried out for sharp resetting. Substitution of the
survival function for the log-normal distribution given in Eq. (25)
into Eq. (21) yields the following equation for the optimal resetting
time τ ∗

F (〈S〉, σ, τ ∗ ) = 0, (30)

where F (〈S〉, σ, τ ∗ ) denotes the left hand side of Eq. (21). This gives
τ ∗ � 0.857.

Once in hand, the optimal resetting rate r∗ can be substituted
into Eqs. (7) and (8), to obtain the mean and variance of the service
time under optimal Poissonian resetting. Similarly, τ ∗ can be sub-
stituted into Eqs. (16) and (17), for the mean and variance of the
service time under optimal sharp resetting. Once these quantities
are known, and given the arrival rate λ, the Pollaczek–Khinchin
formula can be used directly to obtain the mean number of jobs
in a queue with optimal service resetting.

In Fig. 5, we extend the analysis presented in Fig. 4. Setting 〈S〉 =
1, we compute the optimal resetting rate and time for various val-
ues of the parameter σ (Fig. 5A), which controls the relative fluc-
tuations in the log-normal service time via Eq. (28). We then com-
pare between the mean number of jobs in a queue without service
resetting and that obtained when optimal Poissonian and sharp
resetting are applied (Fig. 5B). We observe that resetting can dras-
tically shorten queues when stochastic fluctuations in the under-
lying service time are large (high CV). To this end, note that opti-
mal sharp resetting outperforms optimal Poissonian resetting as
predicted by Eq. (23). Also, note that for high CV values the mean
queue lengths at optimal resetting drop below the mean queue
length in the absence of service time fluctuations (CV = 0). This
remarkable feature illustrates how resetting turns the problem of
service time fluctuations into an advantageous benefit.

Pareto service times
We now consider the case of an M/G/1 queue whose service time
S is Pareto distributed

fS(t) = αLα

tα+1
, (31)

for t ≥ L, where α, L > 0. The survival function is then given by

qS(t) =
{( t

L

)−α t ≥ L,

1 t < L.
(32)

The mean and variance of the service time in this case are given
by

〈S〉 =
{

∞ for α ≤ 1,
αL

α−1 for α > 1,
(33)

Var(S) =
{

∞ for α ≤ 2,
αL2

(α−1)2 (α−2) for α > 2,
(34)

such that

CV2 = 1
α(α − 2)

, (35)

for α > 2, and note that this coefficient of variation is independent
of L. Next, we consider this queue with service resetting.

For Poissonian resetting, the mean service time is given by
Eq. (7), which requires the Laplace transform of the Pareto dis-
tribution. This is given by

S̃(r) = α(Lr)α
(−α, Lr), (36)

where 
(s, x) is the upper incomplete gamma function


(s, x) =
∫ ∞

x
dt ts−1e−t . (37)
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Fig. 5. Panel (A): solutions of Eqs. (29) and (30) for the Log-normal service time distribution under Poissonian (inset) and sharp resetting (main). Here,
we fix 〈S〉 = 1 for the mean service time without resetting and vary σ to control relative stochastic fluctuations, CV, via Eq. (28). The intersection points
of the curves with the dashed horizontal line going through the origin give the optimal resetting times τ ∗ (optimal resetting rates r∗ in the inset). Note
that higher values of σ yield lower optimal resetting times (higher resetting rates). Panel (B): The mean number of jobs in a queue with arrival rate λ =
0.95, as a function of the underlying CV2 of the service time distribution. The Pollaczek–Khinchin formula gives the familiar linear dependence of
Eq. (1). Also plotted are the behaviors for the optimal Poissonian and sharp resetting protocols, with colored circles matching their counterparts in
panel (A). Strong deviations from the Pollaczek–Khinchin behavior of the nonrestarted case are observed. While resetting provides no advantage for
low CV values, it can drastically reduce queue lengths when CV is high.

By substituting the above into Eqs. (7) and (8), we get the following
expressions for the mean

〈Sr〉 = 1 − α(Lr)α
(−α, Lr)
αr(Lr)α
(−α, Lr)

, (38)

and second moment

〈S2
r 〉 = 2α(α − 1)(Lr)α
(−α, Lr) − 2αe−Lr + 2

(αr)2(Lr)2α
(−α, Lr)2
, (39)

of the service time under Poissonian resetting.
In the case of sharp resetting, the first two moments of the ser-

vice time are given by Eqs. (16) and (17). Substituting the survival
function (32) into Eqs. (16) and (17) yields

〈Sτ 〉 = Lα

α − 1
+ Lα − τ

(α − 1)
[(

τ
L

)α − 1
] , (40)

〈S2
τ 〉 = 2τ 2Lα (Lα − (α − 1)τα )

(α − 2)(α − 1) (τα − Lα )2 + 2ατα+1Lα+1

(α − 1) (τα − Lα )2

+ αL2τα

(α − 2) (τα − Lα )
. (41)

Note that in the above we only considered resetting times τ > L as
the support of the Pareto distribution is given by t ≥ L. Also, note
that Eq. (40) is valid for α �= 1. Similarly, in Eq. (41) we require α

�= 1, 2. These singular cases require separate treatment, following
similar footsteps.

In Fig. 6, we set 〈S〉 = 1 and α = 2.1, and plot the mean service
time under Poissonian and sharp resetting. In both cases, a mini-
mum is obtained at an optimal resetting rate or time, depending
on the resetting scheme. Once again, the optimal mean service
time under sharp resetting is indeed lower than that obtained for
Poissonian resetting.

To find the optimal resetting rate in Fig. 6, we solve

S (〈S〉, α, r∗ ) = 0, (42)

where S (〈S〉, α, r∗ ) denotes the left hand side of Eq. (13), after sub-
stituting the Laplace transform of Eq. (36). This gives r∗ � 0.034. A
similar minimization procedure can be carried out for sharp reset-
ting. Substitution of the survival function for the Pareto distribu-
tion given in Eq. (32) into Eq. (21) yields the following equation for
the optimal resetting time τ ∗

G(〈S〉, α, τ ∗ ) = τ ∗, (43)

Fig. 6. The mean service time with Poissonian (orange) and sharp (blue)
resetting, as a function of the resetting rate and reciprocal resetting
time (log-scaled). Plots were made, using Eqs. (38) and (40), for an
underlying service time taken from the Pareto distribution whose
density is given by Eq. (31). Here, 〈S〉 = 1 and α = 2.1, yielding L � 0.524.
The optimal resetting rate, r∗, and resetting time, τ ∗, are indicated.

where

G(〈S〉, α, τ ) =
( τ

L

)α (−ατ + α2L + τ
)
. (44)

Solving gives τ ∗ � 1.990.
The optimal resetting rate r∗ can be substituted into Eqs. (7)

and (8), to obtain the mean and variance of the service time under
optimal Poissonian resetting. Similarly, τ ∗ can be substituted into
Eqs. (16) and (17), for the mean and variance of the service time
under optimal sharp resetting. Once these quantities are known
along with the arrival rate λ, the Pollaczek–Khinchin formula can
be used directly to obtain the mean number of jobs in a queue
with optimal service resetting.

In Fig. 7, we extend the analysis presented in Fig. 6. Setting 〈S〉 =
1, we compute the optimal resetting rate and time for various val-
ues of the parameter α (Fig. 7A), which controls the relative fluc-
tuations in the Pareto service time via Eq. (35). Here, we made sure
that α > 2, so as to keep both the mean and variance of the service
time without resetting finite. We then compare between the mean
number of jobs in a queue without service resetting and that ob-
tained when optimal Poissonian and sharp resetting are applied
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Fig. 7. Panel (A): solutions of Eqs. (42) and (43) for the Pareto service time distribution under Poissonian (inset) and sharp resetting (main). The
intersection points of the curves for different α (i.e. for different CV) with the dashed line give the optimal resetting times τ ∗ (optimal resetting rates r∗

in the inset). Panel (B): the mean number of jobs in a queue with arrival rate λ = 0.95, as a function of the underlying CV2 of the service time
distribution. The Pollaczek–Khinchin formula gives the familiar linear dependence of Eq. (1). Also plotted are the behaviors for the optimal Poissonian
and sharp resetting protocols, with colored circles matching their counterparts in panel (A). Strong deviations from the Pollaczek–Khinchin behavior of
the nonrestarted case are observed. While resetting provides no advantage for low CV values, it can drastically reduce queue lengths when CV is high.

(Fig. 7B). Like in the previous example, here too, we observe that
resetting can induce shorter queues when the underlying service
time variability (CV) is large. Noteworthy in this case is the domi-
nance of sharp resetting over Poissonian resetting as predicted by
Eq. (23). Moreover, for high CV values the mean queue length at op-
timal sharp resetting drops below the mean queue length in the
absence of service time fluctuations (CV = 0). This hallmark prop-
erty demonstrates once again how resetting can take advantage
of large stochastic fluctuations in the service time to drastically
improve queue performance.

Finally, we utilize the Pareto case study to demonstrate that
service resetting can also be useful in extreme situations where
the variance, and possibly even mean, of the service time diverge.
Indeed, while in such cases the mean number of jobs in the queue
would normally diverge as well, service resetting can prevent the
queue from “blowing up.” To see this, it is enough to observe that
the first two moments of the service time under resetting, Eqs. (5)
and (6) correspondingly, are always finite—and as long as the
mean resetting time is finite and the probability for service to
complete before resetting is nonzero. Thus, service resetting acts
to regularize moment divergence of the underlying service time
distribution, which in turn allows queues with service resetting
to operate under extreme heavy-load conditions that would not
be accessible otherwise. This nontrivial conclusion is further il-
lustrated in Fig. 8.

Beyond the Mean Queue Length
So far, we have only been concerned with the mean number of
jobs in a queue with service resetting. We will now turn our at-
tention to discuss the full distribution of the queue length. In an
M/G/1 queue, the probability mass function of the number of jobs
in the system, defined as PN(n) = Pr(N = n), is not known explic-
itly. However, one can obtain an expression for the corresponding
probability generating function

GN(z) =
∞∑

n=0

PN(n)zn, (45)

using the Pollaczek–Khinchine transform equation (2)

GN(z) = (1 − z)(1 − ρ )S̃(λ(1 − z))

S̃(λ(1 − z)) − z
, (46)

Fig. 8. Queues with service resetting can operate under extreme
heavy-load conditions that are not accessible to normal queues. To
illustrate this, we plot in dashed lines the mean number of jobs for two
queues with a Pareto service time distribution. Fixing L = 1 in Eq. (31),
and setting the arrival rates to λ = 0.125 (blue) and λ = 0.4 (orange), we
see that both queues “blow up” as α → 2. Indeed, recalling Eq. (34), we
see that Var(S) = ∞ for α ≤ 2 and the divergence in the mean number of
jobs follows from the Pollaczek–Khinchin formula. In contrast, we use
solid lines to plot the mean number of jobs for the same queues, but
with optimal sharp resetting. Observe that in both cases the mean
number of jobs remains finite well below α = 2, and only diverges when
the service rate (under optimal sharp resetting) drops below the
corresponding arrival rate.

where S̃(·) is the Laplace transform of the service time, and ρ = λ〈S〉
is the utilization of the queue. Similarly, one can also compute the
Laplace–Stieltjes transform, T̃(s), of the total time a job spends in
the system. This is given by the corresponding Pollaczek–Khinchin
transform equation which reads (9)

T̃(s) = (1 − ρ )sS̃(s)

s − λ(1 − S̃(s))
. (47)

Equations (46) and (47) apply to the standard M/G/1 queue. To
obtain corresponding formulas with service resetting, we follow a
similar procedure to that, which was applied for the mean num-
ber of jobs and mean waiting time in the queue. Namely, we re-
place ρ and S̃(·) in the above Pollaczek–Khinchin formulas by ρR

and S̃R(·), which are correspondingly the utilization of the queue
and Laplace transform of the service time with service resetting.
In general, the latter is given by Eq. (52) in the Methods section.
In what follows, we will consider a specialized version of this
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Fig. 9. Panel (A): the probability mass function of the number of jobs in the system (queue + server) with (orange markers) and without (blue markers)
optimal Poissonian service resetting. Here, the jobs arrival rate was set to λ = 0.35 and the service time was taken as in Fig. 2, i.e. from the
inverse-Gaussian distribution fS (t) =

√
γ /2πt3e−γ (t−μ)2/2μ2t , with parameters μ = 2.5 and γ = 0.5. The probability to find n jobs in the system with

service resetting, PNr∗ (n), was computed via Eq. (51) for a resetting rate r∗ � 2.092, which minimizes the mean service time for this choice of parameters
(see Fig. 2). Similarly, the probability PN(n) to find n jobs in the system without service resetting was computed by taking derivatives of Eq. (46). These
analytical results (circles) were further corroborated with numerical simulations (X marks). Panel (B): the probability mass function PNr∗ (n) from panel
(A) is compared to the geometric probability distribution—PM/M/1(n) = (1 − ρr∗ )ρn

r∗ —of an M/M/1 queue with the same mean service time, arrival rate,
and utilization ρr∗ (green). Equation (14) asserts that the mean number of jobs in these two queueing systems is identical, but note that this
equivalence does not extend to their stationary probability distributions which are similar but not identical (inset).

general formula, which is of particular interest due to its analyti-
cal tractability and ubiquitous applicability. Namely, we consider
the case of Poissonian resetting for which one can readily show
that (36, 37)

S̃r(s) = S̃(s + r)
s

s+r + r
s+r S̃(s + r)

, (48)

with r standing for the resetting rate. For completeness, and to
keep the presentation self-contained, this formula is also red-
erived in the Methods section.

In Fig. 9, we compare the distribution of the number of jobs in
an M/G/1 queue, with and without optimal Poissonian service re-
setting. We assume the inverse-Gaussian service time distribution
that was discussed in Fig. 2, and note that its Laplace transform

is given by S̃(s) = Exp
[

γ

μ

(
1 −

√
1 + 2μ2s

γ

)]
, with γ , μ > 0. Substitut-

ing this result into Eq. (48), we obtain the Laplace transform of the
service time with Poissonian resetting at a constant rate r:

S̃r(s) = s + r

r + s Exp
[
− γ

μ

(
1 −

√
1 + 2μ2 (s+r)

γ

)] . (49)

We then substitute the Laplace transform of Eq. (49) into Eq. (46),
and replace ρ by ρr in this equation, to obtain the probability gen-
erating function

GNr (z) = (r + λ(1 − z))(1 − ρr )

r + λ

(
1 − zExp

[
− γ

μ

(
1 −

√
1 + 2μ2 (r+λ(1−z))

γ

)]) , (50)

of the number of jobs in the presence of service resetting. The
probability to find n jobs in the system can then be computed from
Eq. (50) via

PNr (n) = Pr(Nr = n) = G(n)
Nr

(0)

n!
, (51)

where G(n)
Nr

(0) stands for the nth derivative of GNr (z) evaluated at
z = 0. The probability PN(n) to find n jobs in the system without
service resetting can be similarly computed by taking derivatives
of Eq. (46).

The effect of service resetting can be seen in panel (A) of Fig. 9.
It is evident that optimal service resetting with rate r∗ results in a

stationary job distribution whose tail decays faster compared to
the no resetting case. This, in turn, results in a lower mean queue
length compared to that, which is obtained in the absence of reset-
ting. In panel (B), we further compare the stationary queue length
distribution to the geometric distribution of an M/M/1 queue that
has the same mean service time, arrival rate, and utilization. Re-
call that Eq. (14) asserts that the mean number of jobs in an M/G/1
queue with optimal Poissonian service resetting is equal to the
mean number of jobs in an M/M/1 queue that has the same uti-
lization. This happens since the mean and standard deviation of
the service time become equal under optimal Poissonian service
resetting [see Eq. (11)], which is also a property of the exponen-
tial service time distribution of the standard M/M/1 queue (i.e. in
the absence of resetting). As a result, the performance of the two
queues is very similar, but not identical (inset). Indeed, while the
mean and standard deviation of the service time identify under
optimal Poissonian service resetting, the full service time distri-
bution need not be exponential as in the M/M/1 queue. This, in
turn, results in deviations from the geometric distribution for the
number of jobs in the system.

Conclusions and Outlook
Regulating the number of jobs in a queue is an integral part of
performance modeling and optimization of queuing systems. One
problem that arises in this context is that large stochastic fluc-
tuations in service times lead to significant backlogs and delays.
In this paper, we showed how this problem can be mitigated by
service resetting. Specifically, we have shown that when applied
to servers with intrinsically high service time variability, resetting
can dramatically reduce queue lengths and job waiting times.

To intuitively understand how this is possible, consider a sce-
nario where service completes within τ 1 or τ 2 time units with
equal probabilities; and further let τ 1 � τ 2. It is then clear that
if service did not complete after τ 1 time units, resetting service
shortly after this time is beneficial. Indeed, as a new service time
is drawn with each resetting, such resetting protocol would give
a mean service time of ≈2τ 1, which is significantly shorter than
the (τ 1 + τ 2)/2 that is obtained in the absence of resetting. More



Bonomo et al. | 11

generally, it has been demonstrated repeatedly that when
stochastic fluctuations in the completion time of a random pro-
cess are large—stopping the process and starting it anew will
shorten its mean completion time. This fact was proven rigorously
for sharp resetting, which occurs periodically at fixed time inter-
vals (52, 53); and for Poissonian resetting where it was moreover
shown to be a direct result of the inspection paradox (51).

In this paper, we further developed the theory of stochastic
resetting and applied it to better the design and performance
of queueing systems. The analysis presented was based on the
canonical M/G/1 queuing model in which jobs arrive to the queue
following a Poisson process and service times come from a general
distribution. The renowned Pollaczek–Khinchin formula [Eq. (1)]
asserts that the mean number of jobs in this queue grows linearly
with the squared coefficient of variation, CV2, of the service time.
Employing the recently developed framework of first-passage un-
der restart (36, 37) to the M/G/1 queue, we showed that Poissonian
service resetting reduces both the mean and variance of the over-
all service time when CV > 1, i.e. exactly when service time fluc-
tuations start to become a major source of concern. Sharp service
resetting, performs even better and could in some cases lower the
mean and variance of the service time even when CV < 1 (52). In
both cases, this results in shorter queues and examples were given
to show that mean queue lengths may even drop below those at-
tained for servers with no service time fluctuations. Service reset-
ting can thus turn a well-known drawback of queueing systems
into a favorable advantage.

Our work is the first step toward the application of resetting as
a fluctuations mitigation strategy in queueing systems. The anal-
ysis presented above yielded analytical formulas for the mean
and distribution of the number of jobs in an M/G/1 queue un-
der service resetting, thus generalizing the Pollaczek–Khinchin
formula to this case. While obtaining similar analytical expres-
sions in systems other than the M/G/1 queue requires additional
work, it is important for us to emphasize that several results and
conclusions coming from our analysis trivially carry over to other
queueing systems. As realistic job arrival processes are often non-
Poissonian, queues with non-Markovian arrivals are of prime im-
portance in this regard. Crucially, such queues also suffer from
service time fluctuations, which is most easily appreciated by ex-
amining Kingman’s approximation formula (63). The latter asserts
that the mean number of jobs in a G/G/1 queuing system (general
arrivals and service) grows linearly with the squared coefficient
of variation of the service time, i.e. just like it does in the M/G/1
queue.

Interestingly, the application of service resetting in the G/G/1
queue will have the same effect on the service time distribution
as in the simpler M/G/1 queue. To see this, one only needs to ob-
serve that in both queues the arrival process is completely de-
coupled from the service process, and moreover note that reset-
ting only modifies the service time distribution. Thus, in all cases
where service resetting is beneficial in the M/G/1 queue it would
also be beneficial in the G/G/1 queue. Moreover, while an exact
general expression for the mean number of jobs in the G/G/1
queue with service resetting is unknown, the results derived in
the sections “Queues with Service Resetting,” “M/G/1 Queues with
Poissonian Service Resetting,” “M/G/1 Queues with Sharp Service
Resetting,” and in the Methods—regarding the service time dis-
tribution under resetting—can be applied directly to estimate
this central quantity via Kingman’s approximation formula. In-
deed, this can be done since no specialized properties of the
M/G/1 queue were utilized in the derivation of these results, and
since both Kingman’s approximation and the Pollaczek–Khinchin

formula depend only on the first two moments of the service time
distribution.

More generally, we observe that the results established in this
paper utilize the independence of the arrival and service pro-
cesses to map single-server queuing systems with service reset-
ting onto single-server queuing systems without service resetting.
Conclusions coming from this work, thus apply broadly to single-
server queuing systems, and possible extensions to multiserver
queues and queueing networks are left for future research. More
sophisticated service resetting strategies, e.g. ones which can uti-
lize full or partial information regarding the state of the queue
or server, would also be interesting to consider as part of future
research. Finally, note that we have assumed that resetting takes
zero time, which is rarely the case in real world systems (40, 41,
64). Accounting for this time, as well as other possible costs of
service resetting in queuing systems, is crucial if we are to narrow
the gap between theory and practice. This can be done by taking
advantage of results established in (40, 41, 51, 64–66).

Methods
In this section, we provide full derivation of central results that
were announced in the main text. Some of these results were de-
rived employing the framework of first passage under restart in
(37).

We start by recalling that the Laplace transform of the distribu-
tion of the service time under resetting can be derived from Eq. (4)
in the main text to give (37)

S̃R(s) = Pr(S < R)S̃min(s)

1 − Pr(R ≤ S)R̃min(s)
, (52)

where S̃R(s) = ∫ ∞
0 dt e−st fSR (t). We also define two auxiliary ran-

dom variables

Rmin ≡ {R|R ≤ S},
Smin ≡ {S|S < R}. (53)

In words, Rmin is the restart time conditioned on the event that
restart occurs before the service is over. Similarly, Smin is the ser-
vice time conditioned on the event that service occurred prior to
a restart. The probability density functions of Rmin and Smin are
given by (37)

fRmin (t) = fR(t)
∫ ∞

t dt′ fS(t′ )
Pr(R ≤ S)

= fR(t)Pr(S > t)
Pr(R ≤ S)

, (54)

fSmin
(t) = fS(t)

∫ ∞
t dt′ fR(t′ )

Pr(S < R)
= fS(t)Pr(R > t)

Pr(S < R)
. (55)

Note, that the Laplace transforms of these distributions, R̃min(s) =∫ ∞
0 dt e−st fRmin (t) and S̃min(s) = ∫ ∞

0 dt e−st fSmin
(t), appear on the

right hand side of Eq. (52).
The moments can now easily be computed from Eq. (52) by not-

ing that

〈Sn
R〉 = (−1)n dn

dsn
S̃R(s)|s→0, (56)

which gives (37)

〈SR〉 = 〈min(S, R)〉
Pr(S < R)

, (57)

〈S2
R〉 = 〈min(S, R)2〉

Pr(S < R)
+ 2Pr(R ≤ S)〈Rmin〉〈min(S, R)〉

Pr(S < R)2
, (58)

where 〈Rmin〉 can be computed directly from Eq. (54). The other
components can also be systematically derived with the knowl-
edge of individual time densities. For example, the numerator
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〈min(S, R)〉 in Eq. (57) is given by

Pr(min(S, R) ≤ t) = 1 − Pr(S > t)Pr(R > t). (59)

and the denominator in Eq. (57) is given by

Pr(S < R) =
∫ ∞

0
dt fR(t)Pr(S < t)

=
∫ ∞

0
dt fR(t)

∫ t

0
dt′ fS(t′ ). (60)

Moments and Laplace transform of the service
time under Poissonian resetting
Consider the case of Poissonian resetting. The restart time R is
then exponential with probability density function

fR(t) = r e−rt, (61)

and the cumulative distribution function is given by

Pr(R ≤ t) = 1 − e−rt, (62)

where r is the resetting rate.
In the case of Poissonian resetting, the cumulative distribution

function of min(S, R) can be written as

Pr(min(S, R) ≤ t) = 1 − Pr(S > t) e−rt . (63)

Using the following formula for the expectation value of a non-
negative random variable

〈X〉 =
∫ ∞

0
dt qX (t), (64)

where qX(t) = Pr(X > t) is the survival function of X, one can easily
show that

〈min(S, R)〉 =
∫ ∞

0
dt Pr(S > t)Pr(R > t)

=
∫ ∞

0
dt [1 − Pr(S < t)] e−rt

= 1
r

−
∫ ∞

0
dt e−rt

(∫ t

0
dt′ fS(t′ )

)

= 1 − S̃(r)
r

, (65)

where in the last step we used a known formula for the Laplace
transform of a time-domain integration:

∫ ∞
0 dt

(∫ t
0 dτ g(τ )

)
e−rt =

g̃(r)
r , where g̃(r) is the Laplace transform of g(t). Similarly, we can

use Eq. (60) to find

Pr(S < R) =
∫ ∞

0
dt r e−rtPr(S < t) = S̃(r). (66)

Substituting Eqs. (65) and (66) into Eq. (57), we get the following
formula for the mean service time under Poissonian resetting

〈Sr〉 = 1 − S̃(r)

rS̃(r)
, (67)

which is Eq. (7) in the main text.
We now turn to derive a formula for 〈S2

r 〉, the second moment of
the service time under Poissonian resetting. We start by deriving
a formula for 〈min(S, R)2〉. By taking the derivative of Eq. (63), one
can easily obtain the probability density function of min(S, R)

fmin(S,R) (t) = fS(t) e−rt + r Pr(S > t) e−rt . (68)

Now, we can use the probability density function given in Eq. (68)
to calculate 〈min(S, R)2〉

〈min(S, R)2〉 =
∫ ∞

0
dt t2 (

fS(t) e−rt + r Pr(S > t) e−rt)

=
∫ ∞

0
dt t2 fS(t) e−rt

+ r
∫ ∞

0
dt t2 Pr(S > t) e−rt

= d2S̃(r)
dr2

+ r
∫ ∞

0
dt t2 (1 − Pr(S < t)) e−rt

= d2S̃(r)
dr2

+ 2
r2

− r
∫ ∞

0
dt t2Pr(S < t)e−rt

= d2S̃(r)
dr2

+ 2
r2

− r
d2

(
S̃(r)

r

)
dr2

= 2r dS̃(r)
dr − 2S̃(r) + 2

r2
, (69)

where during the derivation we used a known property of Laplace
transforms:

∫ ∞
0 dt tng(t)e−rt = (−1)n dng̃(r)

drn , where n is a positive inte-
ger and g̃(r) standing for the Laplace transform of g(t).

We now turn to calculate 〈Rmin〉. This can be explicitly done us-
ing Eq. (54)

〈Rmin〉 =
∫ ∞

0
dt t fRmin (t)

= 1
Pr(R ≤ S)

∫ ∞

0
dt t re−rtPr(S > t)

= r
1 − Pr(S < R)

∫ ∞

0
dt t e−rt (1 − Pr(S < t))

= r
(∫ ∞

0 dt t e−rt − ∫ ∞
0 dt t e−rtPr(S < t)

)
1 − S̃(r)

=
r

(
1
r2 + d

(
S̃(r)

r

)
dr

)

1 − S̃(r)

= r dS̃(r)
dr − S̃(r) + 1

r
(
1 − S̃(r)

) . (70)

Having all the terms on the right hand side of Eq. (58) in hand,
we can now calculate 〈S2

r 〉

〈S2
r 〉 = 〈min(S, R)2〉

Pr(S < R)
+ 2Pr(R ≤ S)〈Rmin〉〈min(S, R)〉

Pr(S < R)2

= 2r dS̃(r)
dr − 2S̃(r) + 2

r2S̃(r)

+
2

(
1 − S̃(r)

)
r dS̃(r)

dr −S̃(r)+1

r(1−S̃(r))
1−S̃(r)

r

S̃(r)2

=
2

(
r dS̃(r)

dr − S̃(r) + 1
)

r2S̃(r)2
, (71)

which is Eq. (8) in the main text.
Finally, we turn to the derivation of the Laplace transform of the

service time distribution under Poissonian resetting. The Laplace
transform of the service time distribution under general resetting
is given in Eq. (52), which is written in terms of the Laplace trans-
forms of the auxiliary random variables Rmin and Smin. Substituting
Eqs. (61) and (66) into Eq. (54) we get

fRmin (t) = re−rt (1 − Pr(S ≤ t))

1 − S̃(r)
. (72)

Similarly, substituting Eqs. (62) and (66) into Eq. (55) yields the
probability density function of the random variable Smin

fSmin
(t) = fS(t)e−rt

S̃(r)
. (73)
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Taking the Laplace transform of Eqs. (72) and (73) we get

R̃min(s) =
∫ ∞

0
dte−st fRmin (t) = r

s + r
1 − S̃(s + r)

1 − S̃(r)
, (74)

S̃min(s) =
∫ ∞

0
dt e−st fSmin

(t) = S̃(s + r)

S̃(r)
. (75)

Substituting Eqs. (66), (74), and (75) into Eq. (52) yields

S̃r(s) =
S̃(r) S̃(s+r)

S̃(r)

1 −
(
1 − S̃(r)

)
r

s+r
1−S̃(s+r)

1−S̃(r)

= S̃(s + r)
s

s+r + r
s+r S̃(s + r)

, (76)

which is Eq. (48) in the main text.

Moments of the service time under sharp
resetting
Consider now the case of sharp, i.e. deterministic, resetting. When
the restart time R is deterministic, its probability density function
is given by

fR(t) = δ(t − τ ), (77)

where τ is the resetting time and δ( · ) is the delta function. In
the case of sharp resetting, the cumulative distribution function
of min(S, R) can be written as

Pr(min(S, τ ) ≤ t) = 1 − Pr(S > t)θ (τ − t), (78)

where we have used Pr(R > t) = ∫ ∞
t dt′ δ(t′ − τ ) = θ (τ − t), where θ

is the Heaviside step function. Using Eq. (64) once again we have

〈min(S, τ )〉 =
∫ ∞

0
dt Pr(S > t)θ (τ − t) =

∫ τ

0
dt qS(t), (79)

where qS(τ ) = 1 − ∫ τ

0 dt fS(t) is the survival function associated
with the underlying service time. To derive Pr(S < R) we once again
use Eq. (60) to find

Pr(S < R) =
∫ ∞

0
dt δ(t − τ )Pr(S < t)

=
∫ ∞

0
dt δ(t − τ )(1 − qS(t))

= 1 − qS(τ ). (80)

Substituting Eqs. (79) and (80) into Eq. (57), we get the following
formula for the mean service time under sharp restart

〈Sτ 〉 =
∫ τ

0 dt qS(t)

1 − qS(τ )
, (81)

which is Eq. (16) in the main text.
We now turn to derive a formula for 〈S2

τ 〉, the second moment
of the service time under sharp resetting. We start by deriving a
formula for 〈min(S, τ )2〉. By taking the derivative of Eq. (78), one
can easily obtain the probability density function of min(S, τ )

fmin(S,τ ) (t) = − ∂qS(t)
∂t

θ (τ − t) + qS(t)δ(τ − t). (82)

Now, we can use Eq. (82) to compute 〈min(S, τ )2〉, which reads

〈min(S, τ )2〉 =
∫ ∞

0
dt t2

[
− ∂qS(t)

∂t
θ (τ − t) + qS(t)δ(τ − t)

]

= τ 2qS(τ ) −
∫ τ

0
dt t2 ∂qS(t)

∂t

= τ 2qS(τ ) − τ 2qS(τ ) + 2
∫ τ

0
dt t qS(t)

= 2
∫ τ

0
dt t qS(t). (83)

We now turn to calculate 〈Rmin〉. Since R is deterministic, 〈Rmin〉
is simply τ . This can also be explicitly shown using Eq. (54)

〈Rmin〉 =
∫ ∞

0
dt t fRmin (t)

= 1
Pr(τ ≤ S)

∫ ∞

0
dt tδ(t − τ )Pr(S > t)

= τqS(τ )
qS(τ )

= τ. (84)

Substituting Eqs. (79), (80), (83), and (84) into Eq. (58) we arrive
at the following expression

〈S2
τ 〉 = 〈min(S, τ )2〉

Pr(S < τ )
+ 2Pr(τ ≤ S)〈Rmin〉〈min(S, τ )〉

Pr(S < τ )2

= 2
∫ τ

0 dt tqS(t)
1 − qS(τ )

+ 2τqS(τ )
∫ τ

0 dt qS(t)
(1 − qS(τ ))2

= 2(1 − qS(τ ))
∫ τ

0 dt tqS(t) + 2τqS(τ )
∫ τ

0 dt qS(t)
(1 − qS(τ ))2

, (85)

which is Eq. (17) in the main text.
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