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This review discusses our current understanding of chromatin biology and bioinformatics under the uni-
fying concept of ‘‘chromatin hubs.” The first part reviews the biology of chromatin hubs, including chro-
matin–chromatin interaction hubs, chromatin hubs at the nuclear periphery, hubs around
macromolecules such as RNA polymerase or lncRNAs, and hubs around nuclear bodies such as the nucle-
olus or nuclear speckles. The second part reviews existing computational methods, including enhancer–
promoter interaction prediction, network analysis, chromatin domain callers, transcription factory pre-
dictors, and multi-way interaction analysis. We introduce an integrated model that makes sense of the
existing evidence. Understanding chromatin hubs may allow us (i) to explain long-unsolved biological
questions such as interaction specificity and redundancy of mechanisms, (ii) to develop more realistic
kinetic and functional predictions, and (iii) to explain the etiology of genomic disease.
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1. Introduction

A few years ago, we discussed chromatin interactions’ most rel-
evant theoretical and computational aspects in a review that we
recommend as a starting point to the readers new to the subject
[1]. The review focused on enhancer–promoter interactions
through chromatin looping, already recognized as a main mecha-
nism of gene regulation. We discussed data coming from ‘‘chromo-
some conformation capture” (CCC) technologies, a group of
technologies that uses cross-linking and sequencing to infer chro-
matin interactions [2] and includes ‘‘high-throughput chromosome
conformation capture” (Hi-C) [3], ‘‘chromatin interaction analysis
by paired-end tag sequencing” (ChIA-PET) [4], and ‘‘promoter cap-
ture Hi-C” (CHi-C) [5], among others. Those initial studies provided
a view of the genome at the chromatin–chromatin interaction scale
as a network of short- and long-range interacting loops, as well as a
view of the genome at the megabase scale as divided into open and
active compartments (‘‘A”) and closed and inactive compartments
(‘‘B”). At the chromatin level, we learned that enhancers interact
with promoters and these interactions are stabilized by a group
of proteins, including CTCF, cohesin, and mediator.

Considerable progress has been made since the time of that
review, including the study of ‘‘chromatin hubs” or multi-way
chromatin interactions (as opposed to pairwise interactions only).
The study of such hubs has offered a new understanding of chro-
matin organization that is not limited to the chromosomes but
involves the nuclear periphery, nuclear bodies, and small compart-
ments created around large macromolecules. In this picture, hubs
are not random agglomerations of interactions but are compart-
ments with liquid-like properties that possess different functions.
Such compartments promote intra-compartmental and discourage
extra-compartmental interactions, and help to explain complex
phenomena ranging from organelle biogenesis to gene co-
Table 1
A classification of known types of chromatin hubs.

Hub type Hub name

Pure chromatin-to-chromatin Topologically Associating Dom
HP1/Heterochromatin foci

Chromatin-to-nuclear periphery Lamina Associated Domains (
Chromatin-to-large macromolecules RNAPol1 Transcription Factor

RNAPol2 Transcription Factor
RNAPol3 Transcription Factor
Polycomb bodies
lncRNA foci
Nascent-RNA foci

Chromatin-to-nuclear bodies Nucleolus / NADs
Nuclear speckles
Paraspeckles
Cajal bodies
Histone locus bodies
PML bodies

Others Viral DNA RNAPol2 Factories
Senescence-Associated Hetero
G-quadruplexes (G4s)

1 We have classified 18 of the most studied types of chromatin hubs according to their
chromatin loops. ‘‘Signatures” are some of the proteins, genes, RNAs, or chromatin struc
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regulation and disease. Studying such chromatin hubs is important
because most hubs are involved in either the transcription of genes
or repression of transcription, which are vital processes to main-
taining a cell’s identity.

Consequently, this review extends our previous discussion of
single chromatin interactions to hubs of chromatin (their defini-
tions, features, functions, applications, and computational predic-
tion methods). As in the previous review, we will also present
the current challenges and perspectives.
2. Chromatin hubs: The biological side

2.1. There are different types of chromatin hubs

Biologically, a chromatin hub can be defined as a group of chro-
matin segments that interact directly or mediated by certain pro-
teins, complexes, lncRNAs, or nuclear bodies. Some chromatin
hubs are built of chromatin-chromatin interactions only, which
are characterized mainly as short loops, with �2% of the Hi-C peaks
corresponding to loops more than two megabase pairs (Mb) apart
[6]. However, many chromatin hubs include chromatin interac-
tions with proteins, lncRNAs, or complex DNA:RNA structures.
Computationally, we define a chromatin hub as any group of pair-
wise interactions that form a module or a connected component in
a chromatin interaction network (ChIN), whether the nodes (chro-
matin regions) are near or distant in a linear view of the genome.

While the biological definition assumes that chromatin hubs
physically exist as such at a given time, the computational defini-
tion does not consider whether the loops in the hub occur simulta-
neously or at different times/in different cells. In fact, the
chromatin hubs that appear in bulk Hi-C experiments could corre-
spond to an ensemble of all the alternatives in a population of cells,
not happening at the same time in any given cell. As an example,
Signature 1

ains (TADs) CTCF, cohesin
HP1, Telomeres

LADs) CTCF, laminA/C, laminB
ies RNAPol1, rDNA
ies RNAPol2, TFs, promoters, enhancers
ies RNAPol3, tRNA, housekeeping ncRNAs

PRC2, H2AK119ub1, H3K27me3
XIST / MALAT1 / NEAT1
eRNAs, pre-mRNAs, R-loops
RNAPol1, UBF, SL-1
MALAT1, TFs, splicing factors
NEAT1, lincRNA-p21
snRNAs, Coilin, TERC
Histone genes
PML, Sp100, p53
Viral DNA, RNAPol2

chromatin Foci (SAHF) HP1, macroH2A, HMGA
G4s, R-loops

similarities. ‘‘Hub types” refer to the biological structure that acts as a focus for the
tures that can be used to identify such chromatin hub types.
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MYC, the most central node in most gene-based chromatin interac-
tion networks, interacts with its enhancers in an exclusive and
probably stochastic manner. Under the conditions of one study, a
given enhancer interacts with MYC in no more than 10% of the cells
at any given time [7]. Using terminology borrowed from protein
interaction networks, ChINs can display ‘‘party hubs” (hubs where
all interactions occur simultaneously) and ‘‘date hubs” (hubs
where interactions are alternative).
Fig. 1. Chromatin hubs and the structures that mediate their interactions. (a) A simplified
repressive environments such as the nuclear lamina, repressive nuclear bodies, or mac
transcription factories, nuclear speckles, and other nuclear bodies; and (iii) chromatin-ch
view of a transcription-related nuclear body: a phase separated condensate has a core rich
its surface. The surface may also contain RNAPol2 molecules (in transcription factories) an
may bind both the chromosome and the nuclear body.

3798
From a physical point of view, a new chromatin organization
model is gaining acceptance, one in which chromatin hubs form
liquid–liquid ‘‘phase-separated condensates” that behave as liquid
compartments. This image is similar to the current description of
membrane-less nuclear bodies, such as the nucleolus. Therefore,
the model offers a unified view of nuclear compartmentalization
as a series of dynamic ‘‘bubbles” able of generation, growth, fusion,
fission, and decay. It is known that nuclear bodies are not enclosed
by lipid bilayers but, instead, exist in a stable, round-shaped,
hub-centered view of the eukaryotic nucleus: Chromatin can loop or hub around (i)
romolecular structures such as polycomb bodies; (ii) active compartments such as
romatin interaction-rich environments such as TADs and telomere ends. (b) A sketch
in transcription-related proteins and ncRNAs, while chromatin loops are located on
d spliceosomes (in nuclear speckles). In nuclear speckles and paraspeckles, lncRNAs
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liquid-like state, similar to oil drops in water, which is also called a
‘‘biomolecular condensate” or a ‘‘phase-separated” state [8]. These
bodies have liquid-like physical properties, such as fusion and fis-
sion of droplets, and a high turnover of components. For example,
the three compartments of the nucleolus may behave as indepen-
dent liquid compartments, but the disruption of the nuclear actin
leads to their coalescence into a single droplet [9]. Transcription
factors (TFs), lncRNAs, and other DNA-binding proteins have also
been postulated to form condensates at super-enhancers, in which
Fig. 2. Example of some approaches to computational prediction of chromatin hubs. Mult
chromatin interaction network. (b) Finding significance of spatial clustering versus linea
and detecting regions where the signal is significantly high. (d) Assigning weights to edg
classifier.

3799
all the transcription machinery can be concentrated [10,11]. It has
been suggested that some large macromolecules (e.g., lncRNAs or
PML proteins) could accumulate at specific chromatin loci and
undergo phase separation after reaching a certain saturation con-
centration, which might be followed by detachment or coalescence
of the newly formed condensates [12].

Our definition of chromatin hubs emphasizes that chromatin
interactions can be mediated by certain macromolecules or nuclear
bodies. Therefore, we start this review by discussing chromatin
iple approaches for chromatin hub prediction are possible. (a) Simple clustering of a
r clustering. (c) Superposing a ChIP-seq track onto a chromatin interaction network
es according to epigenetic marks, performing weighted clustering, and then using a
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interaction hubs in the context of the structures that mediate their
interactions. To do so, we have classified chromatin hubs into 18
categories (Table 1, Fig. 1).

2.2. Pure chromatin-to-chromatin hubs

TADs are defined as megabase-sized chromatin interaction
domains, easy to identify as interaction clusters in a chromatin
interaction heatmap (i.e., chromosome ranges with a high density
of internal interactions). Their boundaries are enriched for CTCF
and cohesin binding sites, as well as some other genes, and, in bulk
studies, they have been shown to be highly conserved across spe-
cies and stable across different cell types [13]. Bulk CCC studies
report that the loss of cohesin produces a loss of interactions, but
TADs remain intact. In contrast, the loss of CTCF decreases intra-
TAD interactions, while increasing inter-TAD interactions [14].
CTCF depletion effects can be observed in �80% of TAD boundaries
[15]. In addition, studies in mouse embryonic stem cells (mESCs)
have shown that CTCF depletion does not disrupt A/B compart-
ments [15]. The number of TADs has been estimated to be over
2000, covering 90% of the genome [16]. CTCF-binding sites have
been found both at the boundaries and inside the TADs [6,16],
and highly-interacting domains inside larger interacting domains
are observable in heatmaps, suggesting that the definition of TADs
is not entirely objective. Recent models suggest that TADs are orga-
nized in a hierarchical fashion (i.e., sub-TADs within TADs), with
sub-TADs being more variable across cell types [17].

While TADs have been the most studied and reviewed of all
chromatin hubs in the last decade, single-cell HiC (sc-HiC) studies
have shown that TADs do not appear in single cells as clear as they
do in bulk studies. Such findings sparked a debate regarding the
existence of TADs in individual cells, particularly whether the
absence of TADs is a limitation of current single-cell technologies
or TADs from bulk studies are an artificial ensemble of mutually
exclusive alternatives from different cells [18]. Imaging studies
on single cells have confirmed that CTCF-depleted cells lose the
TAD boundaries, while RAD21-depleted cells show decreased
intra-TAD interactions, consistent with the above-mentioned roles
of CTCF and cohesin. However, the same studies also showed that
such ‘‘TADs” were variable between individual cells [19]. Multi-
plexed super-resolution fluorescence in situ hybridization imaging
showed ‘‘TAD-like” regions in single-cells, though these regions
have variable borders and do not disappear after cohesin depletion
[20]. Recent methods that generate high-resolution and super-
long-range datasets in single cells have reported the existence of
TADs in �75% of cells in mESCs; however, such TADs are not well
conserved, with 65% of the detected TADs being highly variable
between cells. The authors confirm that the existence of alternative
TADs in a population of cells cannot be explained by differences in
their cell cycles. Additionally, such ‘‘highly variable TADs” cluster
in specific ‘‘variable TAD regions” [18].

TAD structure has also shown to be highly dynamic. A recent
paper has examined the dynamics of the Fbn2 TAD in mESCs using
super-resolution live-cell imaging. The Fbn2 TAD appears fully un-
looped �6% of the time, while it is fully looped �3% of the time
(with a median lifetime of �10–30 min). Interestingly, it is in a
‘‘partially extruded” state for �92% of the time. In such a state,
�57–61% of the chromatin exists in �1–3 cohesin loops while
the rest remain un-extruded [21].

Heterochromatin protein 1 (HP1) is a fundamental unit of hete-
rochromatin, especially enriched at pericentromeric and telomeric
heterochromatin. It has been shown that HP1a in Drosophila can
nucleate into foci that have liquid-like properties. This suggests
that the formation of heterochromatin domains is not mediated
by chromatin compaction (an explanation that accounts for the
domain isolation but not for domain interactions) but a phase
3800
separation mechanism instead [22]. Such properties explain the
existence of hubs of telomere ends as telomere droplets from dif-
ferent chromosomes fusing in larger telomeric hubs [23].

2.3. Some chromatin hubs occur at the nuclear periphery

It is generally accepted that most active parts of the chromo-
somes face the nuclear interior, while most inactive parts face
the nuclear periphery. LADs are chromatin domains consisting of
genomic regions that contact the nuclear lamina, and thus, they
are essentially repressed. Bulk studies report that human cells have
around 1,000–1,500 LADs, with a size of 100 kb–10 Mb, covering
around one-third of the genome; however, they are mobile and
contact the nuclear lamina in an intermittent manner. LADs
include thousands of genes that are either silent or have a very
low transcriptional activity (only around 5–10% are highly active).
Among other features, they include most gene deserts (i.e., regions
larger than 1 Mb without genes) and a subset of telomeric regions;
they are enriched for H3K9me2 and H3K9me3, which are charac-
teristic histone marks of heterochromatin, and their position over-
laps with the so-called B compartments derived from Hi-C studies.
Similar to TADs, LAD borders are enriched with the CTCF protein.
TADs and LADs can overlap in multiple cases, but LADs are best
correlated to B compartments [24]. Regarding the nuclear lamina
proteins associated with LAD positioning, lamins, LBR, and emerin
are a group of redundant elements of a scaffolding complex that is
bound by LADs [24]. It has also been suggested that LADs contain
small regions with enhancers, TSSs, and micro-loops not bound
to lamins, which allows them to locally avoid the repressive envi-
ronment of the nuclear lamina and to interact with active chro-
matin [25,26].

LADs have been mapped by DNA adenine methyltransferase
identification (DamID) and Chromatin immunoprecipitation
sequencing (ChIP-seq) of either laminA or laminB1. Both methods
allow identification of LAD sequences. Additionally, fluorescence
in situ hybridization (FISH) has been used to determine LADs local-
ization [25]. LAD studies have been initially focused on reporting
‘‘constitutive LADs” (which are cell-type invariant) and ‘‘facultative
LADs” (which are cell-type specific) [24]. More recently, single-cell
technologies have improved our understanding of LADs. Single-cell
DamID of 100 cells showed that some LADs interact with the
nuclear lamina in most cells, while others only interact in some
of them [27]. According to FISH imaging and 3D modeling, only
�30% of the LADs identified by sequencing actually relocate to
the nuclear periphery. Consequently, the bulk maps (which
showed that one-third of the genome is made of LADs) might only
be showing the ensemble of all domains that can potentially inter-
act with the nuclear lamina. In addition, it is important to note that
there is a fraction of laminA that interacts with active chromatin in
the nuclear interior. Such ‘‘euchromatin LADs” are possible because
of the action of the LAP2a protein, whose depletion relocates all
laminA to the nuclear periphery [25,28]. Differences between
allele-specific LADs have also been put forward [29].

2.4. Large macromolecules can be hubs for chromatin

Transcription factories are chromatin hubs around RNAPol2
and other transcription-related molecules that are postulated to
play a central role in transcription.

In the early 1990 s, Jackson et al. observed that transcription in
HeLa cells occurred at 300–500 specific sites and not across the
nucleus, while Iborra et al. found two populations of RNAPol2
molecules, one scattered and one organized in clusters that co-
localized with transcription [30]. Current studies report between
100 and 8000 transcription factories per nucleus, depending on
the experimental method, cell type, and differentiation state. In
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addition, between 4 and 30 RNAPol2 complexes per factory have
been reported, depending on the experimental method and cell
type [30].

Factories are currently depicted as polymorphic compartments
with a ‘‘diameter” of 60–200 nmwhere RNAPol2 molecules are sta-
tionary on the surface and the core is rich in proteins, including
TFs, co-activators, chromatin remodelers, histone modifiers, RNA
helicases, and splicing factors, among others [31]. Biochemical
purification of factories showed enrichment of TFs and nascent
RNA, while electron spectroscopic imaging showed that both
DNA and nascent-RNA lie on the periphery of a protein-rich core
[32]. Electron spectroscopic imaging also suggests that factories
are ‘‘surrounded by decondensed chromatin fibers,” which origi-
nate from more dense chromatin regions [33]. All together sug-
gests that chromatin loops interact with RNAPol2 molecules on
the surface of such factories. An example of a factory is the b-
globin factory: in mice, the b-globin regulatory locus is located
on chr7 around 60 kb upstream of the b-globin gene; after activa-
tion, gene and locus interact to form a tissue-specific ‘‘active chro-
matin hub”. Other genes, such as Eraf (which is located �25 Mb
apart) also join the chromatin hub [34]. Table 2 includes other
examples of transcription factories.

The consensus has moved towards the idea that factories are
stable structures and not only assemble after transcriptional
requirements. Iborra et al. showed that the number of transcription
factories remains constant over time. Mitchell and Fraser showed
that transcription factories exist even if transcription is inhibited
[34], while Palstra et al. found that most long-range interactions
related to the b -globin locus were maintained even though the
polymerase was absent [35]. Mitchell and Fraser suggested that
the active chromatin hub may form before entering the factory
and join or abandon the factory, depending on the presence or
absence of transcription [34].

Transcription factories can also be seen as specialized compart-
ments enriched with a given TF, where genes regulated by this TF
move to the factory to be transcribed [30]. For example, Schoen-
felder et al. found the TF Klf1 at �40 discrete foci, mostly co-
localized with transcription factories, with 59–72% of Klf1-
regulated genes (Hbb, Hba, Hmbs, and Epb4.9) being transcribed
in the same factories [36]. The existence and role of transcription
factories have received considerable experimental support from
CCC studies. Dong et al. showed that groups of co-expressing genes
also co-localize by 3C [37], whereas Papantonis et al. [31] using 3C
measurements, showed that a rapidly transcribed gene appears to
be ‘‘permanently bound” to a transcription factory, while a gene
that needed �75 min for one round of transcription showed chro-
matin interactions between the factory and different parts of the
gene, as if the gene was slowly tracked down by a stationary
polymerase.
Table 2
Some reported transcription factories.

Transcription factory Reference

b-globin [41]
TH2 cytokines (interleukins) [42,43]
Myc [44]
Oct4 [45]
ER [46]
Cytochrome c [47,48]
Znf219 and Sox2 [49]
Hox [50–52]
PR [53]
NFjB [40]
ERG [54]
Nanog [55]
a-globin [56]
vj [57]
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RNAPol2 transcribes both protein- and miRNA-coding genes
[38]. Chen et al. used RNAPol2-associated ChIA-PET data to show
the existence of chromatin hubs of both protein- and miRNA-
coding genes. Genes in such hubs share functionality and are coor-
dinately expressed when they co-localize [39]. A similar finding
was reported by Papantonis et al. [40]. RNAPol2-factories have also
been suggested to be generated through liquid–liquid phase sepa-
ration, which would allow them to compartmentalize their pro-
cesses and increase the local concentration of protein machinery
by about 1,000-fold [32].

Although RNAPol2 factories are the best studied, the existence
of RNAPol1 and RNAPol3 transcription factories has also been con-
firmed [58]. While RNAPol2 transcribes an extensive repertoire of
genes, RNAPol1 is specialized in transcribing ribosomal RNA
(rRNA). RNAPol3 is specialized in a group of highly-expressed
housekeeping ncRNA genes, including 5S rRNA, transfer RNAs, U6
snRNA, ribonucleases, 7SL RNA, vault RNAs, Y RNAs, SINEs, 7SK
RNA, virus-encoded RNAs, as well as several miRNAs and snoRNAs
[59]. RNAPol1 and co-factors have been found in factories of 200–
500 nm diameter in the fibrillary centers of the nucleolus, while
RNAPol3 co-localizes with tRNA genes spatial clusters [58].

Polycomb bodies are foci of polycomb group (PcG) proteins
that reportedly repress chromatin hubs [60]. PcG proteins are chro-
matin remodelers known to maintain gene repression. There are
two main protein complexes called PRC1 and PRC2, although mul-
tiple variants have been identified [61]. PRC2 catalyzes the writing
of the H3K27me3 mark on facultative heterochromatin. It has been
reported that PRC1 and PRC2 are enriched at promoters and tend to
co-localize on the genome to create ‘‘polycomb chromatin
domains,” which have a repressive nature. Such domains may
reach >10 kbp in size and are characterized by high levels of
H2AK119ub1, H3K27me3, and PcG occupancy [62]. The mecha-
nisms of PRC1 and PRC2 to repress transcription are independent;
however, they co-localize and synergize to repress target genes.
Polycomb bodies are then foci of PcG complexes and polycomb
chromatin domains that may be separated in a chromosome by
several megabases and work as ‘‘silencing” compartments. The
best-known case is that of the Hox gene cluster, a group of chro-
matin domains targeted by PcG proteins, which interacts with a
large polycomb body. The formation of polycomb bodies has been
associated with liquid–liquid phase separation of PRC1 complexes
(specifically, the CBX2 and PHC proteins) [63,64]. Polycomb bodies
are also considered to be dynamic structures, with the binding of
PcG proteins to the polycomb body being highly dynamic [62,65].

It has also been suggested that the trithorax group (Trx)
chromatin-modifying complexes (which include proteins such as
MLL1/MLL2 and SETD1A/SETD1B) can interact with RNAPol2 to
inhibit PRC1 and PRC2 and generate ‘‘Trx chromatin domains”
enriched in H3K4me3. One model suggests that chromatin is bis-
table, switching from repressive PcG to active Trx domains. If tran-
scription activation signals are absent or low, PRC1 and PRC2 can
form PcG domains, whereas if they are high, Trx and RNAPol2
antagonize PRC1 and PRC2 and form transcription-permissive Trx
domains [62,66,67]. It has also been reported that Trx domains
are targeted for transcription factories, while PcG domains are tar-
geted for PcG bodies [68].

lncRNAs act as miRNA sponges, transcriptional activators or
inhibitors, and scaffolds for nuclear organelles, but they can also
serve as foci for chromatin hubs. It has been suggested that lncRNA
foci also resemble membrane-less organelles. One example is XIST,
which mediates X chromosome inactivation and can spread along
the condensed X chromosome [60]. NEAT1 and MALAT1 also bind
to many sites and often co-localize, but they especially bind to
active genes [69]. Moreover, NEAT1 has a protein interaction
network that includes proteins related to transcription, splicing,
translation, and polyadenylation, among others, which is similar
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to other chromatin hubs [60]. Werner et al. have shown that
around 60% of all annotated lncRNAs are chromatin-associated,
near active protein-coding regions, and tethered by RNAPol2 [70].

Nascent RNAs have been reported to form clouds over regula-
tory DNA elements, which link distant promoters and enhancers
and generate ‘‘nascent-RNA-associated transcription hubs”
[23,71,72]. Such hubs contain, on average, around 4 active promot-
ers, 20 typical enhancers, and 1–2 super-enhancers. Some exam-
ples of nascent-RNAs involved in transcription regulation include
(i) promoter upstream transcripts (PROMPTs), which participate
in the recruitment of TFs and chromatin remodelers; (ii) enhancer
RNAs (eRNAs), the production of which is correlated to enhancer
activity; and (iii) pre-mRNAs, for whom a gene regulatory function
(beyond being a mere intermediate step in the mRNA production)
has started to be discussed [23]. Nascent RNAs are retained at their
site of transcription by mechanisms such as ‘‘R-loops”: RNA:DNA
hybrids between the nascent RNA and the template strand. Such
structures have been considered both a source of genomic instabil-
ity (making some regions more sensitive to DNA damage) and reg-
ulators of gene expression (R-loops in the promoter may lead to
transcriptional repression by RNAPol2 pausing). Another retention
mechanism is the interaction of PRC2 with nascent RNAs, such as
pre-mRNAs [23]. Other components of the nascent RNA interac-
tome have also been published [73].

2.5. Chromatin hubs exist around nuclear bodies

Several membrane-less organelles or ‘‘nuclear bodies” interact
with chromatin, and therefore, may also serve as foci for chromatin
hubs. These include the nucleolus (for ribosomal DNA), nuclear
speckles and paraspeckles (for pre-mRNAs from diverse genes),
Cajal bodies (for snRNAs), histone locus bodies (for histone
mRNAs), and PML bodies (for both euchromatic and heterochro-
matic DNA).

The entire nucleolus, rather than only RNAPol1 factories, can be
considered a chromatin hub, as multiple segments of chromatin
interact with the nucleolar periphery. Such chromatin regions are
enriched on repeats of the ribosomal gene (rDNA) and have been
called ‘‘perinucleolar chromatin,” ‘‘nucleolar organizing regions,”
or ‘‘nucleolus-associated chromatin domains” (NADs) [74,75]. Sim-
ilar to LADs, NADs are B compartments with low gene density and
expression level [25]. Two-thirds of NADs reportedly overlap with
LADs in human fibroblasts, meaning one-third of NADs are
perinucleolus-specific [76]. Also, NADs display more euchromatin
than heterochromatin, suggesting that they are less repressive
than LADs [74]. Lamins have been reported at the nucleolar periph-
ery, but it is not clear if they tether NADs in the same way as LADs
at the nuclear periphery [25]. One biogenesis model suggests that
small nucleoli assemble around each NAD and form compartments
that recruit the necessary machinery for rRNA transcription, rRNA
processing, and ribosome assembly, including RNAPol1, the DNA-
binding protein UBF, and the SL-1 complex for rRNA transcription,
as well as small nucleolar ribonucleoproteins (snoRNPs), for post-
transcriptional modifications. Subsequently, all the small nucleoli
seem to interact and condensate in a single large nucleolus [75].
It is important to note that the nucleolus is a highly dynamic struc-
ture, with RNAPol1 components, for example, being continuously
exchanged and only transiently localized at nucleoli [74].

Nuclear speckles (also known as splicing speckles, SC-35
domains, or interchromatin granule clusters) were previously con-
sidered to be just a place for the storage of splicing factors. Modern
techniques have elucidated their role in gene expression, since
they contain numerous proteins related to epigenetic regulation,
chromatin organization, TFs, and ncRNAs. The existence of
chromatin-nuclear speckle hubs has been proposed, in which such
hubs might coordinate all the gene expression regulation steps in a
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way similar to a transcription factory [77]. Similar to most nuclear
bodies, splicing speckles are a liquid-like entity with a density and
protein concentration slightly higher than the surrounding nucleo-
plasm. A human nucleus contains 20–50 speckles, each with a
diameter of several micrometers, composed of several spots mea-
suring 20–25 nm. The proteins discovered in the speckles include
TFs, splicing factors, chromatin remodeling proteins, protein
kinases, PI signaling proteins, nucleoskeletal organization proteins,
ubiquitination and SUMOylation proteins, and ncRNAs (such as
spliceosomal snRNA, 7SK RNA, and NEAT2 lncRNA) [77]. Co-
expressed genes are known to co-localize at nuclear speckles
[78], as has been observed for both a- and b-globin in human ery-
throblast cells, as well as adipogenic genes in porcine adipocytes
[79]. Khanna et al. reported the repositioning of the HSP70 gene
to nuclear speckles after heat shock, followed by their transcription
[80]. Nuclear speckles co-localize with MALAT1, a lncRNA that
interacts with active promoters. MALAT1 has been suggested to
act as a link between chromatin and nuclear speckles [69].

Paraspeckles are formed near nuclear speckles [23] and their
chromatin interactions are mediated by NEAT1 (a lncRNA that
binds to actively transcribed genes). NEAT1 has been reported to
induce paraspeckle formation through phase separation [81]. Para-
speckle/NEAT1 chromatin hubs are associated with both histone-
modifying and nucleosome-remodeling enzymes. Some studies
suggest that paraspeckle/NEAT1 regulate transcription, as NEAT1
regulates histone marks that stimulate transcription, while mem-
bers of the SWI/SNF complex co-localize with paraspeckles. How-
ever, other studies suggest that paraspeckle/NEAT1 regulate
repression, as NEAT1 interacts with members of PRC2. Paraspeck-
les also interact with lincRNA-p21 [60,69].

Cajal bodies are nuclear compartments located at the interface
between chromosome territories, near chromatin domains
enriched on small nuclear RNA (snRNA) genes or small nucleolar
RNA (snoRNA) genes [82]. They have been linked to the generation
and recycling of snRNAs, which are required for pre-mRNA splicing
[23]. Cajal bodies can be identified by the coilin protein, Cajal
body-specific RNAs called scaRNAs, and splicing small nuclear
ribonucleoproteins (snRNPs) [83]. As with other nuclear bodies,
they have been shown to interact with a lncRNA, telomerase RNA
component (TERC), and to shuttle between the chromatin and
interchromatin space [60]. Histone locus bodies are similar to
Cajal bodies, but they have been differentiated because they inter-
act with chromatin domains enriched on the genes that code for
histones, and they contain factors needed to process histone pre-
mRNAs [83]. They have also been shown to interact with the Y3/
Y3** ncRNA [60].

Finally, promyelocytic leukemia nuclear bodies (PML bodies,
also known as ND10) are compartments with a diameter of
approximately 0.1–1 lm that are involved in H3.3 chromatin
assembly, SUMOylation, sequestration of TFs, senescence, and
antiviral defense. Around 5–30 PML bodies exist in a cell, depend-
ing on cell type and cell cycle phase, forming at regions of high
transcriptional activity or near telomeric DNA. They are mainly
characterized by the PML protein, which is located at their periph-
ery, enclosing a core filled with both constitutive and transient
proteins, especially chromatin-related factors, such as histone
H3.3 and histone modifiers (associated with histone methylation,
demethylation, acetylation, and deacetylation) [12].

Chromatin fibers have been detected at the periphery of PML
bodies [84]. Some publications report nascent RNA inside PML
bodies, while others report the accumulation of nascent RNA in
their vicinity [85]. Viral DNA has also been detected. In some cases,
such as the herpes simplex virus 1 (HSV-1), human papilloma virus
11, Epstein–Barr virus, and bovine papillomavirus, viruses might
use the PML bodies as sites for replication/transcription; in some
other cases, such as latent HIV proviruses, PML bodies were found
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to promote transcriptional silencing. HSV-1 is a special case where
the viral genome does not integrate into the host genome but
remains as an extrachromosomal replicating dsDNA; here, PML
bodies may participate in the ‘‘chromatinization” of the viral gen-
ome by providing the required histone variants and marks [12].
PML bodies have been associated with transcriptionally active
chromatin domains, building hubs through chromatin-interacting
proteins such as PML, Sp100, and p53 [60]. Chromatin domains
known to co-localize with PMLs include the major histocompatibil-
ity complex (MHC), TP53, Oct3/4, and DDTI4 loci, among others.
PMLs could also play a role in the organization of repressive
domains, as they concentrate both SETDB1, which deposits the
H3K9me3 mark, and HP1 a, which allows heterochromatin com-
partment formation by phase separation. There have also been
reports of associations with pericentromeric and telomeric hete-
rochromatin under specific pathologies and cell cycle stages. PML
bodies that co-localize with telomeres are more common in stem
cells and are mostly lost after differentiation; however, some
telomeric PML bodies can be found in cells with shortened or dam-
aged telomeres, suggesting that PML bodies might favor telomere
elongation or renewal [12].

2.6. There are other types of chromatin hubs

Novel types of chromatin hubs are being constantly described.
For example, an RNAPol2 transcription factory with viral DNA
(instead of its host DNA). It has been reported that DNA of the
HSV-1 virus can form a replication compartment around RNAPol2
foci [86].

In senescent cells and cells with ‘‘laminopathies” (diseases due
to lamin protein mutations), it has also been reported that the lam-
ina is disrupted and LADs re-localize away from the nuclear
periphery or the nucleolus, accompanied by the formation of
senescence-associated heterochromatin foci (SAHF) [87]. In
senescent cells, SAHF contain facultative heterochromatin and
heterochromatin-forming proteins, such as HP1, the histone vari-
ant macroH2A, and HMGA [88].

Additionally, DNA domains belonging to G-quadruplexes (G4s)
could be considered either chromatin hubs or a part of a chromatin
hub. G4s are DNA secondary structures consisting of stacks of gua-
nine tetrads (four guanine bases associated in a planar structure) in
Guanine-rich regions. Although they were initially reported as
transcriptional repressors at oncogene promoters, current evidence
suggests that G4s are mainly transcriptional enhancers located at
the promoters of transcriptionally active genes [89]. Evidence
includes G4s being identified as hubs for TF binding [90] and being
reported to trigger RNA phase separation [91]. Finally, a recent
paper has shown that G4s co-localize with transcription factories
and nuclear speckles to a considerable extent, and with PML bodies
and Cajal bodies to a lesser extent [92].

2.7. A summary of new experimental technologies

In recent years, novel experimental technologies have revolu-
tionized the study of chromatin interactions, the most popular
development being ‘‘single-cell HiC” [93–99], a method in which
the Hi-C protocol is performed in individual nuclei and not after
the nuclear lysis of multiple cells. This method has shown that
interactions are sparse in individual cells and the properties of bulk
Hi-C interaction maps resemble those of the pool of single cells
[93].

Several methodologies to identify RNA–chromatin interactions
have also appeared. Some of them are valid for one RNA at a time,
such as ‘‘chromatin isolation by RNA purification” (ChIRP), ‘‘cap-
ture hybridization analysis of RNA targets” (CHART), and RNA anti-
sense purification (RAP). A few others can be applied to evaluate
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RNA–chromatin interactions across all RNAs, such as ‘‘mapping
RNA–genome interactions” (MARGI), ‘‘global RNA interaction with
DNA sequencing” (GRID-seq), ‘‘chromatin-associated RNA
sequencing” (ChAR-seq), ‘‘in situ MARGI” (iMARGI), and ‘‘RNA and
DNA interacting complexes ligated sequencing” (RADICL-seq)
[23,100]. There are also novel techniques for nuclear body studies.
Two examples for studying PML body specific chromatin
are: immuno-TRAP (for a specific chromatin locus) [101] and
ALaP-Seq (for the whole genome) [102]. Also, a few methodologies
have been proposed for mapping R-loops, such as MapR [103].

We want to highlight recent experimental techniques that go
beyond pairwise interactions and detect multiple-loci or multi-
way interactions. Some authors argue that the ‘‘proximity ligation”
approach is not useful for regions too far apart to be directly ligated
(e.g., to identify interactions between chromatin regions around a
nuclear body); therefore, ligation-free methods have been devel-
oped. Other authors see a problem in that 3C-based protocols gen-
erate large concatemers that are trimmed in order to be
sequenced; therefore, they focus on keeping the full concatemers
and using long-read sequencing to detect multi-way interactions.
In summary, current multi-way interaction detection methods
include ligation-based methods (C-walks [104], Tri-C [105], MC-
4C [106], and Pore-C [107]) versus ligation-free methods (GAM
[108], SPRITE [109], ChIA-Drop [110], and sc-SPRITE [18]), bulk
methods (the majority) versus single-cell methods (multiplexed
super-resolution FISH [20] and sc-SPRITE [18]), Illumina short-
read sequencing (the majority) versus long-read sequencing (MC-
4C [106] and Pore-C [107]), and targeted/high-resolution methods
(Tri-C [105] and MC-4C [106]) versus high-throughput/low-
resolution (the majority). These methods are further reviewed in
Supplementary Material 1.
3. Chromatin hubs: The computational side

Computational studies of chromatin hubs are a few steps
behind the current biological knowledge. However, progress has
been made on multiple fronts, including: (i) prediction of enhan-
cer–promoter interactions, using either machine learning models
based on different genomic features or natural language processing
methods applied to the DNA sequence; (ii) both traditional and
novel network analyses of chromatin interaction networks; (iii)
development of different types of domain callers to call TADs,
LADs, and other domains from genomic data; (iv) various chro-
matin hub and, specifically, transcription factory inference meth-
ods based on statistical comparisons; and (v) novel methods of
multi-way interaction data analysis (Table 3; Fig. 2).
3.1. Prediction of enhancer–promoter interactions

Enhancer–promoter interaction prediction is different to the
computational prediction of chromatin hubs; however, predicted
interactions can be aggregated into networks and subjected to
clustering, as a way of predicting enhancer–promoter hubs.

In our previous review [1], we discussed a few methods based
on correlations to single epigenetic marks [155–158], as well as
others based on more sophisticated machine learning classifiers
[111–114]. In both cases, the underlying assumption was that
some genomic features (or combination of features) in the 1D gen-
ome, such as TF binding, chromatin-binding protein motifs, and
histone marks, contain all the necessary information to predict
3D structures, such as chromatin loops. Since the time of our pre-
vious review, several new methods have appeared. Here, we
review TargetFinder, which we consider to be state-of-the-art in
terms of methodology and results, and JEME, which has been used
to create a valuable map of chromatin interaction networks.



Table 3
Summary of computational methods to study chromatin hubs.

Category Methods/Tools reviewed Reference

Enhancer–promoter interaction prediction Epigenomics-based methods: FANTOM5, PreSTIGE, IM-PET, RIPPLE,
TargetFinder, and JEME

[111,112,113,114,115], and [116]

Sequence-based methods: PEP, EP2vec, SPEID, CNN with TL, and SEPT. [117,118,119,120], and [121]
Network analysis of interaction networks Standard chromatin interaction network analysis: Sandhu et al., Li

et al., Chen et al., Thibodeau et al., and Li et al.
[122,123,39,124], and [71]

Promoter- or enhancer- enriched standard interaction network
analysis: Schoenfelder et al. and Madsen et al.

[125] and [126]

Multi-scale network analysis [127]
Graphlet approach [128]
Detection of chromatin hubs around disease-related SNPs [129]

Calling special chromatin domains such as
TADs, LADs, NADs, etc.

TAD callers: TopDom, HiCseg, CaTCH, CHDF, and IC-Finder [130,131,132,133], and [134]
LAD callers: EDD and LADetector [135] and [136]

R-Loop / G-quadruplex prediction R-Loop Tracker [137]
Intramolecular G4 predictors: Quad-Parser, QGRS Mapper, G4P
Calculator, QuadBase, and G4Hunter

[138,139,140,141], and [142]

Intermolecular G4 predictors: ddiQFP and Allquads [143] and [144]
Chromatin hub / Transcription factory

prediction
Comparing co-regulated clusters to background clusters [145]
Comparing chromatin hubs in a population: ‘‘VCMs” (Intra-TAD and
inter-individual variation modules), ‘‘Regulatory communities”
(Population-conserved 3D chromatin hubs), and ‘‘CMINT” (Dynamic
changes of chromatin modules)

[146,147], and [148]

Overlap of chromatin hubs with significantly high ChIP-seq peaks:
‘‘Functional 3D hot-spots”, Belyaeva et al., and Stevens et al.

[149,150], and [96]

EpiTensor (modeling method detecting ‘‘interaction hotspots”) [151]
Multi-way interaction data analysis Multi-way interaction callers: SLICE, MIA-Sig, Pore-C-pipeline, and

MATCHA
[108,152,107], and [153]

Multi-way interaction prediction based on pairwise interactions [154]
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TargetFinder is a method that applies ensembles of boosted
decision trees to hundreds of genomic features in six ENCODE cell
lines. The method is as follows: enhancers and promoters are iden-
tified using segmentation data from ENCODE, while enhancer–pro-
moter interactions are extracted from Hi-C data (dataset from Rao
et al. [6]). The model is fed with pairs of enhancers and promoters
(annotated as interacting or non-interacting), as well as genomic
features for each pair, including (i) open chromatin, (ii) DNA
methylation, (iii) gene expression, and (iv) ChIP-seq peaks for
TFs, architectural proteins, and modified histones. Using recursive
feature elimination, the authors identified the minimal subset of
genomic features that accurately predicts the interaction pairs
for all cell lines. Features were ranked according to its importance,
with 16 found to be enough for near-optimal performance.

According to TargetFinder results, the models and ranks of fea-
tures are different for different cell lines; however, some predictors
performed consistently well across cell lines, including CAGE (e-
RNA) data, activation-associated (H2AZ, H3K27ac, H3K9ac,
H3K4me1, H3K4me3, and H3K4me2) and elongation-associated
marks (H3K36me3, H3K79me2), structural proteins [e.g. CTCF,
cohesin (SMC3 and RAD21), and ZNF384], open chromatin
(DNase-seq), and DNA methylation. Some highly–ranked proteins,
which are not commonly reported as predictors, included CUX1;
SRF; SUPT20H; EBF1; MAX; TFAP2C; chromatin looping related
proteins SP1, SPI1 (PU.1), HCFC1, and TBP; and histone modifiers
KDM1A and RCOR1. CAGE (e-RNA) was consistently the best pre-
dictor in both multivariate (with all 16 features) and univariate
(with one feature) models, suggesting that, in case we can only
obtain data from one feature, e-RNA should be the chosen one.
SUMOylation, a post-translational modification not included in
ENCODE or Roadmap Epigenomics at the date of the publication,
was found to be another good predictor. RNAPol2, commonly
included in software for enhancer–promoter prediction, was not
predictive on its own; however, elongation-associated histone
marks proved to be more indicative of promoter activity. Addition-
ally, PRC2 and heterochromatin marks were associated with non-
interacting pairs [115].
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A method called ‘‘Joint Effect of Multiple Enhancers” (JEME) has
been used to predict enhancer–promoter interaction networks for
935 human cells and tissues [116]. The authors built a minimal
model based on enhancer features (eRNAs and three histone mod-
ifications) and gene expression levels. Enhancer features and gene
expression levels are first collected (935 human primary cell types
and cell lines, 127 from Roadmap Epigenomics and 808 from FAN-
TOM5). Then, enhancers within 1 Mb of each TSS are considered as
its potential enhancers and multiple regression of all enhancers
across all samples is performed. The authors introduced a supple-
mentary website (https://yiplab.cse.cuhk.edu.hk/jeme/), including
the 935 networks and the software to generate them, which can
be retrained if more data becomes available. In comparing enhan-
cer–promoter networks between samples, the study found that
biologically-related samples produced similar networks [116].

‘‘Sequence-based methods” have emerged as a novel approach
to enhancer–promoter prediction. Such methods assume that a
DNA sequence contains all the information needed to predict inter-
actions, using NLP techniques to analyze the DNA sequence (i.e.,
the enhancer and promoter sequences), instead of information
from binding proteins or epigenetic marks. NLP techniques are
widely used in websites and apps, where they transform human
language sentences into vectors susceptible to machine learning
modeling. Sequence-based methods include PEP [117], EP2vec
[118], SPEID [119], CNN with TL [120], and SEPT [121]. A brief
review of such methods can be found in Supplementary Material
1. It remains to be seen whether sequence-based methods,
although using state-of-the-art machine learning, can deliver use-
ful insights while ignoring all transcriptional and epigenetic
information.

Another novel approach is followed by Chromatin Interaction
Site Detector (CISD) and CISD-based loop predictor (CISD_loop)
[159]. The authors combine low-resolution Hi-C data and nucleo-
some information from MNase-seq data to generate high-
resolution chromatin interaction networks. The method is based
on the observation that strong periodic patterns exist in the
nucleosome arrangements flanking chromatin interaction sites;
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moreover, for allele-specific chromatin interactions, such patterns
differ between the interacting and non-interacting alleles.

3.2. Network analysis of chromatin interaction networks

Network analysis has been applied to ChINs with mainly
descriptive purposes, although some predictive studies have also
been conducted. In such networks, nodes represent chromatin
regions, such as genes, enhancers, promoters, and DNA segments
(bins), while edges represent chromatin interactions.

In 2012, Sandhu et al. characterized chromatin hubs and com-
munities using a conventional graph theory approach [122]. They
built a ChIN based on RNAPol2-associated ChIA-PET datasets for
K562 and MCF7 cells. The result was �10,000 connected compo-
nents, with 40% of the nodes in a giant component that followed
a scale-free-like degree distribution, rich-club structure, and con-
tained 1,173 communities. Intra-community interactions hap-
pened to be cis- (in the same chromosome), while inter-
community interactions were either inter-chromosomal or super-
long range. In addition, communities were largely conserved
between K562 and MCF7 (71% of communities showed >75% over-
lap). In the network, nodes containing SNPs had a low degree,
while hubs lacked SNPs. Finally, 62% of rich-club genes were anno-
tated as lethal in mice.

Similar analyses have been performed on different systems or
using different technologies. For example, Li et al. used RNAPol2
ChIA-PET data to build a chromatin interaction network in five
human cell lines (MCF7, K562, HeLa, HCT116, and NB4), which con-
tained 5% of promoter-to-gene-body, 20% of enhancer–enhancer,
33% of enhancer–promoter, and 42% of promoter–promoter inter-
actions. The network displayed hubs of promoters (called ‘‘multi-
gene interaction complexes”), which included multiple
promoter–promoter and enhancer–promoter interactions and
sometimes interacted with similar hubs in the same or in another
chromosome to generate ‘‘higher-order multigene interaction
complexes.” The study identified 1,328 such hubs containing
11,723 genes (on average, 8.8 genes per hub), which the authors
presented as evidence of promoter–promoter interactions being
widespread and evidence of a physical mechanism that explains
the combinatorial complexity of transcriptional regulation [123].
Chen et al. built chromatin interaction networks for ‘‘miRNA
gene–miRNA gene”, ‘‘miRNA gene–target”, and ‘‘miRNA gene–
protein-coding gene” interactions, using RNAPol2-associated
ChIA-PET data in K562 and MCF7 cell lines. They showed that hubs
of miRNA genes frequently belong to the same family and disease,
while hubs of co-expressed and co-localized miRNA and protein-
coding genes suggest that miRNA is also generated in transcription
factories. Some hubs were common to both cell types, while others
were cell-specific [39].

Schoenfelder et al. built a chromatin interaction network for
mESCs and fetal liver cells (FLCs) using CHi-C. The CHi-C method
enriches Hi-C libraries for promoters and claims a >10-fold enrich-
ment of reads involving promoters. More than 59% of the pro-
moter–genome interactions, and more than 73% of the
promoter–promoter interactions were cell-specific; 66.6% of active
promoters interacted with the nearest enhancer. Most promoter–
genome interactions occurred within TADs, while only a small frac-
tion occurred in LADs. Notably, active promoters showed more
long-range interactions than inactive promoters [125]. Similarly,
Madsen et al. generated a ChIN of enhancers and promoters in mes-
enchymal stem cells using ‘‘enhancer capture Hi-C” (ECHi-C), a
method that enriches for enhancers. After clustering, they identi-
fied 5,238 enhancer-containing communities, 2,842 of which did
not contain promoters. The other 2,396 chromatin hubs (called
‘‘gene regulatory communities”) were classified into two groups:
�61% were ‘‘regular communities” and �39% were ‘‘highly inter-
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connected enhancer communities” (defined as those communities
with at least one highly interconnected enhancer and one pro-
moter) [126].

Thibodeau et al. built ChINs in three cell lines (K562, MCF7, and
GM12878) and analyzed four types of genomic elements: promot-
ers, enhancers, broad H3K27ac marks (also known as ‘‘super-enh
ancers”), and broad H3K4me3 marks (also known as ‘‘broad
domains”). The authors reported different connectivity patterns
for broad domains and super-enhancers that were conserved
across cell types. The number of interactions between such ele-
ments was higher than theoretically expected, e.g., from broad
domains to all other nodes (2.9 times higher than expected),
super-enhancers to broad domains (2.7–5.5 times), and super-
enhancer to super-enhancer (2.7–5.0 times). Broad domains were
more connected than normal promoters, while super-enhancers
were more connected than normal enhancers. Finally, the authors
built a support vector machine that allowed the discrimination of
broad domains from regular promoters and super-enhancers from
regular enhancers by using both network connectivity metrics and
genomic datasets as features [124].

It is also important to note a recent publication of the RNA–
chromatin interactome of the human chromosome 11 for breast
cancer cells, which includes a network of nascent-RNA hubs [71].

Other network studies have introduced more complex analyses.
Babaei et al. built a multi-scale ChIN using data from the Allen
Mouse Brain Atlas to assess whether multi-scale chromatin inter-
actions performed better than single-resolution chromatin interac-
tions at predicting co-expression patterns. The multi-scale network
included large-scale interactions (between chromatin compart-
ments), medium-scale interactions (between genes), and small-
scale interactions (between TSSs of genes). The authors computed
scale-aware versions of network properties, such as the shortest
path, Jaccard index, degree, clustering coefficient, and betweenness
centrality, and used a supervised learning procedure (random neu-
ral network classifier) to model co-expression in terms of such
scale-aware network metrics. They found that co-expression pre-
diction improved when using multi-scale networks, suggesting
that gene regulation and co-expression prediction benefits from
using information from both direct chromatin interactions and
indirect interactions occurring in a higher-order scale [127].

Malod-Dognin et al. analyzed the chromatin network structure
of 17 healthy and one chronic lymphocytic leukemia cell lines
using ‘‘graphlets” (small, connected, non-isomorphic motifs
extracted from larger networks). In this study, data from CHi-C
experiments was used, and nodes represented genes. The authors
reported that leukemia cells show large network structural
changes, with reduced modular organization and functional coher-
ence. Additionally, driver genes became hubs that connect modules
disconnected in normal cells. Moreover, both healthy and chronic
lymphocytic leukemia cells were characterized by specific connec-
tivity patterns in terms of ‘‘graphlet signatures”, that is, a signature
distance called the ‘‘average graphlet degree vector distance”
between the driver genes was smaller than the distances between
background elements, which could be a useful finding to predict
new cancer drivers in healthy cells [128].

More recently, we built the ‘‘Gene Regulation Graph Database”
(GREG), a database of protein–protein, protein–DNA, DNA–DNA,
ncRNA–DNA, and ncRNA–protein interactions for eight human cell
lines, including three types of stem cells (H1, IPS6.9, and IPS19.11),
four types of cancer cells (A549, K562, MCF-7, and HeLa), and a
fibroblast cell line (IMR-90). In GREG, DNA bins, DNA-binding pro-
teins, and DNA-binding ncRNAs are the nodes, while their interac-
tions are the edges of the graph. Among other applications, we
used GREG to predict transcription factories related to chronic
obstructive pulmonary disease (COPD). First, we identified all
GREG’s DNA bins containing the SNPs that have been correlated
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to COPD in lung fibroblasts (IMR-90 cells). Then, we extracted the
networks of all protein, lncRNA, and DNA interactors in these bins.
The results suggested that mutations in the CHRNA3, IL13, and
MMP9 genes may affect chromatin hubs in chr15 (genes associated
with effects of smoking), chr5 (genes associated with cytokine sig-
naling, cell cycle, transport, and senescence), and chr20 (genes
associated with immunity, inflammation, and transport), respec-
tively. Finally, gene expression data for the genes in the identified
hubs showed that several genes were downregulated in COPD, sug-
gesting that the effects of COPD on lung fibroblasts are a conse-
quence of the perturbation of such chromatin hubs/transcription
factories [129].

3.3. Calling chromatin domains (TADs, LADs, NADs, etc.)

There are multiple computational methods for TAD prediction
(see the review by Zufferey et al. [17]). Zufferey et al. compared
22 prediction methods (including network methods, clustering
methods, linear score, and statistical models) and found that the
reported TAD numbers and sizes vary among the different TAD
callers. After comparing robustness, cost-effectiveness, concor-
dance with other TAD callers, enrichment for biological features,
and computational efficiency, the authors recommended TopDom
[130], HiCseg [131], CaTCH [132], CHDF [133], and IC-Finder
[134], as the best performing TAD callers.

The study also highlighted that most methods called large TADs
when larger bin sizes were used, with the boundaries detected in
these cases being a subset of the boundaries detected with smaller
bin sizes. The authors interpreted this as support for TADs being
organized in a hierarchical architecture of nested TADs, and thus,
that the boundaries, TAD size, and TAD number are relative to
the data resolution.

A final observation about TAD prediction is that, except for CTCF
and cohesin, the features that predict TADs are different from the
ones that predict enhancer–promoter interactions [115].

With regard to repressive hubs, it has been suggested that the B
compartment derived from Hi-C studies corresponds to the union
of all the heterochromatin hubs, such as nuclear lamina LADs,
nucleolar NADs, and centromeric PADs [24]. The genome’s A/B (ac-
tive/repressive) compartments have been predicted by correlation
to epigenetic marks. Fortin et al. have shown that A/B compart-
ments can be predicted using DNA methylation microarray, DNase
hypersensitivity, sc-ATAC sequencing, and sc-whole-genome bisul-
fite sequencing data [160].

LADs can be called from either ChIP-seq or DamID data. Regard-
ing ChIPseq-data-based callers, it must be considered that lamin
peaks can be described as broad and low-level enrichment; thus,
it is difficult to find them using ChIP-seq peak callers for TFs, such
as MACS (which are designed for narrow peaks and high-
enrichment), or peak callers for histone marks, such as SICER
(which are designed for broad peaks, but not as broad as LAD
peaks) [25]. Lund et al. introduced ‘‘enriched domain detector”
(EDD), an algorithm to detect broad domains with low-level
enrichment, such as heterochromatin regions. EDD is based on
the idea that compact chromatin generates fewer sequence reads
due to experimental difficulties, owing to which the number of
reads is insufficient to detect enrichment. Instead, EDD compares
sample read counts to input read counts, computing the ratio of
sample reads to ‘‘sample + input” reads. The algorithm distin-
guishes between enriched informative, depleted informative, and
non-informative bins, and significant clusters of enriched informa-
tive bins are identified as peaks [135]. Regarding DamID-data-
based callers, Reddy et al. introduced LADetector [25,136]. The
software requires a bed file of log2 ratios of sample and control
files, uses the ‘‘DNAcopy” package for data segmentation, and cre-
ates clusters between consecutive bins [136].
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Although R-loops and G-quadruplexes may co-localize, compu-
tational tools have been developed to predict each of them. A
recent prediction tool for R-loops is ‘‘R-Loop Tracker”, a web plat-
form for R-Loop prediction and analysis from genomic DNA [137].

Different tools for prediction of G-quadruplex sequences [also
called putative quadruplex sequences (PQSs)] have already been
reviewed [161,162]. Kwok et al. distinguished tools predicting ‘‘in-
tramolecular G4s” (those formed from a single DNA strand) from
tools predicting ‘‘intermolecular G4s” (from more than one DNA
strand or a DNA–RNA hybrid). Intramolecular G4 prediction tools
include tools such as Quad-Parser [138], QGRS Mapper [139],
G4P Calculator [140], QuadBase [141], and G4Hunter [142]. Most
of these tools are based on finding sequences with four tracks of
three guanines in close proximity, originally the motif G3-N1-7-
G3-N1-7-G3-N1-7-G3 (where N represents A, T, G, or C); however,
several exceptions and different structures have been reported,
and additional factors involved in G4 folding have been considered
in the more recent algorithms [161]. Intermolecular prediction
tools for both DNA strands include ddiQFP [143] and Allquads
[144]. Methods such as ChIP-seq detect around 10,000 G4s, while
G4-seq detects around 700,000. Most G4 prediction methods usu-
ally predict something in the middle, which has been interpreted
as a need to consider more non-canonical G4 motifs [161].

3.4. Chromatin hub and transcription factory prediction methods

Multiple methods predicting chromatin hubs and transcription
factories have emerged in recent years. In 2013, Ben-Elazar et al.
published a statistical test to determine the existence of transcrip-
tion factories. They examined whether co-regulated genes were
clustered in space significantly more than their clustering along
the genome, which proved to be true for 64 out of 117 TFs, i.e.,
64 types of specialized transcription factories, in S.cerevisiae [145].

Waszak et al. introduced the concept of ‘‘variable chromatin
modules” (VCMs). After comparing expression, three histone
marks, the TF PU.1, and RNAPol2 levels in lymphoblastoid cell lines
from 47 individuals, they found that inter-individual variation was
concentrated on chromatin modules that they termed VCMs and
that TADs were enriched in such VCMs. They described VCMs as
sub-TAD transcription-related spatial structures, similar to tran-
scription factories [146]. Dai et al. used 3D structures of both
deconvoluted Hi-C data and sc-HiC data to identify a series of 3D
chromatin clusters that occurred frequently across the population.
They called these clusters ‘‘regulatory communities,” as a large
number of them were enriched on regulatory factors, with the
two major factors being ‘‘centromere clustering” and ‘‘transcrip-
tion factor binding” [147].

Capurso et al. superposed ChIP-seq data to a chromatin interac-
tion network to detect 3D regions for which the ChIP-seq peak
height was significantly high, which they called ‘‘functional 3D
hotspots” and suggested that transcription factories could be one
example of such hotspots [149]. In the same year, Zhu et al. intro-
duced ‘‘EpiTensor,” a tensor modeling method to identify 3D spa-
tial associations from 1D epigenomic information of histone
marks, DNA accessibility, and gene expression. Using this method,
the authors identified a group of ‘‘interaction hotspots” enriched
on TFs and ncRNAs, which could be transcription factories [151].

Belyaeva et al. introduced a method to locate co-localized and
co-regulated chromatin regions [150]. They built a graph with
DNA ranges as bins and Hi-C interactions as edges, and added data
on 48 TFs and histone modifications. They then assigned weights to
the edges as correlations between epigenetic marks and performed
weighted clustering. Finally, they used an eXtreme gradient boost-
ing trees classifier to discover that clusters can be classified as
either enriched on TFs and RNAPol2 (transcription factories) or
enriched on H3K9me3 (repressive). 3D-FISH validation showed
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that RNAPol2 is indeed enriched in predicted factories. Stevens
et al. performed a similar analysis for sc-HiC data [96]. After map-
ping ChIP-seq data onto the single-cell 3D networks, the authors
found spatial clustering of histones H3K4me1, H3K27ac, and
H3K4me3, which correspond to enhancer–promoter spatial clus-
ters, corroborating that such clusters are not a mere artifact of bulk
Hi-C studies.

Chromatin Module Inference on Trees (CMINT) is a related
method that finds the dynamic changes of chromatin modules
[148]. Here, a chromatin module was defined as a set of genomic
loci with the same chromatin state (combination of seven histone
marks). The modules and extent to which they were shared
between different cells were determined using a probabilistic clus-
tering approach. The method also determines which genomic loci
switch modules and how likely are genomic loci in general to
switch modules, which they apply to the study of both iPSCs repro-
gramming and hematopoiesis.
3.5. Multi-way chromatin interaction data

The advent of multi-way interaction detection methods and
datasets (see Supplementary Material 1) has inspired the develop-
ment of associated bioinformatics methodologies. Beagrie et al.
introduced ‘‘Statistical inference of co-segregation” (SLICE), the
algorithm to process data obtained from GAM [108]. SLICE com-
pares the co-segregation frequency in GAM nuclear slices to the
background co-segregation frequency and computes a probability
of interaction.

Kim et al. introduced ‘‘multiplex interaction analysis by signal
processing algorithms” (MIA-Sig) [152], a bioinformatics solution
to remove noise and call significant chromatin complexes from
ChIA-Drop data. The authors emphasize that the relationship
between genomic distance and interaction probability is inversely
proportional; therefore, multi-way algorithms have to reconcile
this observation with having multiple genomic distances and inter-
action probabilities. MIA-Sig assumes that a genomic locus distant
from the other loci in the droplet, should be interpreted as an error.
The software contains modules to (i) remove experimental noise
and call significant hubs, (ii) call TADs, and (iii) identify inter-
TAD interactions, in multi-way data. The authors of Pore-C have
also released the ‘‘Pore-C pipeline” to extract multi-way chromatin
interactions from Pore-C concatemers [107].

‘‘Multiway-interacting chromatin analysis” (MATCHA) is an
example of a method that can be used to process multiple types
of multi-way data [153]. MATCHA is an algorithm to study multi-
way interaction data by using a hypergraph representation
(multi-way interactions are represented as hyperedges). The
authors criticize the assumptions of software such as MIA-Sig, by
pointing out that a denoising strategy based on frequencies alone
is problematic because the frequencies of hubs with a large num-
ber of loci are much smaller than that of small hubs. MATCHA
was applied to both SPRITE and ChIA-Drop data to denoise the data
and make de novo predictions. For SPRITE data, MATCHA enhanced
the data quality by calling 700 k 3-way, 800 k 4-way, and 700 k 5-
way interactions. Regarding prediction, the authors used their own
hypergraph representation learning model, which uses labeled
data and node features as input. MATCHA is used to distinguish
multi-way interaction data from cliques of pairwise interaction
data in a cell population.

Finally, Liu et al. presented a method for multi-way interaction
prediction based on pairwise interaction frequencies from bulk Hi-
C data [154]. The authors derived analytic expressions from poly-
mer physics for n-body contact probabilities among chromatin loci,
which are based on pairwise interaction frequencies. The equations
allowed them to derive multi-way interaction probability maps
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and report that their predicted 3-body interaction probabilities
agree with TriC, MC-4C, and SPRITE measurements.

3.6. A guide through the main computational approaches for
chromatin hub studies using the GREG platform

Network analysis and machine learning are arguably the most
common computational approaches to study chromatin hubs. To
build a network or machine learning analysis, several aspects have
to be considered. In Supplementary Material 2, we have included a
summary and some links to computational tools and step-by-step
open workflows that we have built to illustrate such basic steps
and challenges.
4. Chromatin hubs: Towards a unified model

We are starting to find the pieces of the puzzle to build a unified
theory able to explain all of the different types of chromatin hubs
(Fig. 3). Such pieces include (i) the existence of chromatin domains
with the potential of generating interacting hubs (TADs, LADs,
NADs, PADs, etc.), (ii) the assembly of chromatin hubs in space
through a liquid–liquid phase-separation/compartmentalization
process, (iii) the signature composition of such compartments
(proteins, lncRNAs, etc.), and their similarities and differences to
other compartments, (iv) the chromatin domain’s potential for
stochastically joining different transcriptional or repressive envi-
ronments/compartments, and (v) the potential of some chromatin
domains for moving from transcriptional to repressive compart-
ments (bi-stability).

4.1. A unified biophysical model

The liquid–liquid phase separation model has quickly become
the strongest contestant to explain chromatin hubs [11]. Under
such model, chromatin domains seem to hub around liquid com-
partments. The model explains organelle biogenesis as the coales-
cence of bubbles, while explains interaction specificity through
such bubbles behaving as mini-cells containing receptor-like mole-
cules at their surface (which for TFs means that there is no need of
scanning all possible binding sites in a long DNA chain).

It has also been proposed that the interfaces of membrane-less
compartments could have functional roles. Liao et al. put forward a
model for splicing in nuclear speckles in which exons are trans-
ported into the speckles by SR proteins, while introns are barred
entry by nucleoplasmic hnRNP proteins, leaving splicing sites at
the nuclear speckle interface, where interface-located spliceo-
somes will perform the splicing reaction. The authors suggested
that a similar organization of reactions could exist in other nuclear
bodies, such as RNAPol1 factories/nucleoli [163].

The new model also brings to light new questions, e.g., the pro-
cesses involved in the genesis of the condensates. Recently, Qi et al.
built a molecular dynamics simulation model where chromatin
was represented as coarse-grained particles (either A compart-
ments, B compartments, centromeric regions, or NADs) and sug-
gested that there are two ways in which nucleolar particles
associate with NADs and each other: In the absence of the chro-
matin network, all nucleolar particles condense into a single dro-
plet, while, in the presence of the chromatin network, they
condense into multiple droplets [164]. Another important question
is whether the changes in transcriptional activation are directly
related to phase separation. A recent study suggested that TF phase
separation at promoters does not enhance transcription but is
either neutral or inhibitive. Additionally, the mechanisms for tran-
scription initiation, elongation, and termination between conden-
sates remain unclear [32].



Fig. 3. Some key research areas towards a unified model of chromatin hubs. (a) Identification of chromatin domains able to form chromatin hubs. In the figure, hypothetical
TADs, LADs, NADs, and PADs are identified. (b) Nuclear body/chromatin hub biogenesis. In the figure, we show a model where liquid–liquid phase separation occurs near
NADs forming small nucleoli, which then coalesce, generating a large nucleolus with an associated chromatin hub. (c) Common and distinct biological pathways in nuclear
bodies and their effect on both organelle identity and chromatin binding. In the figure, nuclear speckles are shown to share different proteins with other nuclear bodies. (d)
Chromatin domain potential for joining different repressive or active compartments and oscillating between them. In the figure, a hypothetical chromatin domain shows the
potential to bind to four different nuclear structures.
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4.2. A unified mechanistic model

There is evidence of similarity in composition between many
phase-separated compartments containing chromatin hubs, as
well as evidence of protein exchange between them. For example,
nuclear speckles share proteins with other types of nuclear bodies,
such as (i) spliceosomal snRNPs with Cajal bodies, (ii) PSF and PSP2
with paraspeckles, and (iii) Pat1b with PML bodies [77]. Both coop-
erative and competitive interactions are found when studying
specific inter-compartmental mechanisms. That suggests the idea
of a spectrum of compartments instead of a few well-
differentiated structures.

An early computational model of chromatin hubs was built for
transcription factories and nuclear speckles. An important feature
of nuclear speckles is that they form in the vicinity of RNAPol2
transcription sites. They contain several RNAPol2 subunits, are rich
in proteins related to transcription elongation, and are poor in pro-
teins related to transcription initiation [77], suggesting a comple-
mentary relationship between speckles and factories. Rieder et al.
observed that co-expressed genes tend to be located in a ‘‘nuclear
neighborhood” more often than by chance. Such nuclear neighbor-
hoods are � 1 lm in diameter and can be associated with either a
factory or a speckle. The authors explained such organization with
a mathematical model that reproduces the frequencies of speckles
and factories sharing co-expressed genes as a stochastic selection
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process of a nuclear body (either factory or speckle) within a vol-
ume defined by the global organization existing before gene
expression [79]. This model suggests that factories and speckles
might have a redundant role.

Steensel et al. went one step further and introduced a model in
which some chromatin regions (LADs) were linked to the nuclear
lamina while others (inter-LADs) were linked to either transcrip-
tion factories or nuclear speckles. The authors postulated that, sim-
ilar to factories and speckles, some LADs can stochastically interact
with the nuclear lamina, nucleolus, or centromeres, which corre-
spond to three distinct repressive environments. As previously
mentioned, LADs partially overlap with NADs; moreover, some
NADs have been found near the nuclear lamina by FISH, while
some LADs have been detected close to pericentromeric hete-
rochromatin by 4C. Consequently, the model suggests that large
heterochromatin domains are ‘‘LADs” if they interact with the
nuclear lamina, ‘‘NADs” if they interact with the nucleolus, or
‘‘PADs” if they interact with centromeres; however, it is important
to clarify that the three types of domains are similar but not iden-
tical, and some genomic regions show a preference for one over the
others [24,165].

The authors also introduced a model where a subset of LADs can
oscillate between the nuclear lamina and either a transcription fac-
tory or a splicing speckle, alternating between being transcription-
ally repressive and transcriptionally active. They suggest that the
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contact between the LADs and the nuclear lamina constitutes a
separate 3D compartment, keeping them isolated from transcrip-
tion factories or speckles. Therefore, a possible mechanism for
LADs to move away from the lamina starts with active promoters
at the LAD borders interacting with transcription factories or
nuclear speckles and, as a consequence, the factories/speckles pull
the edges of the LAD away from the nuclear lamina, bringing the
entire domain with them [24].

More examples of such bi-stability have been reported. Zhao
et al. have shown that during daytime, circadian genes are
repressed through a CTCF- and PARP1- mediated recruitment to
the nuclear membrane, which changes (activates) during night-
time. Consequently, an oscillation of circadian genes occurs
between active circadian loci and repressive LADs [166]. Computa-
tional studies have also shown the formation of assemblies or cli-
ques of TADs, and the translocation of such assemblies to the
nuclear periphery during differentiation, in a kind of TAD-to-LAD
transition [167].

None of the previous models considers all of the known chro-
matin hubs. We suggest that a unified model should include three
components: (i) the network of interactions and pathways for most
transcription-related hubs (e.g., factories, nuclear speckles, Trx
domains, MALAT1 lncRNA, nascent RNAs, R-loops, G4s, and tran-
scriptional histone marks), (ii) the network of interactions and
pathways for most repression-related hubs (e.g., LADs, NADs, PADs,
and repressive histone marks), and (iii) the network of interactions
and pathways for hubs with the potential of being bistable (i.e.,
LADs becoming factories, PcG domains switching to Trx domains,
etc.). Such networks might have a stochastic nature (i.e., stochastic
choice of interaction partners).

It is important to note that studies using sc-Hi-C suggest that
not all of the abovementioned chromatin hubs have the same rel-
evance. Stevens et al. reported that the organization of A/B com-
partments, LADs, and active enhancers and promoters, is
consistent between single cells, while TADs and individual chro-
matin loops vary considerably from cell to cell [96].

4.3. A roadmap to build computational tools under the unified
chromatin hub model

In terms of mapping known biological hubs to predicted com-
putational hubs, the results are disappointing. To our knowledge,
a comparison of computational methodologies against benchmark
data does not exist. Moreover, computational methods do not go
beyond predicting active versus repressive hubs, and therefore,
do not reach the level of detail known in biology. Consequently,
one of the immediate challenges is to generate hub-type-specific
prediction algorithms, which would be important because differ-
ent hubs have different functions. In principle, this would mean
gathering data on the signatures summarized in Table 1 and map-
ping such data to our chromatin hub models to predict specific
types of hubs. However, such a task presents several obstacles.

First, we must take into account the technology that will be
used to generate the chromatin interaction datasets. Proximity-
ligation methods are more conservative and only register hubs in
close proximity, while ligation-free methods can detect hubs
around nuclear bodies but might also introduce new artifacts.
Thus, we must clarify which technologies are suitable to predict
specific types of hubs. As an example, Arrastia et al. have stated
that hubs around nuclear speckles can be detected by both sc-
HiC and sc-SPRITE, while peri-nucleolar and peri-centromeric hubs
can only be detected by sc-SPRITE [18]. A map of all chromatin
interaction detection technologies versus all the hubs that they
can potentially detect would be highly desirable. Multiple tech-
nologies should converge to address such problems, including (i)
the development of more complex and specific signatures, (ii)
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the use of multiplexed imaging techniques, and (iii) the develop-
ment of new experimental methods to detect chromatin in their
specific hub/compartment.

A few technical problems must also be addressed. For example,
many of the computational methods here reviewed still use hg19
data (see JEME’s and SEPT’s articles), a reference genome version
that does not include centromere and other interesting heterochro-
matic data [168]. Therefore, updates to the most recent reference
genome versions are compulsory for progress in the field.
5. Summary and outlook

In this review, we have built a comprehensive and unified
model of the current progress in chromatin biology under the con-
cept of a ‘‘chromatin hub.” The biological review involved the study
of chromatin hubs made of chromatin–chromatin interactions
only; hubs at the nuclear periphery; hubs around macromolecules,
such as RNA polymerase, lncRNAs, and nascent RNAs; and hubs
around nuclear bodies, such as the nucleolus or nuclear speckles
(Section 2). The computational review included enhancer–pro-
moter interaction prediction, network analysis methods, chro-
matin domain callers, transcription factory predictors, and multi-
way interaction analysis (Section 3). We also discussed the ele-
ments of an integrated model in Section 4.

There are multiple reasons to study chromatin hubs. We believe
that chromatin hubs may help explain:

(i) Gene regulatory networks and the redundancy of transcrip-
tional regulators

(ii) The stochastic switch of interaction partners, and thus
mechanisms, without changing the genome structure

(iii) DNA–DNA, protein–DNA, and lncRNA–DNA interaction
specificity

(iv) New quantitative predictions, such as kinetic models in bub-
bles (versus models assuming diffusion towards the DNA
molecule) or chromatin hub-aware gene set analysis

(v) Understanding disease: A hub-centric view could allow us to
see why some perturbations are not dangerous (redundant
mechanisms) while others disrupt the whole hub and lead
to disease.

There are recent examples of mathematical modeling having
into account chromatin hubs. Zuin et al. positioned enhancers at
different distances of a promoter and observed that the contact
probabilities between enhancer and promoter decay with increas-
ing genomic distance, falling significantly when approaching the
TAD boundaries and falling even further across the TAD boundary.
A similar pattern is followed by the promoter’s transcriptional out-
put, where transcriptional levels decrease with increasing genomic
distance and fall to promoter-only levels when the enhancer is
located outside of the TAD and is not able to activate the promoter.
Therefore, the authors built a mathematical model to explain tran-
scriptional output in terms of contact probabilities: Transcription
is described by a two-state (on–off) model where the frequency
of transcriptional bursts depends on the enhancer-promoter con-
tact probability through a Hill function [169].

Previously, we have reviewed how diseases attributed to a
given gene may be related to distant genes thanks to long-range
interactions [1]. In the same way, TAD disruption has been associ-
ated with cancer and other diseases [170–172]. LAD disruption has
been associated with multiple muscular disorders [87]. Nucleolus-
related diseases include ribosomal, cardiovascular, and neurode-
generative diseases; also, tumors and viruses that hijack the nucle-
olus to use it for either growth or viral replication [173]. Nuclear
speckle-related disorders also include cancer, viral diseases, and
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neurological disorders. Overexpression of some speckle proteins,
such as SR proteins, is observed in many types of cancer. Viral
infection affects the localization and levels of splicing factors,
and neurodegenerative diseases disrupt the nuclear speckles. Some
rare disorders, such as retinitis pigmentosa, are generated by
mutations in genes that encode speckle proteins or ncRNAs [77].
A few rare diseases have also been mapped to PML bodies [12].
Studies using an in vivo loss-of-function mouse model have
revealed that CTCF depletion is enough to induce heart failure.
Also, heart failure genomes display a decreased stability of chro-
matin interactions around cardiac disease genes [174]. One bioin-
formatics platform that interprets chromosomal-rearrangement-
associated diseases in terms of disruption of chromatin structures
is ‘‘3Disease Browser” [175]. We have also mentioned our study
linking predicted chromatin hubs to COPD [129].

The study of chromatin hubs is a new challenge for chromatin
biology and bioinformatics, and it is a path to explore the answers
to new interesting questions, including: (i) Where in the nucleus
are chromatin interactions occurring? (ii) What are the functional
consequences of this? (iii) What are the processes leading to chro-
matin hub disruption? (iv) What are the processes occurring after
chromatin hub disruption? (v) Why are chromatin hubs occurring
in some individual cells but not in others? (vi) How can this knowl-
edge be used for disease understanding and treatment? Answering
such questions might become a path to a more realistic view of the
genome, its regulatory processes, and their disruption.
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Glossary

Technologies
3C: Chromosome conformation capture
4C: Chromosome conformation capture on chip / Circular chromosome conforma-

tion capture
CAGE: Cap analysis of gene expression
CCC: We use this acronym in the paper to refer to all technologies derived from

chromosome conformation capture, not only the 3C technology
ChIA-PET: Chromatin interaction analysis by paired-end tag sequencing
ChIA-Drop: Droplet-based chromatin interaction analysis
C-HiC, EC-HiC: Promoter capture Hi-C, Enhancer capture Hi-C
ChIP-seq: Chromatin immunoprecipitation sequencing
DamID: DNA adenine methyltransferase identification
Hi-C, sc-HiC: High-throughput chromosome conformation capture, single-cell high-

throughput chromosome conformation capture
SPRITE, sc-SPRITE: Split-pool recognition of interactions by tag extension, single-cell

split-pool recognition of interactions by tag extension
Biomolecules
eRNA: Enhancer RNA
3813
lncRNA: Long non-coding RNA
miRNA: Micro RNA
ncRNA: Non-coding RNA
PcG: Polycomb group
pre-mRNA: Pre–messenger RNA
rDNA, rRNA: Ribosomal DNA, ribosomal RNA
snRNA: Small nuclear RNA
TF: Transcription factor
tRNA: Transfer RNA
Trx: Trithorax group
Chromatin domains
G4s: G-quadruplexes
LADs: Lamina associated domains
NADs: Nucleolus associated domains
PADs: Pericentromeric associated domains
TADs: Topologically associating domains
Others
ChIN: Chromatin Interaction Network
COPD: Chronic Obstructive Pulmonary Disease
ESCs: Embryonic Stem Cells
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