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Quantum spin Hall insulator in 
halogenated arsenene films with 
sizable energy gaps
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Based on first-principles calculations, the electronic and topological properties of halogenated (F-, 
Cl-, Br- and I-) arsenene are investigated in detail. It is found that the halogenated arsenene sheets 
show Dirac type characteristic in the absence of spin-orbital coupling (SOC), whereas energy gap will 
be induced by SOC with the values ranging from 0.194 eV for F-arsenene to 0.255 eV for I-arsenene. 
Noticeably, these four newly proposed two-dimensional (2D) systems are verified to be quantum spin 
Hall (QSH) insulators by calculating the edge states with obvious linear cross inside bulk energy gap. 
It should be pointed out that the large energy gap in these 2D materials consisted of commonly used 
element is quite promising for practical applications of QSH insulators at room temperature.

Two-dimensional topological insulators (2D TIs), also called quantum spin Hall (QSH) insulators, have recently 
attracted quite tremendous attention1–2. They are usually characterized by the metallic edge states inside bulk 
energy gap. The gapless edge states are topologically protected by time-reversal symmetry and are robust against 
nonmagnetic perturbations3. They are of promising potential for applications in spintronics and quantum com-
putations, especially, in low-power consumption electronic devices.

The first theoretically predicted and experimentally observed QSH effect is in HgTe/CdTe4,5 and InAs/GaSb 
quantum wells6,7. Nevertheless, their bulk band gaps are so small due to weak spin-orbital coupling (SOC) that the 
operated temperature is extremely low. Although many film materials have been proposed to be 2D TIs, such as 
germanene8, stanene9, bismuthene10 and their chemically decorated cases11–14, the experimentally observed QSH 
effect is just limited in above mentioned two quantum wells. Hence, search and design of 2D TIs with large bulk 
gap in the commonly used materials is significant for their practical applications at room temperature.

Recently, a new 2D material composed of As element, namely arsenene, is proposed15–17, which has a buckled 
honeycomb configuration like bismuthene. Actually, the arsenene structure corresponds to the bilayer in bulk 
gray arsenic. Since the interlayer interaction is dominated by the van der Waals force, arsenene can be obtained 
by exfoliating bulk structure as in the case of phosphorene18,19. The arsenene has been theoretically predicted to 
be a normal insulator with trivial band gap, which is quite important for transistors and optoelectronic devices. 
The topological phase transition from normal to nontrivial phase will be triggered by stretched strain (larger than 
11%)20. Such large strain, particularly biaxial tensile strain, is very challenging to implement for 2D materials. 
Thus more useful and feasible methods should be considered to tune the topological phase in arsenene, such as 
chemical decoration. As previous works reported, surface decoration is an effective way to modulate the struc-
tural, electronic and topological properties of 2D systems21–25.

In this work, the electronic and topological properties of arsenene chemically decorated by halogen atoms 
are studied via the means of first-principles calculations. We find that the topologically nontrivial phase can be 
induced in arsenene by surface adsorption of halogen atoms (F, Cl, Br and I). Depending on the important role 
of SOC, the bulk energy gap is opened relative to the Dirac characteristic without SOC. The values are 0.194 eV, 
0.232 eV, 0.240 eV and 0.255 eV for F-, Cl-, Br- and I-arsenene, respectively. Such sizable bulk energy gaps are 
large enough to realize the QSH effect at room temperature, suggesting that this type material is very potential for 
future applications in electronic device.
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Computational Methods
First-principles calculations based on density functional theory were performed by the Vienna ab initio simu-
lation package (VASP)26. The Perdew-Burke-Ernzerhof (PBE)27 generalized gradient approximation (GGA) was 
used to describe the exchange-correlation potential. The kinetic energy cutoff is 500 eV and the convergence 
threshold for energy is 10−6 eV. The lattice constants and the atom coordinates are fully optimized until the forces 
on each atom is less than 10−3 eV/Å. The Brillouin zone integration is performed with a 17 ×  17 ×  1 k-mesh for 
geometry optimization and self-consistent calculations. To simulate isolated thin films, a sufficiently large vac-
uum space of 20 Å is used to rule out any interactions between the neighboring films. The SOC is included in 
self-consistent electronic structure calculations. Phonon spectra are calculated for a 5 ×  5 ×  1 supercell by density 
functional perturbation theory using VASP and PHONOPY28.

Results and Discussion
For the sake of comparison, free-standing arsenene is considered firstly. Based on optimized structure of arsenene, 
the lattice constant, buckling height and nearest neighbor As-As distance are 3.61 Å, 1.40 Å and 2.51 Å, respec-
tively. Our calculations are in good agreement with the previous theoretical results15. Arsenene has a low-buckled 
structure with sp3-like hybrid orbital. Due to the reactive surface resulting from dangling bonds, the bare arsenene 
would be less stable. Therefore, it is highly desirable to stabilize the reactive surface by adsorption of foreign atoms 
to saturate the dangling bonds. The adsorption of halogen elements has been proposed to be an effective method 
to modulate structural and electronic properties in various 2D systems29–31. In our work, four elements, namely F, 
Cl, Br and I, are considered. Figure 1(a,b) show the equilibrium structures of fluorinated and iodinated arsenene 
from top and side views, in which the hexagonal network structure is maintained. Here, the geometry optimiza-
tions are performed without and with SOC, respectively. The results show that the effect of SOC is very small on 
geometry optimization and lattice parameters are almost unchanged. All halogen elements are adsorbed on As 
atoms with As-X bonds perpendicular to the arsenene sheet. The corresponding structural parameters of F-, Cl-, 
Br- and I-arsenene are listed in Table 1. The results show that the lattice constants of halogenated arsenene are 
largely expanded relative to that of bare arsenene. Both lattice constant and As-As bond length increase gradually 
from F- to I-arsenene. Additionally, As-X bond length increases as the periodic number of halogen elements 
increases, which results from the increasing atomic radius from F to I atom.

Here, the buckling height h is defined as the vertical distance between AsB and AsA as indicated in Fig. 1(c). 
As listed in Table 1, the buckling height is 0.108 Å for F-arsenene film, in which the position of AsA is higher than 
that of AsB, whereas they are 0.050 Å, 0.073 Å, 0.139 Å for Cl-, Br- and I-arsenene, respectively, where AsA atom 
is lower than AsB atom. Compared with the case of bare arsenene, the buckling height in halogenated arsenene 
has been largely compressed. The evolution of buckling height in halogenated arsenene is in relation with the 
electronegativity of halogens decreasing from 3.98 to 2.66 for F to I element. The similar changing can also be 
observed in halogenated bismuthene and antimonene film12, which is different from that in halogenated group IV 
elements32,33. The variation trend of buckling height also suggests that the adsorption of halogen atoms is helpful 
for structural design in 2D materials.

Figure 1. Atomic structures of (a) fluorinated arsenene (F-arsenene) film and (b) iodinated arsenene 
(I-arsenene) film. (c) Schematic diagram of the evolution of buckling height for halogenated arsenene films.
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To evaluate the structural stability of halogenated arsenene, the formation energy Ef per atom is calculated. 
The Ef is defined as Ef =  (EX-As −  EAs −  2EX)/2, where EX-As is the energy of halogenated arsenene, EAs is the energy 
of pure arsenene, and EX is the binding energy per atom of an X2 molecule. All the calculated Ef values listed in 
Table 1 are distinctly negative, indicating exothermic adsorption and more stable structure with chemical bond-
ing between halogen and As atoms. Moreover, note that the π  bonds in arsenene originate from the overlapping 
of 4pz orbitals of the As atoms. The p orbitals perpendicular to the plane of six-atom ring combine to form a weak 
and extensive π -bonding network. However, when all of the As atoms are halogenated, strong σ bonds form 
between As and F (Cl, Br and I) atoms and the π -bonding network is broken. Saturating the dangling bonds by 
surface decoration is helpful to enhance the immunity of arsenene to ambient conditions.

In addition, the kinetic stability of these halogenated arsenene films is further confirmed by calculating the 
phonon spectra. For F-arsenene film as shown in Fig. 2(a), there is no imaginary frequency along all momenta, 
which indicates that this structure is kinetically stable. For Cl-arsenene film as shown in Fig. S1(a), there is small 
imaginary frequency near the Γ  point. In fact, this small imaginary frequency is a common issue in first-principles 
calculation for 2D materials, which is sensitive to the details of the calculation and in some cases will disappear, 
so Cl-arsenene film is also dynamically stable. However, for Br- and I-arsenene films, more imaginary frequency 
appears at the K point as shown in Fig. S1(b,c), indicating dynamically unstable structures. To verify the thermal 
stability of these films, we also performed ab initio molecular dynamics (MD) simulations using a supercell of 
5 ×  5 ×  1 unit cells at various temperatures. Taking F-arsenene film for example, we find in Fig. 2(b) that the hex-
agonal lattice geometry is distorted slightly and the movement of F atoms is small at 300 K, indicating F-arsenene 
film is thermally stable at room temperature. However, when the temperature is increased to 400 K, large defor-
mation occurs with the inversion symmetry destroyed as shown in Fig. 2(c). Other halogenated arsenene films are 
also found to be stable at room temperature, whereas large distortion appears at higher temperature. Our results 
are similar to those of previous report for H-adsorbed Bi film12.

To reveal the influence of surface decoration on the electronic properties of arsenene, the electronic band 
structure calculations are performed. For the purpose of comparison, the band structures of pure arsenene are 
also calculated. The results show that pure arsenene is normal insulator with indirect band gap of 1.61 eV and 
1.48 eV for the case without and with SOC, respectively. Next turn our attention upon the electronic properties 
of halogenated arsenene of which the band structures without SOC are presented in Fig. 3. In contrast to that 
large band gap would be obtained for graphene and silicene by chemisorption of halogen atoms, Dirac point 
type characteristic is formed with linear cross at the Fermi level at the K point in the Brillouin zone of F-, Cl-, 
Br- and I-arsenene. Compared with pure arsenene, halogenated arsenene becomes Dirac materials in the absence 
of SOC, which suggests that the electronic properties could be strongly modulated by chemisorption. To analyze 
deeply the orbital contribution to energy bands, the orbital-resolved band structures for halogenated arsenene, 
namely projecting various orbitals on each band, can also be observed in Fig. 3. Different from that the bands of 
pure arsenene around the Fermi level are mostly contributed by px, py and pz orbitals of As atoms, in halogenated 
arsenene the bands near Fermi level are mainly composed of px and py orbitals of As atoms with the pz orbital 
removed due to the saturation of dangling bonds.

As we know, in QSH insulators the SOC plays an indispensable role. On the one hand, the strong strength 
of SOC in heavy elements could induce band inversion to result in QSH phase34,35. On the other hand, the SOC 
would induce energy gap in gapless 2D systems36,37. When the SOC is switched on in our calculations, the band 
structures of F-, Cl-, Br- and I-arsenene are shown in Fig. 4. One can obviously see that those degenerated bands 
around Fermi level are lifted out and split into two single states. Consequentially, including SOC opens up the 
energy gap at the K point for halogenated arsenene with different values varied from 0.194 eV to 0.255 eV as 
listed in Table 1. The enhancement of energy gap from F- to I-arsenene is in connection with the increasing SOC 
strength from F to I atom. Then the orbital projections on each band with SOC are also plotted for F-, Cl-, Br- and 
I-arsenene as shown in Fig. 4. Compared with the case without SOC, the orbital contribution to band does not 
be apparently changed. For example, the bands near the Fermi level mainly originate from px and py orbitals for 
F-arsenene in both Figs 3(a) and 4(a). The role of SOC in halogenated arsenene is to open up energy gap, which is 
similar to silicene and stanene that are 2D TIs8,9.

To distinguish nontrivial insulators from ordinary insulators, the Z2 topological invariant is calculated38. The 
value of 0 characterizes an ordinary insulator, while the value of 1 indicates a nontrivial phase. For the 2D TI 
phase, the topological invariant is calculated from the parities of the Bloch wave functions for occupied bands at 
time-reversal invariant momenta (TRIM) points, one Γ  and three M points, as
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Structure a(Å) dAs-As(Å) dAs-X(Å) h(Å) Ef(eV) Eg(eV) Z2

F-arsenene 4.57 2.64 1.81 0.108 − 2.364 0.194 1

Cl-arsenene 4.63 2.67 2.22 0.050 − 0.783 0.232 1

Br-arsenene 4.64 2.68 2.38 0.073 − 0.568 0.240 1

I-arsenene 4.68 2.70 2.59 0.139 − 0.265 0.255 1

Table 1.  Lattice parameters for halogenated arsenene. The a, dAs-As, dAs-X, h, Ef, Eg and Z2 stand for the lattice 
constant, As-As bond length, As-X bond length (X =  F, Cl, Br and I), buckling height, formation energy, SOC-
induced energy gap and topological invariant.
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where ξ = ±1m2  denotes parity eigenvalues and N is the number of the occupied bands. The calculated Z2  
number (v) for halogenated arsenene films is listed in Table 1. The Z2 values from F- to I-arsenene are nonzero 
indicating nontrivial insulators.

Compared with conventional insulator, the 2D TIs possess an outstanding feature, namely, topological 
protected conducting edge states on the boundary. To see these topological features explicitly, we perform cal-
culations of the edge states by cutting 2D films into nanoribbon. Both zigzag and armchair shaped edges are 
considered where all the edge atoms are passivated by halogen atoms to eliminate the dangling bonds. The widths 
of the ribbons are taken to be fairly large to avoid the interaction between the two edges. The nanoribbon mod-
els of F-arsenene with zigzag and armchair edges where the edge atoms are saturated by F atoms are shown in 
Fig. 5(a,b), respectively. The corresponding band structures are illustrated in Fig. 5(c,d), in which we can clearly 
observe the topological edge states (red lines) for both zigzag and armchair shaped nanoribbons, further confirm-
ing nontrivial phase of F-arsenene. Such edge states form Kramers pairs with spin currents flowing oppositely 
for opposite directions of spins, which are important for the applications in electronic devices39, due to their 
robustness against back-scattering. Moreover, the calculations of edge states for Cl-, Br- and I- arsenene are also 
performed. From the band structures of the nanoribbons which are very similar to those of F-arsenene, the edge 

Figure 2. (a) Phonon spectrum for F-arsenene film. Corresponding MD simulation of the structure for 
F-arsenene film (b) at 300 K and (c) at 400 K. The dashed line indicates a supercell with a 3 ×  3 ×  1 unit cell.

Figure 3. Electronic band structures with orbital projections for (a) F-arsenene, (b) Cl-arsenene, (c) Br-arsenene 
and (d) I-arsenene films without SOC. The radius of red dot and blue circle represents the weight of px and py.
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Figure 4. Electronic band structures with orbital projections for (a) F-arsenene, (b) Cl-arsenene, (c) Br-arsenene 
and (d) I-arsenene films with SOC. The radius of red dot and blue circle represents the weight of px and py.

Figure 5. Atomic structures of ribbons with (a) zigzag and (b) armchair edges for F-arsenene. The green 
dotted lines represent the unit cell of ribbons, and the red solid lines indicate the atoms on different edges. 
Corresponding band structures of ribbons with (c) zigzag and (d) armchair edges with X =  π /L where L is the 
width of nanoribbon.
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states connecting the bulk conduction and valence bands are obviously seen to linearly cross at the X and Γ  points 
for zigzag and armchair shaped nanoribbons, further confirming nontrivial phase of Cl-, Br- and I- arsenene.

Here we would like to emphasize that there is one important difference between the edge states of the QSH 
phase and the graphene. The edge states in the QSH phase carry helical spin currents, and circulate along the 
whole edge around, in despite of the details (e.g. the shape) of the edge. In graphene the existence of edge states 
crucially depends on the edge shape, where the zigzag edge has edge states while the armchair edge does not40. 
Furthermore, it should be pointed out that different from the original Kane-Mele model which is a 2-band model 
for single orbital (pz of C atom in graphene) nearest-neighbor hopping on a hexagonal lattice, our proposed 
systems actually have 4 bands with px and py orbitals, similar to chemically modified Bi or Sb cases or Bi, Sb and 
other elements on Si substrates where the pz orbital is filed out by “orbital filtering effect”41. Up to date, most of TIs 
that have been predicted with sizable bulk energy gap are composed of heavy elements, such as Sn, Pb, Sb and Bi 
and so on, because of large SOC strength. Although some 2D film materials, such as chemical decorated silicene 
and germanene, have been proposed to realize QSH effect, the bulk energy gaps in these systems are too small to 
stabilize the edge current against nonmagnetic disorder. The bulk energy gap is highly enlarged in arsenene mod-
ified by halogens. Such gap is much larger than the thermal motion energy (kBT, ∼ 26 meV) at room temperature, 
which is significantly potential for TI-based electronic devices at room temperature.

In privious works, it has been revealed that the mechanism of nontrivial topology in some pristine and func-
tionalized 2D materials originates from the s-pxy type band inversion at the Γ  point9,42–45, which is similar to that 
in a HgTe quantum well46. However, the origin of nontrivial topology in halogenated arsenene results from the 
massive Dirac point and there is no band inversion, where the mechanism is similar to that in functionlized Bi/Sb  
films12–14,47. Around Fermi level, there are massive Dirac cones at the K point and nearly flat bands (the second 
band below the Fermi level) in the band structures of halogenated arsenene. Massive Dirac cones and flat bands 
are mainly contributed by px and py of As and halogen atoms in the band components, which is distinguished 
from those in graphene and silicene mainly composed of pz orbital of C and Si atoms.

Conclusions
Using density functional theory (DFT) computations, we investigate the electronic and topological properties 
of halogenated arsenene. New TI materials with sizable band gaps are predicted in F-, Cl-, Br- and I- arsenene, 
in which the role of SOC is to open up bulk energy gap. The energy gaps vary from 0.194 eV to 0.255 eV for hal-
ogenated arsenene. The calculations of helical edge states of nanoribbons confirm the existence of helical edge 
states with conducting channels. Our results show that halogenation is one of effective methods to modulate the 
quantum phase from normal to nontrivial insulator. Halogenated arsenene is strongly suggested to be an ideal 
host for the QSH effect, thus providing a pathway to the spintronics and quantum computations.
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