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Neural network based successor 
representations to form cognitive 
maps of space and language
Paul Stoewer1,2, Christian Schlieker1,2, Achim Schilling1,3, Claus Metzner3,4, Andreas Maier2 & 
Patrick Krauss1,2,3,5*

How does the mind organize thoughts? The hippocampal-entorhinal complex is thought to support 
domain-general representation and processing of structural knowledge of arbitrary state, feature 
and concept spaces. In particular, it enables the formation of cognitive maps, and navigation on these 
maps, thereby broadly contributing to cognition. It has been proposed that the concept of multi-scale 
successor representations provides an explanation of the underlying computations performed by place 
and grid cells. Here, we present a neural network based approach to learn such representations, and 
its application to different scenarios: a spatial exploration task based on supervised learning, a spatial 
navigation task based on reinforcement learning, and a non-spatial task where linguistic constructions 
have to be inferred by observing sample sentences. In all scenarios, the neural network correctly learns 
and approximates the underlying structure by building successor representations. Furthermore, the 
resulting neural firing patterns are strikingly similar to experimentally observed place and grid cell 
firing patterns. We conclude that cognitive maps and neural network-based successor representations 
of structured knowledge provide a promising way to overcome some of the short comings of deep 
learning towards artificial general intelligence.

Cognitive maps are mental representations that serve an organism to acquire, code, store, recall, and decode 
information about the relative locations and features of  objects1. Electrophysiological research in rodents suggests 
that the  hippocampus2 and the entorhinal  cortex3 are the neurological basis of cognitive maps. There, highly 
specialised neurons including  place4 and grid  cells5 support map-like spatial codes, and thus enable spatial rep-
resentation and  navigation6, and furthermore the construction of multi-scale  maps7,8. Also human fMRI studies 
during virtual navigation tasks have shown that the hippocampal and entorhinal spatial codes, together with areas 
in the frontal lobe, enable route planning during  navigation9, e.g.  detours10, shortcuts or efficient novel  routes11, 
and in particular hierarchical spatial  planning12 based on distance preserving  representations13.

Recent human fMRI studies even suggest that these map-like representations might not be restricted to physi-
cal space, i.e. places and spatial relations, but also extend to more abstract relations like in social and conceptual 
 spaces14–16, thereby contributing broadly to other cognitive  domains17, and thus enabling navigation and route 
planning in arbitrary abstract cognitive  spaces18.

The hippocampus also plays a crucial role in episodic and declarative  memory19,20. Furthermore, the hip-
pocampal formation, as a hub in brain  connectivity21, receives highly processed information via direct and 
indirect pathways from a large number of multi-modal areas of the cerebral cortex including language related 
areas in the frontal, temporal, and parietal  lobe22. Finally, some findings indicate that the hippocampus even 
contributes to the coding of narrative  context23,24, and that memory representations, similar to the internal 
representation of space, systematically vary in scale along the hippocampal long  axis25. This scale might be 
used for goal directed navigation with different  horizons26 or even encode information from smaller episodes 
to more complex  concepts27. This geometry can also be modeled in artificial neural networks when performing 
an abstraction  task28. Cognitive maps therefore enable flexible planning through re-mapping of place cells and 
through the continuous (re-)scaling, generalization or detailed representation of  information29.

A number of computational models try to describe the hippocampal-entorhinal complex. For instance, the 
Tolman–Eichenbaum Machine describes hippocampal and entorhinal cell types and allows flexible transfer 
of structural  knowledge30. Another framework that aims to describe the firing patterns of place cells in the 
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hippocampus uses the successor representation (SR) as a building block for the construction of cognitive or pre-
dictive  maps31,32. The hierarchical structure in the entorhinal cortex can also be modeled by means of multi-scale 
successor  representations33. Here, SR can be for example learned with a feature set of boundary vector  cells34 or 
with a sequence generation model inspired by the entorhinal–hippocampal  circuit35.

To further investigate both the biological plausibility and potential machine learning applications of multi-
scale SR and cognitive maps, we developed a neural network based simulation of place cell behavior under 
different circumstances. In particular, we trained a neural network to learn the SR for a simulated spatial envi-
ronment and a navigation task in a virtual maze as proposed by Alvernhe et al.36. In addition, we investigated if 
the applicability of our model extends from space to language as the hippocampus is known to also contribute to 
language  processing37,38. Therefore, we created a model to learn a simplified artificial language. In particular, the 
model’s task was to learn the underlying grammatical structure in terms of SR of words by observing exemplary 
input sentences only.

Methods
Successor representation. The developed model is based on the principle of the successor represen-
tation (SR). As proposed by Stachenfeld et  al. the SR can model the firing patterns of the place cells in the 
 hippocampus32. The SR was originally designed to build a representation of all possible future rewards V (s) 
that may be achieved from each state s within the state space over  time39. The future reward matrix V (s) can be 
calculated for every state in the environment whereas the parameter t indicates the number of time steps in the 
future that are taken into account, and R(st) is the reward for state s at time t. The discount factor γ0,1 reduces the 
relevance of states st that are further in the future relative to the respective initial state s0 (cf. Eq. 1).

Here, E denotes the expectation value.
The future reward matrix V (s) can be re-factorized using the SR matrix M, which can be computed from the 

state transition probability matrix T of successive states (cf. 2). In case of supervised learning, the environments 
used for our model operate without specific rewards for each state. For the calculation of these SR we choose 
R(st) = 1 for every state.

Spatial exploration task. Spatial environment. The spatial environment created in our framework is 
designed as a discrete grid-like room which can be freely explored by the agent. The neighboring states of a 
particular state are defined as direct successor states. Walls and barriers are not counted as possible successor 
state for a neighboring initial state. The squared room consists of 100 states arranged as a 10 × 10 rectangular 
grid (cf. Fig. 3).

Neural network architecture. To be able to learn the SR by just observing the environment, we set up three-
layered neural networks that learn the transition probabilities of the different environments (Fig. 1). The input to 
the network is the momentary state encoded as one-hot vectors. Thus the number of neurons in the input layer 
is 100 for the exploration task. The hidden layer neurons have a ReLU activation function, whereas the number 
of neurons is equal to the input state. The softmax output layer gives a probability distribution for all succes-
sor states. Therefore it has also a size of 100. Note that, even though the number of neurons in the hidden layer 
equals the number of neurons of both, the input and output layer, it can still be considered as an information 
bottleneck since the 100 × 100 state transition matrix containing 10,000 entries is compressed to a 100-dimen-
sional representation.

(1)V(s) = E

[

∞
∑

t=0

γ tR(st)|s0 = s

]

(2)V(s) =
∑

s′

M
(

s, s′
)

R
(

s′
)

M =

∞
∑

t=0

γ tTt

Figure 1.  A scheme of the used Neural Network for the supervised and reinforcement learning task. The 
network receives the one hot encoded starting state of the environment as input. It uses one hidden layer with 
a ReLU activation function and the output is a softmax layer. In the case of the spatial exploration and the 
linguistic task, the output of the network is the one-hot encoded successor state of the corresponding input. In 
case of the spatial navigation task, which uses reinforcement learning, the output of the network is the action 
depending on the input state.
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The architecture of the network was evaluated and the performance for different parameters was compared. 
We tested different sizes of the hidden layers (cf. Fig. 2) regarding the performance of the neural network. How-
ever the performance was not greatly affected by different architectures (Fig. 2).

Training parameters. The training and test data set is created by sampling trajectories through the spatial struc-
ture of the simulated environment. First, a random starting state is chosen as input and subsequently another 
random possible successor state is chosen from its possible neighbors as desired output. Walls are excluded as 
input states. For the experiment we sampled 10,000 state-successor state pairs, and trained for 5000 epochs. We 
used cross entropy as a loss function and the Adam optimizer with a learning rate of 0.01.

Spatial navigation task. Spatial environment. The environment for the spatial navigation task is again a 
discrete grid-like room, where neighboring states of a particular state are defined as direct successor states. Walls 
and barriers are not counted as possible successor state for a neighboring initial state. The maze was represented 
as a 15 × 15 rectangular grid, whereas only 94 states from all 225 states were ”allowed” states that could be ob-
served by the agent (cf. Fig. 5).

Reinforcement learning architecture. In an attempt to reproduce experimental data, we simulated a maze which 
is described above, as proposed by Alvernhe et al.36. Furthermore, a reward system is required for reinforce-
ment learning (RL). Our RL approach enables us to define rewards in the spatial environments, which we use to 
simulate the food trays of the original experiment. The network structure is again a three-layered network, with a 
ReLU activation function for the hidden layer neurons and a softmax output layer, which yields the probabilities 
for the next actions. A DQN agent can choose from several actions depending on the number of the neighboring 
states belonging to the current state. If the agent chooses a wall state during training, the momentary training 
run is terminated and a new random starting state is chosen randomly.

The architecture of the neural network for the RL approach was also evaluated. In particular, the number 
of neurons in the hidden layer was tested.The architecture did not significantly influence the average received 
reward during training (cf. Fig. 2).

Training parameters. Training was performed for 10,000 epochs, with warm up steps of 300, an ADAM opti-
mizer with a learning rate of 0.001, maximum number of steps per episode of 30 and the DQN agent used the 
greedy policy.

Linguistic structure inference task. Language environment. Additionally, we set up a state space with 
a non-spatial structure, i.e. a linguistic environment. The environment consists of 40 discrete states representing 
the vocabulary. Each state corresponds to a particular word, and each word belongs to one of the five different 
word classes: adjectives, verbs, nouns, pronouns and question words. The transition probabilities between sub-
sequent words are defined according to a simplified syntax which consists of three types of linguistic construc-
tions: an adjective-noun construction (cf. rule 3a), a descriptive construction (cf. rule 3b) and an interrogative 
construction (cf. rule 3c).

The syntax rules, i.e. constructions, determine the transition probabilities for randomly chosen starting states 
and a word from the picked word group is set as label for the training data. The individual words from the succes-
sor word class are chosen with equal probability. The constructed sentences have therefore no particular meaning.

Neural network architecture. For this task the same three layer architecture as in the spatial exploration task was 
used. Different sizes of the hidden layer did not influence the performance (cf. Fig. 2). The network consisted 
of an input layer with the size of 40, a hidden layer with the same size using a ReLU activation function and a 
softmax output layer of size 40. The input and output are encoded as one-hot encoded vectors representing a 
word of the vocabulary.

Training parameters. For the language data set, 5.000 training and test samples were generated and the network 
was trained for 50 epochs. Cross entropy is again defined as loss function and the Adam optimizer with a learn-
ing rate of 0.01 is used.

Transition probability and successor representation matrix. After the training process, the net-
work can predict all probabilities of successor states for any given initial state. Concatenating the predictions of 
all states leads to the transition probability (TP) matrix of our environments, which we use to calculate the SR 
matrix (cf. Equation 2). In case of the supervised learning approach (spatial exploration task and language task), 
the output of the network is a vector shaped like a row of the respective environment’s TP or SR matrix and can 
therefore directly be used to fill the TP or SR matrix, respectively. The reinforcement learning network however 

(3a)adjective → noun

(3b)pronoun → verb → adjective

(3c)question → pronoun → verb
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Figure 2.  Evaluation of the models with regard to architecture and performance during training. Top: 
Evaluations for the spatial exploration model. The network’s architecture is tested depending on the size of the 
hidden layer. Different sizes depending on the input size in comparison to the RMSE of the predicted transition 
probability matrix and the ground truth matrix are shown. The error decreases with the size of the hidden 
layer until 30% of the input size. After that the error saturates. The accuracy of the model during training and 
validation increases shortly at the beginning from 0.13 to 0.14, afterwards it stagnates. The low accuracy of 
the model is connected to the potential 9 different successor states of each starting state which are randomly 
sampled as label. However the RMSE is low in all cases. Middle: In the linguistic task the hidden layer size 
does not play an important role. The RMSE stays similar for all configurations. The accuracy for the model also 
jumps at the beginning to around 0.08. The low accuracy can be again explained by up to possible ten randomly 
sampled successor states. Hover the RSME regarding the ground truth is low again. Bottom: The architecture 
for the spatial navigation task also does not influence the performance much. The average collected reward 
increases until 30% of the input size and subsequently saturates. During training, the model improves the 
received reward continuously until around 600 episodes.
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only yields the probabilities for the direct successors of a given state, which therefore need to be further extended 
to a vector containing all possible states of the environment.

Reproducing experimental grid cell firing patterns. After training the network, the resulting SR 
matrices are evaluated. Therefore, each state encoded as one-hot vector is fed in as input to the network, and 
the resulting softmax output vectors are concatenated to built the SR matrix. The resulting SR matrix can be 
used to calculate their Eigendecompostion. The different Eigenvectors can be ordered according to their size, 
and are subsequently reshaped to fit the shape of the corresponding state space, i.e. simulated environment. The 
reshaped Eigenvectors are supposed to form grid like patterns, and to be a representation of the grid cells’ recep-
tive  fields32.

Multi-dimensional scaling. A frequently used method to generate low-dimensional embeddings of high-
dimensional data is t-distributed stochastic neighbor embedding (t-SNE)40. However, in t-SNE the resulting 
low-dimensional projections can be highly dependent on the detailed parameter  settings41, sensitive to noise, 
and may not preserve, but rather often scramble the global structure in  data42,43. In contrats, multi-Dimensional-
Scaling (MDS)44–47 is an efficient embedding technique to visualize high-dimensional point clouds by projecting 
them onto a 2-dimensional plane. Furthermore, MDS has the decisive advantage that it is parameter-free and 
all mutual distances of the points are preserved, thereby conserving both the global and local structure of the 
underlying data.

When interpreting patterns as points in high-dimensional space and dissimilarities between patterns as 
distances between corresponding points, MDS is an elegant method to visualize high-dimensional data. By 
color-coding each projected data point of a data set according to its label, the representation of the data can be 
visualized as a set of point clusters. For instance, MDS has already been applied to visualize for instance word 
class distributions of different linguistic  corpora48, hid-den layer representations (embeddings) of artificial neural 
 networks49,50, structure and dynamics of recurrent neural  networks51–53, or brain activity patterns assessed during 
e.g. pure tone or speech  perception48,54, or even during  sleep55,56. In all these cases the apparent compactness and 
mutual overlap of the point clusters permits a qualitative assessment of how well the different classes separate.

Figure 3.  Supervised learning to explore a spatial environment: The SR for a 2D squared environment is 
learned with a supervised neural network. The small green squares indicate two sample starting positions 
(A, D). The corresponding SR are calculated and serve as ground truth (B, E). The neural network learns the 
transition probabilities for its direct neighbors and estimates the SR for a sequence length of t = 10 (C, F).
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Code implementation. The models were coded in Python. The neural networks were design using the 
 Keras57 and Keras-  RL58 libraries. Mathematical operations were performed with  numpy59 and scikit-learn60 
libraries. Visualizations were realised with  matplotlib61 and  networkX62.

Results
Spatial environment. Supervised learning reproduces basic firing patterns of place cells in rodents. In 
the supervised learning approach, the transition probabilities between neighboring places and hence the SR 
is learned by randomly observing places (states) and exploring their potential successors. The accuracy during 
training reaches around 0.14, which is the theoretical maximum, since there are nine potential successor states 
for each input state (cf. Fig. 2). Note that, the chance level for the accuracy would be 0.01 as there are 100 output 
neurons. In the simplest case of a 2D square environment without any obstacles, the transition probabilities from 
any starting place to all its eight neighbors are identical, i.e. uniformly distributed. Places at the walls (corners) 
of the room however only have five (three) neighboring states, so the transition probabilities corresponding to 
the remaining neighboring states representing those walls are zero, respectively. The resulting successor repre-
sentations learned by the neural network are almost identical to the the ground truth (cf. Fig. 3). Furthermore, 
these firing patterns are strikingly similar to those of place cells in rodents. They reflect the environment’s spatial 
structure depending on obstacles and room  shape63, i.e. the intensity of the firing patterns is centered around 
the starting position (as this is also the most probable next state) and directed away from any walls into the open 
space (cf. Figs. 1, 3), as described e.g.  in64, and found  experimentally65.

Eigenvectors of learned SR resemble firing patterns of grid cells in rodents. Stachenfeld et al.64 
propose that the grid-like firing patterns of grid cells in the entorhinal cortex of  rodents66 may be explained by 
an Eigendecomposition of the SR matrix, whereas each individual grid cell would correspond to one Eigenvec-
tor. To test this assumption in the context of our framework, we calculated the Eigenvectors of the learned SR 
matrix as shown in Fig. 3, and reshaped them to the shape of the environment. We find that this procedure actu-
ally leads to grid cell-like firing patterns (cf. Fig. 4). The first 30 Eigenvectors ordered by increasing value of the 
corresponding Eigenvalues are shown in Fig. 4. As known from  neurobiology66, the grid-like patterns vary in 
orientation and mesh size (i.e. frequency). In particular, the smaller the corresponding Eigenvalue of the Eigen-
vector, the smaller the mesh size, i.e. more fine-grained the resulting grid, becomes (cf. Fig. 4). Furthermore it is 
known that, the individual orientation of the grid cells’ firing patterns follows no particular order, whereas the 
mesh size of the grids varies systematically along the long axis of the entorhinal  cortex67. This feature, especially, 
is thought to enable multi-scale mapping, route planing and  navigation33.

Figure 4.  Grid cell-like Eigenvectors of the SR matrix: The firing patterns of grid cells in the entorhinal cortex 
are proposed to represent the Eigenvectors of the SR  matrix32. For the squared room depicted in Fig. 3, the 
Eigenvectors for the first 30 Eigenvalues of the SR matrix are shown (re-shaped to the shape of the squared 
environment). Indeed, they resemble grid cell-like firing patterns. Furthermore, the grids vary in orientation 
and scaling, as observed in electrophysiological experiments in rodents.
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Reinforcement learning reproduces basic firing patterns of place cells in rodents. In contrast 
to a goal-free random walk in order to explore a novel environment (as in the previous setting), navigation is 
usually driven by a specific goal or  reward68 like, e.g. food. The task is therefore ideally suited for reinforcement 
learning (RL)69. In our simulation, we reproduced a classical rodent maze experiment presented by Alvernhe 
et al.36. As in the supervised learning setting, the successor representations learned in the RL setting are very 
similar to the ground truth (cf. Fig. 5). Also, the resulting place cell firing patterns closely resemble those of place 
cells in rodents during maze navigation tasks. The average reward increases systematically during the train-
ing process (cf. Fig. 2). The SR place fields are clearly different from those obtained without any reward in the 
goal-free exploration task (cf. Fig. 3). A position close to a reward state is associated with highly localized firing 
patterns, whereas the highest successor probabilities are directed towards the reward states. Furthermore, places 
in the middle of the maze are associated with firing patterns that are stretched parallel to the orientation of the 
maze’s main corridor. Highest successor probabilities are localized around the starting position, but still also in 
reach of the reward states. The side arms of the maze are a detour to the goal (reward position), and are therefore 
mainly ignored by the network, i.e. associated with the lowest successor state probabilities.

Linguistic structures. Linguistic constructions define a network‑like linguistic map. Cognitive maps are 
however not restricted to physical space. On the contrary, cognitive maps may also be applied to arbitrary ab-

Figure 5.  Reinforcement learning to navigate a spatial environment: We reproduced the rat maze experiment 
published by Alvernhe et al.36. (left column). Therefore, we simulated the corresponding maze environment, 
small green squares indicate three different sample starting positions (second column). Based on the transition 
probabilities to neighboring states we calculated the successor representation of the maze as ground truth (third 
column). The predicted SR of the trained network, i.e. the firing patterns of the artificial place cells are very 
similar to the underlying ground truth (right column).
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stract and complex state spaces. In general, any state space can be represented as a graph. In this case, nodes 
correspond to states, and edges to state transitions. A prime example of such graph-like (or network-like) state 
space representations is language. In cognitive linguistics, there is an overall agreement on the fact, that language 
is represented as a network in the human  mind70–76, whereas the nodes correspond to linguistic units at different 
hierarchical levels from phonemes, through words, to idioms and abstract argument structure  constructions70. 
In particular, “the nodes at one level of analysis are networks at another level of analysis”77. Hence, multi-scale 
 SR33 appears to be an ideal theoretical framework to explain language representation and processing in the hu-
man mind, whereas the systematically varying grid-scale along the long axis of the entorhinal  cortex67 might 
explain its implementation in the human brain. To investigate this hypothesis, we constructed as a first step a 
simplified language as described in detail in the “Methods” section. The lexicon together with the three linguistic 
constructions result in a network-like linguistic map (cf. Fig. 6), that has to be learned by the neural network.

The neural network learns state TP and SR matrices. The learned behaviour of the network in the state space 
can be displayed as a state TP or SR matrix. The accuracy of the prediction of the network reaches around 0.085, 
which is close to the theoretical maximum of 0.1 given the probability of each state’s potential 10 successor states. 
(cf. Fig. 2). Here, the chance level of the accuracy would be 0.025. Therefore, after training, the TP matrix which 
is predicted by the network is very similar to the ground truth (cf. Fig. 7A,C). However the network also predicts 
adjectives (states 0–10) as successors of nouns (states 20–30), even though this transition does not explicitly exist 
in the three pre-defined constructions. Consequently, the network’s SR matrix is also slightly different from the 
ground truth (cf. Fig. 7B,D).

Word classes spontaneously emerge as clusters in the TP and SR vector space. The transition probabilities from 
a given word to all other 40 words (rows in the TP matrix), as well as the corresponding successor probabilities 
(rows in the SR matrix) can be represented as vectors, and hence may be interpreted as points in a 40-dimen-
sional TP or SR space respectively, whereas each word corresponds to a particular point. In order to further 
investigate the properties of these high-dimensional representations, we visualize both the TP and the SR space 
using multi-dimensional scaling. In particular, the 40-dimensional TP and SR vector representations of each 
word are projected onto a two-dimensional plane as described in detail in the “Methods” section. By color-
coding each word according to its word class, we observed putative clustering of the vocabulary. Remarkably, 
the words actually cluster according to their word classes (cf. Figs. 8,9), even though, this information was not 
provided (e.g. as an additional label for each word) to the neural network at any time during training.

Figure 6.  Network-like map of linguistic constructions: The simplified language model consists of five different 
word classes and three linguistic constructions defining allowed word class transitions. The word transition 
matrix can be visualized as a graph or network-like map, whereas each word corresponds to a node, and edges 
represent possible word transitions. Different node colors indicate different word classes. Note that, edges for 
transition probabilities smaller than  10−4 are not shown for better readability.
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Discussion
In this study, we demonstrated that efficient successor representations can be learned by artificial neural networks 
in different scenarios. The emerging representations share important properties with network-like cognitive 
maps, enabling e.g. navigation in arbitrary abstract and conceptual spaces, and thereby broadly supporting 
domain-general cognition, as proposed by Bellmund et al.18.

In particular, we created a model, which can learn the SR for spatial and non-spatial environments. The 
model successfully reproduced experimentally observed firing patterns of place and grid cells in simulated spatial 
environments in two different scenarios. First, an exploration task based on supervised learning in a squared 

Figure 7.  Word transition probability and word successor representation matrices: After training on the 
linguistic data, the neural network predicts the word transition probabilities (TP) and the word successor 
representations (SR). As ground truth, the calculated TP matrix (A) and the SR matrix (B) for t = 2 and γ = 1 are 
shown. The corresponding predictions learned by the network are very similar to the ground truth in both cases 
(C, D). States (0–39) correspond to words. 0–9: adjectives, 10–19: verbs, 20–29: nouns, 30–34: pronouns, 35–40: 
question words.

Figure 8.  MDS of the word transition probability vectors: a two-dimensional projection of the 40-dimensional 
word TP vectors (rows in TP matrix) for the calculated ground truth (A) and the learned TP matrix (B). In 
both cases, the words build clearly separated, dense clusters according to the respective word class. Different 
colors correspond to word classes. Note that, scaling of the axes is in arbitrary units since coordinates have no 
particular meaning other than indicating the relative positions of the projected vectors.



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11233  | https://doi.org/10.1038/s41598-022-14916-1

www.nature.com/scientificreports/

room without any obstacles, and second, a navigation task based on reinforcement learning in a simulated maze. 
Furthermore our neural network model inferred the underlying word classes of a simplified artificial language 
framework just by observing sequences of words, and without any prior knowledge about actual word classes.

The involvement of the entorhinal–hippocampal complex—as being the most probable candidate structure 
underlying network-like cognitive maps and multi-scale  navigation15,16,29,33,64—in language processing has already 
been experimentally  demonstrated37,38. Our study further supports, in particular, the involvement of place cells, 
as being the nodes of the “language network” as suggested in cognitive  linguistics70–76. Early language acquisition, 
especially, is driven by passive  listening78 and implicit  learning79. Our model replicates learning by listening and 
therefore resembles a realistic scenario.

The varying grid cell scaling along the long axis of the entorhinal cortex is known to be associated with hier-
archical memory  content25. The Eigenvectors of the SR matrix are strikingly similar to the firing patterns of grid 
cells, and therefore provide a putative explanation of the computational mechanisms underlying grid cell coding. 
These multi-scale representations are perfectly suited to map hierarchical linguistic structures from phonemes 
through words to sentences, and even beyond, like e.g. events or entire narratives. Indeed, recent neuroimaging 
studies provide evidence for the existence of “event nodes” in the human  hippocampus23.

Since our neural network model is able learn the underlying structure of a simplified language, we speculate 
that also the human hippocampal-entorhinal complex similarly encodes the complex linguistic structures of the 
languages learned by a given individual. Therefore learning further languages of similar structure as previously 
learned languages might be easier due to the fact that the multi-scale representations and cognitive maps in the 
hippocampus can be more easily transferred and re-mapped15,16, i.e. re-used, in major parts to the new language.

Whether the hippocampus is actually involved in multi-scale representation and processing of linguistic 
structures across several hierarchies needs to be verified experimentally and theoretically. Neuroimaging studies 
during natural language perception and production, like for instance listening to  audiobooks48,80, need to be per-
formed. Only continuous, connected speech and language provides such corpus-like rich linguistic  structures48, 
being crucial to assess putative multi-scale processing. Additionally, further theoretical studies are needed to 
extend the presented model, and to apply it to more complex and naturalistic linguistic tasks, like e.g. word 
prediction in a natural language scenario.

As recently suggested, the neuroscience of spatial navigation might be of particular importance for artificial 
intelligence  research81. A neural network implementation of hippocampal successor representations, especially, 
promises advances in both fields. Following the research agenda of Cognitive Computational Neuroscience 
proposed by Kriegeskorte et al.82, neuroscience and cognitive science benefit from such models by gaining 
deeper understanding of brain  computations50,83,84. Conversely, for artificial intelligence and machine learning, 
neural network-based multi-scale successor representations to learn and process structural knowledge (as an 
example of neuroscience-inspired artificial  intelligence85), might be a further step to overcome the limitations 
of contemporary deep  learning86–89 and towards human-level artificial general intelligence.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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Figure 9.  MDS of the word successor representation vectors: a two-dimensional projection of the 
40-dimensional word SR vectors (rows in SR matrix) for the calculated ground truth (A) and the learned SR 
matrix (B). In both cases, the words cluster according to the respective word class. Different colors correspond 
to word classes again. However, the resulting clusters are less dense and located closer to each other than for 
the TP vectors. Since SR vectors cover several time steps, whereas TP vectors only cover a single time step in 
the future, this result is intuitive. Note that, scaling of the axes is in arbitrary units since coordinates have no 
particular meaning other than indicating the relative positions of the projected vectors.
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