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Abstract
Behavioral studies indicate that persons with Parkinson's disease have complexity dependent

problems with the discrimination of auditory rhythms. Furthermore, neuroimaging studies show

that rhythm processing activates many brain areas that overlap with areas affected by Parkin-

son's disease (PD). This study sought to investigate the neural correlates of rhythm processing

in PD and healthy controls, with a particular focus on rhythmic complexity. We further aimed to

investigate differences in brain activation during initial phases of rhythm processing. Functional

magnetic resonance imaging was used to scan 15 persons with Parkinson's disease and

15 healthy controls while they listened to musical rhythms with two different levels of complex-

ity. Rhythmic complexity had no significant effect on brain activations, but patients and controls

showed differences in areas related to temporal auditory processing, notably bilateral planum

temporale and inferior parietal lobule. We found indications of a particular sequential or phasic

activation pattern of brain activity, where activity in caudate nucleus in the basal ganglia was

time-displaced by activation in the saliency network—comprised of anterior cingulate cortex and

bilateral anterior insula—and cortical and subcortical motor areas, during the initial phases of lis-

tening to rhythms. We relate our findings to core PD pathology, and discuss the overall, rhythm

processing related hyperactivity in PD as a possible dysfunction in specific basal ganglia mecha-

nisms, and the phasic activation pattern in PD as a reflection of a lack of preparatory activation

of task-relevant brain networks for rhythm processing in PD.
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1 | INTRODUCTION

In Parkinson's disease (PD), the progressive death of dopaminergic

neurons in the Substantia Nigra pars compacta (SNpc) in the basal

ganglia disrupts several subcortico-cortical loops in motor, associative,

and limbic circuitry (Alexander, DeLong, & Strick, 1986; Lanciego,

Luquin, & Obeso, 2012; Middleton & Strick, 2000), causing increasing

motor and nonmotor symptoms with disease progression (Aarsland

et al., 2004; Xia & Mao, 2012). Some motor symptoms in PD are

responsive to dopaminergic pharmacological treatment (Mazzoni,

Shabbott, & Cortes, 2012; Xia & Mao, 2012), but some gait-specific

symptoms (Knutsson, 1972) are relatively unresponsive (Blin,

Ferrandez, & Serratrice, 1990; Smulders, Dale, Carlson-Kuhta, Nutt, &

Horak, 2016). However, while people with advanced stages of Parkin-

son's disease have problems with volitional movement, external

rhythms facilitate movement (McIntosh, Brown, Rice, & Thaut, 1997),

and in therapy, simple isochronous pulsed rhythms seem to be partic-

ularly effective in improving gait-related symptoms (Thaut, McIntosh,

McIntosh, & Hoemberg, 2001). Studies on rhythm perception in PD

have found discrimination deficits, that is, difficulties in judging, when

subsequent rhythms are identical or different. Some studies find this

deficit to be more pronounced for simpler rhythms (Biswas, Hegde,
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Jhunjhunwala, & Pal, 2016; Grahn & Brett, 2009), while one study

shows a more generalized deficit (Cameron, Pickett, Earhart, & Grahn,

2016). The effect of dopamine replacement therapies on rhythm per-

ception indicates that medication improves beat detection in simple

rhythms (Cameron et al., 2016; Geiser & Kaelin-Lang, 2011), but has

adverse effects on more complex rhythms (Cameron et al., 2016).

Rhythm and rhythmic complexity modulate neural activity in areas

and widespread networks across the brain and imaging studies in PD

show abnormal activity in many of these areas, some of which are

directly related to the pathology of PD. A better understanding of the

modulatory effects of rhythmic complexity on behavior and the neural

correlates, thereof could provide more specific knowledge about the

neural basis for the temporal (Parker, Lamichhane, Caetano, & Naraya-

nan, 2013; Schwartze & Kotz, 2015) and rhythm specific (Biswas

et al., 2016; Cameron et al., 2016; Grahn & Brett, 2009) deficits in the

disease.

Imaging studies in healthy subjects show higher basal ganglia activity

for simple rhythms compared to complex rhythms (Chen, Penhune, &

Zatorre, 2008a; Chen, Penhune, & Zatorre, 2008b; Geiser, Notter, &

Gabrieli, 2012; Grahn, 2009; Grahn & Brett, 2007; Trost et al., 2014).

Furthermore, there is evidence of complexity-dependent, anticorrelated

activity between the basal ganglia and the planum temporale (PT) in the

posterior superior temporal gyrus (STG) (Geiser et al., 2012), an area sen-

sitive to complex auditory patterns (Bengtsson et al., 2009; Chen et al.,

2008a; Geiser et al., 2012; Herdener et al., 2014; Kung, Chen, Zatorre, &

Penhune, 2013; Thaut, Trimarchi, & Parsons, 2014). A strong coupling of

auditory and motor areas has consistently been found in imaging

research on rhythm listening, involving basal ganglia, cerebellum, premo-

tor cortex (PMC), and supplementary motor areas (SMA) (Bengtsson

et al., 2009; Chen et al., 2008a; Chen et al., 2008b; Chen, Zatorre, &

Penhune, 2006; Geiser et al., 2012; Grahn & Brett, 2007; Kung et al.,

2013; Zatorre, Chen, & Penhune, 2007). Auditory-motor coupling has

become a dominant explanatory model for rhythm perception (Grahn,

2009; Kung et al., 2013; Todd & Lee, 2015; Zatorre et al., 2007), even in

the absence of overt movement during listening (Burunat, Tsatsishvili,

Brattico, & Toiviainen, 2017; Patel & Iversen, 2014). In healthy subjects,

PMC and SMA show increased activity during tapping to more complex

rhythms (Chen et al., 2006; Chen et al., 2008a), with increased functional

coupling between PMC/SMA and the auditory cortex (Chen et al., 2006;

Chen et al., 2008a; Chen, Penhune, & Zatorre, 2009) compared to simple

rhythms. The auditory-motor coupling during rhythm perception also

integrates with a more widespread dorsal auditory pathway (Chapin

et al., 2010; Warren, Wise, & Warren, 2005; Zatorre et al., 2007), which

is somewhat right lateralized for music (Zatorre & Zarate, 2012). In this

pathway, mechanisms of outcome predictions gear the PMC toward

motor responses (Rauschecker, 2011; Zatorre & Zarate, 2012) through

interactions of pattern recognition and segregation in STG/PT and infor-

mation transformation and integration in the inferior parietal lobule (IPL)

(Ragert, Fairhurst, & Keller, 2014). Like the PT and PMC, the IPL has

been found to be modulated by rhythmic complexity (Bolger, Coull, &

Schon, 2014; Grahn & Rowe, 2013; Lewis, Wing, Pope, Praamstra, &

Miall, 2004; Thaut et al., 2014; Vuust, Roepstorff, Wallentin, Mourid-

sen, & Ostergaard, 2006). Studies in healthy subjects also show that

more complex rhythms increase the functional connectivity between

basal ganglia and more frontal executive networks (Chapin et al., 2010;

Kung et al., 2013). In this context, the anterior insula (AIN) is of particular

interest, as it interfaces with most of the rhythm complexity modulated

areas described above and is also a part of the saliency network (SN),

which plays a role in the dynamic regulation of larger network states

(Goulden et al., 2014; Menon & Uddin, 2010; Sridharan, Levitin, &

Menon, 2008) and upregulates brain areas needed for active cognition

(Menon, 2011). Crucially, the AIN is modulated by various operationaliza-

tions of rhythmic complexity (Alluri et al., 2012; Altmann, Henning,

Doring, & Kaiser, 2008; Chapin et al., 2010; Jerde, Childs, Handy,

Nagode, & Pardo, 2011; Jungblut, Huber, Pustelniak, & Schnitker, 2012;

Jungblut, Huber, & Schnitker, 2016; Lewis et al., 2004; Vuust et al.,

2006), indicating that rhythmic complexity indeed affects large-scale and

brain wide network dynamics.

The brain areas listed above show abnormal activity in PD during

various forms of rhythm processing, relative to healthy subjects. Audio-

motor coupling is integral to the underlying assumption in the literature

on cue-based therapies in PD, with external rhythms replacing a “broken

clock” in PD through the effect of auditory entrainment of motor circuits

(Nombela, Hughes, Owen, & Grahn, 2013). In PD, general PMC hyperac-

tivity is found, modulated by tempo during finger-tapping synchroniza-

tion (Samuel et al., 1997; Yu, Sternad, Corcos, & Vaillancourt, 2007).

Hyperactivity in the PMC in PD during movement has been explained as

an externally driven compensatory recruitment of parallel motor circuits,

to compensate for dysfunction in the basal ganglia (Sabatini et al., 2000;

te Woerd, Oostenveld, Bloem, de Lange, & Praamstra, 2015). In PD, gen-

eral IPL hyperactivity (Samuel et al., 1997) increases with complex motor

tasks (Catalan, Ishii, Honda, Samii, & Hallett, 1999; Lewis et al., 2004;

Wu & Hallett, 2005), and abnormal interaction between basal ganglia

and widespread executive networks are found (Monchi, Petrides, Mejia-

Constain, & Strafella, 2007; Shine et al., 2013), with load-dependent

decoupling between frontal and motor areas (Rowe et al., 2002), also

during timing and time perception tasks (Narayanan, Rodnitzky, & Uc,

2013; Parker et al., 2013). The insula, believed to be one of the earliest

areas affected by dopamine depletion (Kish, Shannak, & Hornykiewicz,

1988; Putcha, Ross, Cronin-Golomb, Janes, & Stern, 2015) and Lewy

body accumulation (the second obligatory pathological hallmark of the

disease (Poewe et al., 2017)), show abnormal activity in PD (Christopher,

Koshimori, Lang, Criaud, & Strafella, 2014; Criaud et al., 2016), with

hyperactivation during rhythm synchronization (Cerasa et al., 2006) and

finger tapping (Caproni et al., 2013) tasks.

One crucial aspect of rhythm processing, namely that rhythms

unfold in time, is a somewhat neglected topic in the neuroscience of

rhythm (Fitch, 2013), but a more complex view of basal ganglia activ-

ity during rhythm processing is emerging, where such phasic aspects

are latent, ascribing specific roles for individual structures like the

putamen and caudate nucleus during rhythm processing. Networks

involving the putamen seem to have a central role in predicting and

maintaining (Chapin et al., 2010; Grahn & Rowe, 2013; Jungblut et al.,

2012; Lewis et al., 2004) a stable pulse percept (Chapin et al., 2010;

Patel & Iversen, 2014), after a beat (i.e., perception of an underlying

steady pulse) has been established (Chapin et al., 2010; Grahn &

Rowe, 2013; Lewis et al., 2004), while the caudate nucleus is activated

by prediction errors, that is, violations of the expected rhythmic struc-

ture (Grahn & Rowe, 2013). Percepts of more complex rhythmic pat-

terns are harder to establish, and basal ganglia connected network
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activity might need more time for “activations to develop” during the

processing of complex rhythms, which indicate both time and

complexity-dependent functional connectivity between basal ganglia

and other brain networks during different phases of rhythm proces-

sing (Chapin et al., 2010; Chen et al., 2006; Chen et al., 2008a; Kung

et al., 2013). In healthy subjects, studies show larger, network-like

changes during processing of rhythms in the span of 5–10 s (Chapin

et al., 2010; Rao, Mayer, & Harrington, 2001). This time-scale fits our

own clinical observations in cue facilitation in PD, where rhythmic

cues facilitate movement within the order of several seconds. If differ-

ent areas within the striatum have different functional properties

related to establishing and maintaining rhythmic percepts at these

time-scales, and auditory-motor entrainment of the “broken clock”

(Nombela et al., 2013) rapidly improves rhythm processing in PD,

investigating phasic brain activity changes—that is, whether different

brain areas are activated in different sequential stages—during the ini-

tial phases of rhythm processing could shed light on the neuronal

mechanisms behind cue-based gait facilitation in PD.

In this study, we performed whole brain fMRI scans on healthy sub-

jects and persons with Parkinson's disease, while they listened to two dif-

ferent rhythms, one simple and one complex. The aim was to investigate

group differences in neural activity during rhythm processing, possible

group effects related to rhythmic complexity, phasic differences in brain

activation during different temporal stages of rhythm processing, and

finally possible interactions between phase and complexity. We hypno-

tized that overall group differences would reveal compensatory activity

in areas outside the basal ganglia, and that there would be an interaction

effect between rhythmic complexity and group. Finally, we aimed to

investigate the phasic development of brain activation at a time-scale rel-

evant for gait facilitation. We predicted phasic activation differences in

striatal areas involved in establishing rhythmic percepts as well as brain

wide activity differences, particularly in areas involved in network

dynamics, such as nodes in the saliency network.

2 | MATERIALS AND METHODS

2.1 | Participants

For this study, 15 volunteers with PD (6 female) were recruited with

the help of the National Parkinson's organization of Norway. Fifteen

healthy controls (8 female) were recruited, group-matched for age,

education level, as well as for musical expertise. A minimum Mini

Mental Status (MMS) (Folstein, Folstein, & McHugh, 1975) test score

of 24 was set as a criterion in both groups to exclude patients with

cognitive impairment indicative of dementia. All participants were

right handed by self-report. The Unified Parkinson's disease rating

scale III (UPDRS-III) (Fahn et al., 1987) was administered in the

PD-group. All PD-participants—except one newly diagnosed de novo

patient—were in medication regimens (LDOPA, D2-agonists, inhibi-

tors) at the time of the fMRI-scan. (See Table 1 for an overview of the

groups). All procedures were approved by the Regional Committee for

Medical and Health Research Ethics (REK no 2014/1915) and carried

out in accordance with the code of Ethics of the World Medical Asso-

ciation, Declaration of Helsinki. Before the tests, all participants gave

written informed consent to participate in the study. Participants were

compensated with 100NOK for participation in this study.

2.2 | Stimuli rating of complexity

For this study, two rhythms used were chosen from the stimulus pool

of a preceding online listening survey with 19 PDs and 19 HCs

(including all participants of the current study). In the online survey,

participants rated the perceived complexity of a total of 60 rhythmic

stimuli (10 rhythms with variations on 3 tempi × 2 modes). Based on

Jeff Pressing's model for calculating cognitive complexity in rhythm

(Pressing, 1999; Toussaint, 2013), 10 rhythmic patterns in 4/4 m were

constructed and each pattern was repeated 8 times. (See Supporting

Information Table S1 for more details on the 10 patterns and the con-

struction of the stimuli used for the online test). For each stimulus,

presented in random order, participants answered the question “How

complex do you perceive this rhythm to be?” by rating the stimuli on a

11-point Likert-scales (ranging from “Very simple” to “Very complex”).

Group scores were analyzed using SPSS (Version 24.0.0.0/IBM).

For overall complexity ratings across all stimuli, there was a significant

difference between the two groups (t(35.58) = 2.45, p = .019), with

the PD-group giving higher complexity ratings than the healthy con-

trols. Two rhythms, one simple (Rhythm#1, ranked as #1 for

complexity—that is, the least complex rhythm—in both groups) and

one more complex (Rhythm#5, ranked as #7 by in both groups) were

chosen for the fMRI-paradigm in the current study. Complexity ratings

for the two rhythms were significantly different within both groups

(both p < .01). Between group comparisons showed a significant dif-

ference for the simple rhythm (p = .003, with the PD-group giving

higher ratings), while the more complex did not (p = .092). Recalculat-

ing of the scores of the two chosen rhythms for the 15 + 15 partici-

pants in the current fMRI-study, these values were p = .004 for the

simple rhythm, and p = .189 for the more complex rhythm. (see Sup-

porting Information Table S1 for between group differences for all

10 rhythms for the original).

2.3 | Stimuli construction for fMRI

Through testing, the two rhythms from the online listening-test were

sonically reshaped to yield maximum salience in the fMRI listening sit-

uation with protective in-ear foam plugs. A deep, multilayered bass

sound in two octaves as well as a deep-bass drum sound was used to

penetrate the scanner noise and to place the general character of the

stimuli in a different frequency range than the eigenfrequency of the

scanner during the EPI-sequence. In addition, the simple, isochronous

stimulus was slightly altered to clearly mark the end of each pattern.

Tempo was set to 120 BPM, and eight repetitions of the 2 s long pat-

terns resulted in 16 s long stimuli presentations for the analysis.

For each stimulus, the eight repetitions contained an alternating

piano chord at the first position of every bar to mark the beginning of

the bar (examples of the two stimuli can be found online, see Support-

ing Information for further details). For variation, two versions of each

rhythm were constructed, one in major and one in minor mode. As no

effect of mode was found in the analysis of the online listening-test,

the choice to include these variations was made solely for the benefit

918 VIKENE ET AL.



of the participants, offering them a minimum amount of variation dur-

ing the long scan. The final set of four different stimuli was saved as

stereo, 16bit, 44.100 hz wav-files.

2.4 | Experimental design

Before scanning, the participants underwent familiarization with the

sound of the stimuli and the sound of the scanner. The stimuli were

presented via headphones from a laptop computer. The familiarization

consisted of playing a recording of scanner noise alone, musical

excerpts of the rhythms used in the study (approx. 20 s) without scan-

ner noise, and musical excerpts superimposed on top of scanner noise

(approx. 20 s). This was followed by a short explanation of a covert

attentional oddball omission task for a second part of the study, not

further described or analyzed in this article (this analysis will be

reported elsewhere and is simply referred to as “oddball” later in this

article). For the second part of the familiarization period, the partici-

pants were provided with protective in-ear foam plugs and the vol-

ume of the presentation was turned up to simulate the experience of

the sound levels in the scanner, to minimize surprise for the partici-

pants in the scanner. All participants indicated that they could clearly

hear the stimuli.

The participants kept the in-ear foam plugs in place and were

escorted to the scanner room, where they were placed comfortably in

the scanner and fitted with MRI-compatible headphones with addi-

tional physical noise cancelation-foamed shells, and MRI-compatible

video goggles. During stimulus presentation of the first 16 s analyzed

in this article, participants listening passively without performing any

additional task. The presentation of stimuli and synchronization with

the scanner was implemented in E-Prime (Ver 2.3 Professional, Psy-

chology Software Tools, Pittsburgh, PA).

Before each trail, a short written instruction was presented via

goggles (“Get ready,” 4.5 s), followed by a blank screen and a silence

period ranging (jittered) from 13 to 19 s. At the start of each music

stimulus, a small fixation cross appeared in the goggles to minimize

head movement. Each stimulus (two rhythms in two modalities) was

presented 4 times during the scan, and the sequence of stimuli was

randomized. The total scan time was 33 min ([4.5 s READ + 13~19 s

jittered SILENCE + 16 s LISTENING + 88 s oddball] × 16 stimuli

blocks). See Figure 1 for a schematic representation of the paradigm

and stimulus presentation.

2.5 | Data acquisition and preprocessing

fMRI images were acquired using a 3 T scanner (GE Signa Excite 750)

with a 32 channel coil. In addition to a structural scan at the beginning

of the protocol, a 5 min resting-state fMRI-scan was performed

before and after the task, and a DTI structural scan was performed

after the second resting-state scan. Repetition time (TR) for the EPI-

sequence was 1.5 s, with 28 slices interlaced. Preprocessing steps

included realignment, unwarping, normalization to ICBM-template

(with 2 mm3 voxel size), smoothing with Gaussian kernel (6 mm3 vox-

els) and high-pass filtering at 1/249 Hz cut-off (calculated as the mean

between onsets of the 16 main stimuli blocks). FMRI data were pre-

processed and analyzed using Statistical Parametric Mapping (SPM12;

Wellcome Trust Centre for Imaging, London, UK; http://www.fil.ion.

ucl.ac.uk/spm).

2.6 | First-level analysis

The blocks were first divided into simple and complex rhythm. Each

block was then modeled as follows: 4.5 s of on-screen instructions

were epoched as “READ.” Silence periods (randomly assigned

between 13 and 19 s) between each block were not epoched, and

TABLE 1 Group characteristics

N (F)
Age
(SD/min/max)

Edu
(SD/min/max)

MMS
(SD/min/max)

PD 15 (6) 65.6
(12.38/40/81)

14.0
(3.14/9/18)

28.07
(1.16/26/30)

HC 15 (8) 64.9
(11.33/40/78)

15.2
(1.78/12/18)

28.67
(1.35/25/30)

Diff. t-test p < .7 p < .21 p < .2

Parkinson’s disease group:

Sex UPDRS-III Symptoms Diagnosis LD IN D2

Male 21 13 15 X X

Male 17 4 6 X X

Female 21 6 6 X X

Female 11 3 4 X X X

Female 11 3 5 X X X

Male 16 9 17 X X X

Female 28 6 6 X X

Male 23 4 4 X X

Male 18 2 3 X X

Male 17 8 10 X X

Male 14 2 8 X X

Female 20 10 12 X X X

Male 22 4 6 X X

Female 13 1 1

Male 13 7 5 X X X

PD = Parkinson's group. HC = Healthy controls. M = Male. F = Female.
Edu = Years of education. In all columns: Means (standard deviations /
minimum / maximum). Bottom table: UPDRS-III = Unified Parkinson's dis-
ease rating scale, part III. Symptoms/Diagnosis: Years since. LD = Levo-
dopa. IN = Inhibitors. D2 = D2-agonists.

FIGURE 1 Experimental setup and the two rhythmic patterns used
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thus served as contrast for all other epochs (“REST”). The first 4 bars/8

s of each stimuli were epoched as “4BARS1”, and the last 4 bars/8 s

epoched as “4BARS2.” Epochs were labeled according to which

rhythm they belonged to, that is, ., “SIMPLE4BARS1” and “COM-

PLEX4BARS1” for the first 8 s of the simple and complex rhythm and

“SIMPLE4BARS2” and “COMPLEX4BARS2” for the last 8 s of the sim-

ple and complex stimuli. Movement related variance (realignment

parameters) was included in the model as six covariates of no interest.

First level analysis produced contrasts for SIMPLE4BARS1, COM-

PLEX4BARS1, SIMPLE4BARS2, COMPLEX4BARS2, all contrasted

to REST.

2.7 | Second-level analysis

A 2 × 2 × 2 full factorial analysis was conducted with group (PD/HC)

as a between subject factor, and time (first/last 8 s) and rhythm (sim-

ple/complex) as within-subject factors.

The PD-group used different combinations of LDOPA, inhibitors,

and D2 medication, and these were entered into the second level

analysis as covariates and interaction covariates. In a follow-up analy-

sis, dividing the stimuli into 4 time-bins of 4 s each, we performed a

2 × 4 × 2 full factorial analysis using the same factors as in the origi-

nal analysis. All results are reported with a family-wise error (FWE)

corrected threshold of p < .05 and at least 10 voxels per cluster, with

the exception of the explorative follow-up interaction analysis

(Figure 4, Table 3), which was performed with a threshold of

p < .001/28 voxels, derived from two different Monte Carlo simula-

tions. (See “Results” section for more details).

3 | RESULTS

3.1 | Full factorial analysis

The full factorial analysis used group (PD/HC) as between-subject and

rhythm (simple/complex) and time (first and last 8 s) as withing-

subject factors. Counter to our hypothesis, there was no significant

main effect for rhythm (complexity) or any significant interaction

effects including rhythm (complexity). There were however significant

main effects of group and time and an interaction effect of group and

time (all effects F(1,108) > 25.7, for a complete list of significant main

and interaction effects, see Supporting Information Table S2).

A between-group t test across the two rhythms and across both

time-windows, showed significantly higher activation for the PD-

group than the HC-group in bilateral superior temporal gyrus/planum

temporale (STG/PT), (left-lateralized) bilateral inferior parietal lobe

(IPL), left-ventromedial prefrontal cortex (vmPFC), and smaller loci in

the occipital lobe (Figure 2a, Table 2a). A paired t test for the time

effect of time across groups showed a decrease in activation in bilat-

eral temporal lobe (including middle, superior, and transversal tempo-

ral gyri) from the first time-bin to the second. On the left side, this

decrease in activation extended down to the hippocampus (Table 2b).

A follow up t test of the interaction effect of group and time found a

group difference in the anterior cingulate cortex (ACC). We extracted

cluster-wise β-values to visualize the changes between time bins per

group. The PD-group showed a markedly higher activation in the ACC

for the first 8 s, with a downregulation of this activity in the last 8 s.

For the HC-group, the activation pattern was inverse with an upregu-

lation of the ACC over time (shown in Figure 2b/Table 2c).

3.2 | Post hoc phase and interaction analyses

Based on the findings of an interaction effect between group and time

in the above analysis, we decided to explore this effect further by seg-

menting the 16 s long stimuli into four 4 s long bins (as opposed to

two 8 s long bins). A reanalysis of main effects and interaction effects

reproduced the results of the original analysis. To gain more insight

into the group × time interaction, we analyzed the two groups inde-

pendently by contrasting each of the four time-bins with the other

three time-bins (p < .05, FWE corrected, 10 voxels). This provided a

measure of which areas were significantly more and less active in each

time-bin compared to the three others, that is, an indication of a par-

ticular “phasic role” of these areas. A side-by-side comparison

between the two groups over these four contrasts (Figure 3) shows a

strong activation in bilateral supplementary motor areas (SMA), thala-

mus and anterior insula (AIN), as well as in the right inferior frontal

gyrus (IFG) in the first time-bin for the Parkinson's group, not seen in

the healthy controls. Furthermore, caudate nucleus was upregulated

in the second time-bin in the Parkinson-group (with a deactivation of

SMA, Thalamus and AIN in the same time-bin), followed by a deactiva-

tion of caudate nucleus in the third time-bin, none of which can be

seen in the healthy controls.

This pattern of phasic activation and deactivation of particularly

the AIN (as one node in the saliency network) and the caudate

nucleus, combined with the significant interaction effect of group and

FIGURE 2 Between-groups, across-groups, and group × time

interaction for 8 s time-bins. Plots show activation differences
through all axial planes between group for overall (a) and interaction
between group and time (b). Plot (c) shows contrasts estimates of
cluster-wise β-values from peak significant coordinate with error bars
showing standard deviation. All results are FWE, p < .05, 10 voxels.
See Table 2 for a complete list of activations [Color figure can be
viewed at wileyonlinelibrary.com]
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time in the ACC (as the other node in the saliency network), made us

reanalyze the group/time interaction. To increase sensitivity in the

analysis, we performed two different Monte Carlo simulations

(Forman et al., 1995; Slotnick, Moo, Segal, & Hart, 2003). As a less

conservative alternative to FWE-correction, Monte Carlo-simulations

identify activation patterns in the fMRI-data and calculates the mini-

mal cluster-size activation threshold of how many adjacent voxels

could be active without being random activations. Both simulations

yielded a cluster-size threshold of 14 voxels at uncorrected p < .001,

and to further minimize type-2 errors, we chose to double this thresh-

old to 28 voxels. With this threshold, several brain areas showed a

significant interaction effect of group × time, as seen in the central

plot in Figure 4 (see Table 3 for list of peak values). For these areas,

cluster-wise β-values were extracted and averaged within groups. The

differences in values in both groups across the four time-bins are

shown in surrounding plots in Figure 4. As can be seen from the dif-

ferent plots, most envelopes replicate the findings in the within-group,

side-by-side comparison above, that is, that many regions are more

active for the first part of listening to a stimulus for the PD-group

compared to the HC-group, and that the difference between the

groups diminishes over time. A closer look reveals how the different

areas have distinct temporal envelopes for the two groups in the

FIGURE 3 Within-group phasic contrasts for four time-windows. Upper panels show phasic increased and decreased activation differences in

the four 4 s time-windows for healthy controls (upper) and the Parkinson's group (lower). Bottom panel shows (uncorrected) upregulated (green)
and down-regulated (red) areas in the second time-window (4–8 seconds). Ring color corresponds to upper panels. Full lines show significant,
dashed lines not-significant contrasts at FWE, p < .05. M/STG/PT = medial/superior temporal gyrus/planum temporale, AIN = anterior inula,
Thal = thalamus, IPL = inferior parietal lobule, vmPFC = ventromedial prefrontal cortex, Caud = caudate nucleus, IFG = inferior frontal gyrus,
SMA = supplementary motor area, PMC = premotor cortex. Bottom numbers indicate axial coordinates
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different areas, and in particular the envelope of the caudate nucleus

seems to be time displaced relative to the other areas (ACC, AIN, and

SMA notably).

4 | DISCUSSION

This study set out to answer the following questions: whether persons

with Parkinson's disease differed in their processing of rhythms and

whether there were differences in brain activity during different

phases of rhythm perception. Counter to our hypothesis, there was

no min effect of complexity, that is, differences between simple and

complex rhythms—neither across nor between within the two groups.

Complexity also did not interact with other factors. We did however

find overall hyperactivity in bilateral PT and IPL, as well as left vmPFC,

in the PD group, and hyperactivity in these areas could be related to

basal ganglia dysfunction during rhythm processing. If basic mecha-

nisms in the basal ganglia—such as the processing of temporal pat-

terns (Chapin et al., 2010; Graybiel, 1997; Kung et al., 2013; Lewis

et al., 2004) and the signal-to-noise gating (Boecker et al., 1999;

Gruber, Dayan, Gutkin, & Solla, 2006; Kotz, Schwartze, & Schmidt-

Kassow, 2009; Steriade & Llinas, 1988) during processing interactions

with other cortical areas (Cohen & Frank, 2009)—fail to correctly

reduce the perceptual complexity of the rhythm in the back-projection

to cortical areas in the cortico-basal ganglia-thalamo-cortical loop,

then an inherently more complex signal must be processed in the rest

of the processing chain. This could explain the hyperactivity in the PT,

an area sensitive to complex rhythms (Bengtsson et al., 2009; Chen

et al., 2008a; Geiser et al., 2012; Herdener et al., 2014; Kung et al.,

2013; Thaut et al., 2014), and with a potentially anticorrelated rela-

tionship with the basal ganglia for rhythmic complexity (Geiser et al.,

2012). The PT segregates and gates processed temporal patterns to

the IPL (Griffiths & Warren, 2002; Ragert et al., 2014; Zatorre et al.,

2007), another area sensitive to rhythmic complexity (Bolger et al.,

2014; Grahn & Rowe, 2013; Lewis et al., 2004; Thaut et al., 2014;

Vuust et al., 2006), and a more complex signal processed in the PT

could therefore increase activity in the IPL. If the processing of more

complex rhythms is more dependent on recruiting frontal areas

(Chapin et al., 2010; Kung et al., 2013), an overall more complex signal

in the PD-group could also explain the increased activity in the left-

PFC in the PD-group. Hyperactivity in PT, IPL, and left-PFC in the PD

group could therefore be due to dysfunction in the basal ganglia, with

rhythms being processed by the PD-group as if they were perceived

as overall more complex than by the healthy subjects, a finding that is

consistent with the results of our online listening test and previous

behavioral studies on PD (Biswas et al., 2016; Cameron et al., 2016;

Grahn & Brett, 2009).

The interaction analysis of group and time, and our phasic within-

group analyses of the PD-group, showed initial hyperactivity in wide-

spread auditory, cortical and subcortical motor areas, and notably

ACC and bilateral AIN (which constitute the saliency network). In the

PD group, this initial hyperactivity was followed by a downregulation

of these same areas and a simultaneous upregulation of the caudate

nucleus. This activation pattern is consistent with previous findings in

healthy subjects, where sudden activity in motor systems has been

found to suppress basal ganglia output (Wessel & Aron, 2017). This

could explain the subsequent upregulation of the caudate nucleus in

the PD-group, possibly indicating higher prediction error activity in

the caudate nucleus (Grahn & Rowe, 2013; Haruno & Kawato, 2006)

in secondary stages of rhythm processing, as the PD group adapt to

the stimuli. In this context, auditory and basal ganglia activity might

not be anticorrelated with activity in other brain areas (Geiser et al.,

2012), but rather time-displaced.

TABLE 2 List of activations—To be used with Figure 3

2a (Figure 2a) between groups t test

MNI

Region X Y Z Size t

R STG / PT 46 −36 18 214 11,29

R Inf. Par. 28 −46 38 5,93

R STG 64 −32 16 5,69

L Inf. Par. −38 −52 48 347 9,90

L Ang −34 −46 30 7,63

L Inf. Par. −36 −44 38 7,47

L STG /PT −56 −40 22 97 9,49

L VMPFC −16 66 −2 147 7,41

L VMPFC −30 58 0 7,10

R Calcerine 30 −66 14 51 7,25

R Operc 40 18 18 64 6,82

R Occip 40 −84 14 42 6,82

L ITG −60 −52 −6 41 6,63

R ITG 60 −46 −18 42 6,53

L ITG −58 −52 −18 24 6,21

L SFGmed −2 28 54 63 5,90

L ITG −46 −62 −8 22 5,85

L Fusiform −30 −72 −16 66 5,71

R Angular 34 −58 32 25 5,45

R MTG/STG/ang 44 −50 10 11 5,28

2b Across-groups, between-times, t test

L MTG / TTG −44 −26 0 128 6,5

L MTG/STG/hip −42 −24 −12 6,4

L STG/MTG −50 −14 −4 5,5

R MTG/STG 64 −22 −4 71 6,3

R MTG 62 −14 −8 5,4

R STG/PP 52 −6 −10 13 5,6

R MTG 46 −16 −16 16 5,5

2c (Figure 2b) Positive interaction, groups × times, t test

R Ant. Cing 4 36 18 41 6,4

R Ant. Cing 2 48 4 29 5,3

L Ant. Cing −8 46 6 5

All results are reported at FWE p < .05, voxel cluster size = 10. Abbrevia-
tions: STG = Superior Temporal Gyrus, MTG = Middle Temporal Gyrus,
PT = Planum Temporale, Inf. Par = Inferior Parietal Lobule, Ang = Angular
Gyrus, VMPFC = Ventromedial Prefrontal Gyrus, Operc. = Operculum,
Occip = Occipital, ITG = Inferior Temporal Gyrus, SFGmed = Superior
Frontal Gyrus, Hip = Hippocampus, PP = Planum Polare, Ant. Cing. =
Anterior Cingulate Cortex.
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The high initial activity in widespread motor areas and the ACC

and AIN also taps into another question that remains unanswered

in relation to PD, namely, whether persons with PD can internally

generate rhythms without external stimuli. Research shows that

persons with PD can maintain a rhythm already entrained to

(Cerasa et al., 2006; te Woerd et al., 2015), potentially tapping into

predictive mechanisms in basal ganglia-premotor interactions, and

not bypassing them (te Woerd et al., 2015). Other studies show that

expecting particular stimuli activates brain areas relevant for the

upcoming stimuli (Osnes, Hugdahl, Hjelmervik, & Specht, 2012;

SanMiguel, Widmann, Bendixen, Trujillo-Barreto, & Schroger,

2013). The ACC and the AIN, which constitute the saliency net-

work, are triggered by novelty or salient stimuli, where particularly

the AIN serves as a “network-switch” (Menon & Uddin, 2010) to

upregulate brain areas needed for task-related action (Menon,

2011). The hyperactivity in the saliency network and widespread

motor areas in the PD-group could therefore reflect a lack of inter-

nal preparation of circuitries relevant for rhythm processing. The

lack of similar activation differences in these areas in the healthy

control group could mean that they are prepared, and are

maintaining the brain state necessary to process rhythms also in

the silent periods between stimuli. Conversely, the PD-group needs

time for every new stimulus presentation to activate “rhythm rele-

vant” brain areas, in a specific phasic sequence of events involving

the saliency network, several cortical motor areas, as well as the

basal ganglia. The activity patterns of the AIN and the caudate

nucleus should be of particular interest to future studies, as these

two areas relate directly to core PD pathology (Kish et al., 1988;

Poewe et al., 2017; Putcha et al., 2015).

4.1 | Limitations and outlook

One important limitation of this study is the fact that passive listening

yields lower levels of activation in the basal ganglia than active para-

digms that include motor responses (Chen et al., 2008b; Kung et al.,

2013): Basal-ganglia activation in beat-processing has been predomi-

nantly linked to the preparation, production or imagining motor

response (Kung et al., 2013). This might account for the lack of overall

basal ganglia activation differences between the two groups and also

between the two rhythms.

FIGURE 4 F-contrast of interaction of group × time over four 4 s time-bins central figure shows significant interactions in SPM at uncorrected

p < .001 with a cluster size of 28 voxels. Graphs show changes in ß-values for PD (blue) and HC (red) over four time-windows (0–4, 4–8, 8–12,
12–16 s). L = left, R = right [Color figure can be viewed at wileyonlinelibrary.com]
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The lack of differences between the rhythms could also be due to

the use of only two different rhythms, presented several times during

scanning, decreasing rhythmic complexity, and cognitive load through

simple learning effects in both groups. We also did not investigate

whether medication states (“on”/“off”) would modulate the results, as

all our participants with PD were in medication regimens during the

study, and future studies should investigate de novo patients before

medication or patients in “off”-periods. We also recognize that the

limited number of trails as well as small group sizes limit the strength

of our results, especially for the explorative post hoc “phasic” interac-

tion analysis, were cluster-wise thresholds were used instead of

FWE-corrections. Future studies should expand and change the para-

digm in such a way that the changes over time in the two groups

could be more fully explored, and in such a way that it also takes into

consideration the preparatory part of the listening task. Future studies

should also include more than just two rhythms, extend the time-

frame, use more time-bins, and use a variety of tempi. Learning and

repetition effects should also be investigated, and the use of more

ecological valid music, as well as including participants' musical prefer-

ences in the design, should be considered. Investigating the overall

effect of music listening on larger network functionality in PD through

resting state and functional connectivity studies would be yet another

important avenue to explore in future studies.

5 | CONCLUSION

We found rhythm processing related group differences that could be

related to PD-pathophysiology on different levels. On one level,

basal-ganglia dysfunction in the basic processing of rhythm patterns

could lead to an overall more complex signal for the PD-brain to pro-

cess, increasing activity in task-relevant areas, such as the PT and the

IPL. On another level, rhythm onset led to high activity in the saliency

network and widespread motor areas in the PD-group, with subse-

quent upregulation of the caudate nucleus in the basal ganglia.

Despite the limitations of this study, we believe that it constitutes an

important contribution to the exploration of the neural basis of

rhythm perception and processing in Parkinson's disease, using fMRI.

In particular, the combination of overall hyperactivity in task-relevant

areas, and the phasic, sequential activation in brain areas crucial

affected by PD, merits further investigation.
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