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Abstract: Irisin is a myokine involved in glucose homeostasis. It is primarily expressed in skeletal
muscle, but also in the pancreas. This study aimed to elucidate its presence and role in the islets of
Langerhans—i.e., its effect on insulin and glucagon secretion as well as on blood flow in the pancreas.
The precursor of irisin, fibronectin type III domain-containing protein 5 (FNDC5), was identified in rat
and human islets by both qPCR and immunohistochemistry. Both α- and β-cells stained positive for
FNDC5. In human islets, we found that irisin was secreted in a glucose-dependent manner. Neither
irisin nor an irisin-neutralizing antibody affected insulin or glucagon secretion from human or rat
islets in vitro. The insulin and glucagon content in islets was not altered by irisin. The intravenous
infusion of irisin in Sprague Dawley rats resulted in nearly 50% reduction in islet blood flow compared
to the control. We conclude that irisin is an islet hormone that has a novel role in pancreatic islet
physiology, exerting local vascular effects by diminishing islet blood flow without affecting insulin
secretion per se.
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1. Introduction

Irisin is a myokine related to exercise that was first discovered as a secreted peptide in
mouse skeletal muscle in 2012. It is cleaved from its precursor fibronectin type III domain-
containing protein 5 (FNDC5) [1]. Irisin is known to increase the expression of mitochon-
drial uncoupling protein 1, converting white adipose tissue (WAT) into brown-like adi-
pose tissue [2,3]. The net effect is weight reduction and improved glucose metabolism [1,4].
Therefore, irisin holds the potential to reverse obesity. Induced modest weight reduction as
well as lowered insulin and glucose levels in obese high-fat diet mice have, consistent with
this, been reported previously [1].

Skeletal muscle is considered as the main source of FNDC5 based on its high expression
and the fact that plasma irisin levels correlate positively with muscle mass [5,6]. However,
FNDC5 is also found in tissues involved in energy homeostasis, such as adipose tissue
and the liver, although with a 100–200 times lower expression than skeletal muscle [5–8].
Despite many reported effects, the receptor for irisin still remains unknown, except in
osteo- and adipocytes, where the involvement of the receptor integrin αV/β5 has been
suggested [9]. In the pancreas, a low mRNA expression of FNDC5 has been observed,
without regard to cell type, [6] and in a histology-based study, the islets of Langerhans
stained positive for FNDC5/irisin, indicating that this could be an islet hormone [10].
Interestingly, irisin has been found to enhance glucose-stimulated insulin secretion (GSIS)
in human and murine islets as well as in INS-1E cells [11]. In another study, irisin improved
glucose tolerance while reducing serum insulin levels in a rat model of type 2 diabetes
mellitus (T2D) [12]. Lower levels of irisin have been observed in gestational diabetes and
T2D [13–15], while we and others have reported that irisin levels are higher in individuals
with type 1 diabetes mellitus (T1D) [16,17].
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Irisin relaxes mesenteric arteries in mice via the endothelial nitric oxide-guanosine
3′ 5′ cyclic phosphate-dependent pathway, but also through mechanisms independent
of the endothelium [18]. Moreover, irisin improves endothelial function in the aorta of
high-fat diet mice through the AMP-activated protein kinase and endothelial nitric oxide
synthase pathways [19]. Another study demonstrated that irisin protects against vascular
endothelial injury and atherosclerosis through the same pathways in diabetic mice [20].

Despite the seemingly intimate relationship between irisin and glucose metabolism,
the role of irisin in the endocrine pancreas has not been thoroughly investigated. Since
irisin has effects that could be beneficial in T2D, investigating its pancreatic role could lead
to novel treatments. The aim of this study is, therefore, to evaluate the presence, expression
and secretion of irisin in pancreatic islets and, in addition, its effect on insulin secretion and
pancreatic blood flow.

2. Materials and Methods
2.1. Animals

Male Sprague Dawley rats (Taconic, Ry, Denmark) 12–16 weeks of age and weighing
approximately 300–400 g and C57 BL/6 mice (M&B, Ry, Denmark) 10–12 weeks of age
and weighing 25–30 g were housed with free access to pellets and water. All animal
protocols and experiments were approved by the Animal Ethics Committee for Uppsala
University, Uppsala, Sweden (C65/16, 2016-07-01). The guide for the care and use of
laboratory animals, eighth edition [21] was followed, as well as specific national laws,
where applicable.

2.2. Human Tissue

The ethical board in Uppsala approved the use of human pancreatic tissue for this
study (2017/283, 2017-08-09). Human islets were obtained from the Nordic Network for
Clinical Islet Transplantation (Rudbeck Laboratory, Uppsala University Hospital, Upp-
sala, Sweden).

2.3. Islet Isolation and Culture

Human islets were cultured in CMRL1066 medium (Cellgro/Mediatech, Manassas,
VA, USA) at a glucose concentration of 5.6 mmol/L, with the addition of 10% (vol/vol)
bovine serum, L-glutamine (2 mmol/L; Sigma-Aldrich, St Louis, MO, USA) and benzylpeni-
cillin (100 U/mL; Roche Diagnostics, Bromma, Sweden). Rat islets were isolated by the
collagenase digestion of the pancreas, as previously described [22].

2.4. Immunohistochemistry

Pancreatic sections from human donors, Sprague Dawley rats and C57BL/6 mice were
stained for FNDC5, insulin, glucagon and nuclei. Staining was carried out by deparaffiniz-
ing the sections, followed by heating in a cooker. For blocking, 3% donkey serum/PBS
was used for 30 min, followed by overnight incubation at 4 ◦C with primary antibodies
for FNDC5 (Rabbit polyclonal antibody bs-8486R, Bioss, Woburn, MA, USA) and insulin
(Cat No. 20-IP30, Fitzgerald, Acton, MA, USA) or glucagon (Biotin conjugated antibody,
Cat No. 13-9743-82, eBioscience™, ThermoFisher scientific, Waltham, MA, USA). For
secondary antibodies, Alexa 488 conjugated donkey anti-rabbit (Cat. No. 711-545-152, Jack-
son ImmunoResearch Laboratories, Ely, United Kingdom), Alexa 594 conjugated donkey
anti-guinea pig (Cat. No. 706-585-148, Jackson ImmunoResearch Laboratories, Ely, United
Kingdom) and Cy3 conjugated Streptavidin (Cat. No. 016-160-084, Jackson ImmunoRe-
search Laboratories, Ely, United Kingdom) were used and incubated for 1 h. Nuclei were
stained by applying a DAPI solution for 5 min. Fluorescent immunohistochemistry images
were acquired using a Zeiss LSM 780 (Zeiss, Jena, Germany) confocal and evaluated by
comparing the overlap of FNDC5 with insulin and glucagon separately.
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2.5. FNDC5 Expression

To investigate the relative expression of FNDC5 in islets compared to skeletal muscle,
total RNA from islets isolated from human donors (n = 6) and rats (n = 3) was extracted
according to the manufacturer’s instructions (RNeasy Plus Micro Kit, Qiagen AB, Kista,
Sweden). Purity was determined using a NanoDrop 2000C spectrophotometer (Thermo
Scientific, Waltham, MA, USA). All RNA samples had an OD 260/280 between 1.9 and
2.2. Human skeletal muscle total RNA was purchased from Ambion (Invitrogen, Life
Technologies, Stockholm, Sweden) and rat skeletal muscle total RNA was purchased
from Takara Bio (636220, Saint-Germain-en-Laye, France). For total RNA from islets and
skeletal muscle in human and rat, qPCR for the genes FNDC5, glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) and Ribosomal Protein S7 (RPS7) was performed using a Light Cycler
480 (Roche Diagnostic, Mannheim, Germany) and LightCycler FastStart DNA Master
PLUS SYBR Green I kit (Roche Diagnostic, Mannheim, Germany). See the Supplementary
Material for the primer details (Table S1). Primer specificity was confirmed by a melting
curve analysis with a single peak and agarose gel electrophoresis with a single band at the
anticipated size. The relative expression of FNDC5 was calculated using the housekeeping
genes RPS7 and GAPDH separately; the calculation was performed by averaging the
Ct-values from duplicates followed by the ∆∆-Ct method.

2.6. Islet Perifusion

To evaluate irisin secretion from the islets, groups of 50 size-matched human islets
(n = 7 donors) were inserted into filter-covered perifusion chambers (Suprafusion 1000,
6 channel system, Brandel, Gaithersburg, MD, USA). The islets were perifused (200 µL/min)
with Krebs ringer bicarbonate buffer (KRBH) supplemented with 2 mg/mL of bovine serum
albumin with low (3.33 mmol/L) or high (33.3 mmol/L) glucose concentrations. The islets
were first perifused with low glucose for 30 min to acquire a baseline secretion. Perifusion
was then performed with low glucose for 12 min followed by high glucose for 37 min,
then again with low glucose for 14 min. In addition, the same protocol was performed
but with the potentiation of insulin release by adding forskolin (1 µmol/L) to the KRBH.
Released irisin was analyzed using an ELISA (#EK-067-29, Phoenix Peptides Europe GmbH,
Karlsruhe, Germany).

2.7. Irisin Incubation and Insulin Release

After isolation and 48–72 h of incubation, islets were moved to 6-well plates, with
each well containing 2 mL of RPMI 1640 cell medium (Sigma-Aldrich, R0883, St Louis,
MO, USA) and 100 islets. RPMI 1640 cell media had been supplemented with 10% vol/vol
fetal bovine serum prior to the experiments (Sigma-Aldrich, F7524, St Louis, MO, USA),
1% vol/vol L-glutamine (Sigma-Aldrich, G7513, St Louis, MO, USA) and 0.2% vol/vol
penicillin/Streptomycin (50,000 U/mL and 50 mg/mL, respectively; 11074440001, Sigma-
Aldrich, St Louis, MO, USA). Irisin (100 nmol/L, recombinant Irisin, 067-29A, Phoenix
Peptides Europe GmbH, Karlsruhe, Germany) was added to the treatment groups (Table 1)
and islets were incubated for another 24 h before insulin release experiments.

Five groups were incubated with or without 100 nmol/L irisin for 24 h or during
release (Table 1). One group had no irisin but an irisin-neutralizing antibody was added
(Recombinant Anti-FNDC5 antibody, ab174833, Abcam, Cambridge, United Kingdom).

After incubation, GSIS was performed with triplicates of ten islets in each group. Islets
were exposed to a 1.67 mmol/L glucose solution consisting of KRBH with 2 mg/mL bovine
albumin for one hour at 37 ◦C. The medium was saved and replaced with an identical
solution but with 16.7 mmol/L glucose added and incubated for another hour. Then, the
medium was saved and all islets were sonicated in distilled water and added to 95% acid
ethanol. Insulin and glucagon concentrations in release medium and sonicated islets were
determined by ELISA (human or rat insulin and glucagon ELISA, respectively, Mercodia,
Uppsala, Sweden).
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Table 1. The five groups with different treatments preceding glucose-stimulated insulin release (GSIS).

Group Treatment

Control Control

Irisin 24 h+ 24 h incubation with 100 nmol/L irisin and irisin in release media

Irisin 24 h− 24 h incubation with 100 nmol/L irisin

Irisin Regular incubation and 100 nmol/L irisin in release media

Irisin Ab Regular incubation and 100 nmol/L irisin antibody in release media

2.8. Blood Flow Measurements

To investigate the effect of irisin on pancreatic blood flow, measurements of blood flow
were performed with a microsphere technique, as previously described in detail [23–25]
and briefly as follows.

Black, non-radioactive microspheres (1–2 × 106, E-Z Trac; IMT, Irvine, CA, USA) were
injected into Sprague Dawley rats after the infusion of irisin dissolved in saline (6.25 µg/mL,
2.0 mL/h; recombinant Irisin, 067-29A, Phoenix Peptides Europe GmbH, Karlsruhe, Ger-
many) or saline alone (2.0 mL/h) for 60 min, via the right carotid artery into the ascending
aorta. An arterial blood reference sample was collected for 60 s from the catheter in the
femoral artery starting immediately before the injection of microspheres. The exact flow
in the femoral artery was confirmed in each experiment by weighing the sample. The
pancreas, adrenal glands, duodenum, colon, kidneys and skeletal muscle were retrieved,
dissected free from adipose tissue and weighed. In addition, white and brown adipose tis-
sue was dissected free and weighed. All tissue samples were subjected to a freeze–thawing
technique to visualize the microspheres and allow the separate counting of intra-islet mi-
crospheres [23]. The microspheres present in the samples were counted in a microscope
equipped with both dark- and bright-field illumination [23]. The reference blood collected
during the experiment was transferred to glass microfiber filters with a pore size of <10 µm
before the microspheres therein were counted. The organ blood flow was then calculated
according to the formula Qorg = Norg ×Qre f ÷ Nre f , where Qorg denotes organ blood flow
(mL/min), Qre f denotes the flow of the reference sample (mL/min), Norg denotes the
number of microspheres present in the organ and Nre f denotes the number of microspheres
present in each reference sample. In the adrenal glands, a difference in blood perfusion
between the left and right glands of less than 15% was used as the measurement for the
equal distribution of the microspheres; otherwise, the experiment was discarded.

The dose of irisin used in this study was chosen based on previous experimental
in vivo studies and clinical studies of circulating levels of irisin [16,26].

2.9. Statistical Analysis

All values are expressed as mean ± SEM. For insulin release data, the mean of trip-
licates of islets in each incubation from each animal or human donor was considered as
one observation. Parametric data with only two groups were analyzed with Student’s
two-tailed t-test for unpaired and paired observations. To compare multiple groups with
parametric paired data, analysis of variance (ANOVA) with Geisser–Greenhouse correction
was used, together with multiple comparisons using Tukey’s post hoc test. For all compar-
isons, a p-value < 0.05 was considered statistically significant. Calculations were performed
using the statistical software Prism 8 (GraphPad Software, San Diego, CA, USA).

3. Results
3.1. Immunohistochemistry

Pancreatic islets in mouse, rat and human showed a whole islet staining for FNDC5,
colocalizing with both insulin and glucagon (Figures 1 and 2). The specificity of the
antibody was confirmed by blocking the antibody with irisin peptide (Figure S1).
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Figure 1. Confocal image of a single islet of Langerhans from (A–C) mouse, (D–F) rat and (G–I)
human split into fibronectin type III domain-containing protein 5 (FNDC5, green), insulin (red) and a
combined picture. Scale bar = 100 µm.

3.2. Gene Expression

Both human and rat pancreatic islets were found to express FNDC5. The relative
expression compared to skeletal muscle was 1.1–48.5% in human and 0.6–8.9% in rat
(Table 2).

Table 2. Relative expression of the gene fibronectin type III domain-containing protein 5 (FNDC5) in rat
and human islets compared to skeletal muscle, calculated using the housekeeping genes glyceraldehyde
3-phosphate dehydrogenase (GAPDH) and Ribosomal Protein S7 (RPS7) separately. Each value represents
one animal or human donor.

Rat—GAPDH
(%) Rat—RPS7 (%) Human—GAPDH

(%)
Human—RPS7

(%)

5 1 17 7
9 1 12 11
8 1 19 8

48 6
5 1
6 1

Mean 7.3 1 17.8 5.7
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Figure 2. Confocal image of a single islet of Langerhans from (A–C) mouse, (D–F) rat and (G–I)
human split into FNDC5 (green), glucagon (red) and a combined picture. Scale bar = 100 µm.

3.3. Islet Perifusion

In human islets, the secretion of irisin increased in response to glucose during in vitro
islet perifusion experiments (Figure 3A). The potentiation of insulin release by forskolin did
not alter the secretion of irisin during either low- or high-glucose conditions (Figure 3B).
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Figure 3. Mean irisin concentration in the effusate at the sequential perifusion of human islets with
a low (3.33 mmol/L), a high (33.3 mmol/L) and a second low glucose concentration in (A) human
islets (n = 7) without forskolin and (B) human islets (n = 7) with forskolin (1.0 µmol/L) at both the
low and high glucose concentrations. All values are given as means ± standard error of the mean
(SEM). * denotes p < 0.05 and ** p < 0.01.
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3.4. Insulin Release In Vitro

Neither irisin nor an irisin-neutralizing antibody affected insulin or glucagon secretion
from human and rat islets during low and high glucose incubations (Figure 4A–D). There
was no difference in the total content of insulin or glucagon in the islets after 24 h irisin
incubation compared to the control (Figure 5A–D).
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in Table 1. All irisin incubations were 100 nmol/L. All values are given as means ± SEM.
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Figure 5. Total content of insulin and glucagon in islets after incubation and glucose-stimulated
insulin secretion, compared between control and the two groups incubated with irisin (100 nmol/L)
for 24 h in (A,B) human islets (n = 5) and (C,D) rat islets (n = 5). All values are given as means± SEM.
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3.5. Blood Flow Measurements

All rats maintained a mean arterial blood pressure of 100–120 mmHg during the
in vivo experiments which was not affected by the administration of saline or irisin. Pan-
creatic islet blood flow (IBF) was reduced by nearly 50% compared to the control after
the infusion of irisin (Figure 6A). There was also a tendency towards a decreased whole
pancreatic blood flow (p = 0.07; Figure 6B). In addition, irisin decreased the blood flow in
WAT by nearly 50% compared to the control (Figure 6C). However, irisin did not affect the
blood flow of brown adipose tissue (BAT), or any of the other examined tissues (duodenum,
colon, kidney and skeletal muscle).

✱✱ ✱

 
Figure 6. Blood flow in rats infused for 60 minutes with either saline as control (black) or irisin (grey, 100nmol/L) 
for (A) islet blood flow; (B) pancreatic blood flow (p=0.074, unpaired t-test) and (C) white adipose tissue. All 
values are given as means ± SEM for 6 and 8 rats, in control and irisin groups, respectively. * denotes P<0.05 and 
** denote p<0.01 by Student’s unpaired t-test. 

 

Figure 6. Blood flow in rats infused for 60 min with either saline as control (black) or irisin (grey,
100 nmol/L) for (A) islet blood flow, (B) pancreatic blood flow (p = 0.074, unpaired t-test) and
(C) white adipose tissue. All values are given as means ± SEM for 6 and 8 rats, in control and irisin
groups, respectively. * denotes p < 0.05 and ** denotes p < 0.01 by Student’s unpaired t-test.

4. Discussion

Previous histological studies of the pancreas have only demonstrated that FNDC5/irisin
is present in the exocrine and endocrine pancreas, but not in which cell types [10]. Our his-
tological result replicates this expression pattern but also suggests that in the islets, α- and
β-cells, and possibly even more cell-types in mouse, rat and human islets, contain FNDC5.
The expression of FNDC5 was also confirmed in both human and rat islets by qPCR, further
specifying the previously known expression in whole pancreatic samples [6]. In addition,
the secretion of irisin from human pancreatic islets during perifusion experiments further
strengthens the notion that irisin is an islet hormone.

Interesting similarities exist between irisin and glucagon-like peptide 1 (GLP-1), the lat-
ter of which is used in the treatment of type 2 diabetes as a GLP-1 receptor agonist. They
share common features, such as an increased secretion in response to carbohydrates and
lipids [27], and seem to be interconnected in the regulation of glucose metabolism, since
both irisin synthesis and GLP-1 secretion are increased by metformin treatment [28,29].
In addition, 12 weeks of treatment with a GLP-1 analog increased the levels of irisin in T2D
patients [30]. Specifically in the pancreas, both have previously been shown to increase
β-cell survival, proliferation and insulin secretion [27]. In addition, similar to what we
observed for irisin, GLP-1 has been found to reduce IBF [31]. These similarities raise interest
in the potential pharmaceutical effect of irisin in type 2 diabetes. However, the increase in
GSIS by irisin proposed to be shared with GLP-1 could not be replicated in our study.

Incubating rat or human islets with irisin had no effect on the secretion of insulin
or glucagon at either low or high glucose concentrations. Neither was the insulin nor
glucagon content increased after 24 h of irisin incubation. This contradicts a previous study
where GSIS and insulin content was increased after irisin incubation in human and murine
islets as well as in rat INS-1E cells [11]. However, multiple methodological differences
are present. For GSIS, the previous study used a 1.5-times higher stimulatory glucose
level for murine islets and INS-1E cells and only three separate experiments were carried
out for murine and human islets. For total insulin content, only three experiments were
used in the previous study and the islets were lysed in lysis buffer, whereas we sonicated
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them. In our study, this was performed after the GSIS experiment, while in the study
by Natalicchio et al. this was conducted as a separate experiment. In addition, for both
GSIS and total insulin content, they normalized data for total protein content while we did
not normalize them, in accordance with the only comparison regarding the normalization
of GSIS data we have found so far [32]. Considering that other studies have found that
irisin improves GSIS under glucolipotoxic conditions [12,33] and that irisin is antiapoptotic
for INS-1 cells [11,12,33], it could be that the increased GSIS is an indirect effect through
antiapoptotic effects—i.e., more cells survive during the preincubation steps and hence
secrete more insulin. Regardless of the effect being direct or indirect, irisin is still interesting
pharmaceutically, since it could potentially inhibit the loss of β-cell mass in gluco- and
lipotoxic conditions, which is common in T2D.

The notion that irisin may play a role in glucotoxic conditions is strengthened by
our finding that irisin secretion from human islets is positively correlated to glucose
levels. Although this secretion is unlikely to affect plasma levels, this finding potentially
demonstrates glucose to be a regulating factor in the secretion of irisin, in addition to
exercise.

It was noteworthy that irisin selectively reduced pancreatic IBF but not PBF. This
vascular effect is in line with previous results showing irisin to have a role in endothelial
function and the regulation of vasculature [18–20]. A lowering of IBF by irisin in exercise,
during which irisin levels have been seen to increase [34], would be fitting, since insulin
secretion is inhibited during moderate exercise by sympathetic innervation and circulating
catecholamines [35], thereby requiring a lower blood flow. Considering that irisin is
proliferative and anti-apoptotic for β-cells, the decreased blood flow could also be an
additional protective mechanism for islets during glucotoxic conditions.

Taking together its similarities with GLP-1 and its potential role in protecting the islets,
irisin could be a new pharmaceutical candidate in T2D. Considering the global increase in
the incidence of T2D and the effects it has on both individual patients and society, new and
better treatments are needed.

In summary, irisin is a hormone present in—and secreted by—pancreatic islets, exert-
ing local effects on both the endocrine cells and vasculature, and can therefore be considered
an islet hormone. Irisin is potentially of importance for the treatment of diabetes due to
its seemingly protective effects on pancreatic islets during high-glucose conditions. This
confirms that the receptor for irisin deserves mechanistic studies that could lead towards a
new potential treatment for T2D.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biomedicines10020258/s1, Figure S1: (A,B) Skeletal muscle from C57 BL/6 mice stained
for FNDC5 and DAPI without recombinant irisin in (A) and with recombinant irisin added to the
antibody mix to extinguish the signal in (B); (C,D) Rat islets stained for FNDC5 (green), insulin (red)
and DAPI in combined pictures without recombinant irisin in (C) and with recombinant irisin in the
antibody mix in (D), Table S1: Sequences and references for primers used.
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