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Abstract

The goal of this Bioinformatic study is to investigate sequence conservation in relation to evolutionary function/structure of
the nucleoprotein of the order Mononegavirales. In the combined analysis of 63 representative nucleoprotein (N) sequences
from four viral families (Bornaviridae, Filoviridae, Rhabdoviridae, and Paramyxoviridae) we predict the regions of protein
disorder, intra-residue contact and co-evolving residues. Correlations between location and conservation of predicted
regions illustrate a strong division between families while high- lighting conservation within individual families. These
results suggest the conserved regions among the nucleoproteins, specifically within Rhabdoviridae and Paramyxoviradae,
but also generally among all members of the order, reflect an evolutionary advantage in maintaining these sites for the viral
nucleoprotein as part of the transcription/replication machinery. Results indicate conservation for disorder in the C-terminus
region of the representative proteins that is important for interacting with the phosphoprotein and the large subunit
polymerase during transcription and replication. Additionally, the C-terminus region of the protein preceding the
disordered region, is predicted to be important for interacting with the encapsidated genome. Portions of the N-terminus
are responsible for N:N stability and interactions identified by the presence or lack of co-evolving intra-protein contact
predictions. The validation of these prediction results by current structural information illustrates the benefits of the
Disorder, Intra-residue contact and Compensatory mutation Correlator (DisICC) pipeline as a method for quickly
characterizing proteins and providing the most likely residues and regions necessary to target for disruption in viruses that
have little structural information available.
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Introduction

The Centers for Disease Control and Prevention have included

the Ebola and Marburg viruses, both negative-strand RNA viruses

belonging to the order Mononegavirales, in their list of Bioterrorism

Agents/Diseases, however, structural knowledge of these agents is

limited. Mononegavirales is composed of four viral families:

Bornaviridae contains the Borna Disease Virus (BDV), which affects

the nervous system and the brain in many animals, including cows

and rats, and endogenous borna-like nucleoprotein elements

sequences exist within the human genome [1]. Paramyxoviridae

includes Sendai Virus (SENV), which typically affects rats and mice,

and two viruses that cause childhood epidemics, Measles Virus

(MeV) and Mumps Virus (MuV). Filoviridae has only two members,

Ebolavirus and Marburgvirus that cause hemorrhagic fevers with

mortality rates up to 90% in humans [2,3]. The Rhabdoviridae

contains Rabies Virus (RABV) and Vesicular Stomatitis viruses, which

are both able to pass from their animal hosts to cause disease in

humans, as do many Mononegavirales. Vesicular Stomatitis virus (VSV)

is the model for the Rhabdoviridae family, and the prototype for

most of the investigation of transcription and replication for the

entire order of Mononegavirales [4]. VSV and Rabies are also used in

therapies for cancer and experimental vaccines against Human

Immunodeficiency Virus and influenza [5–7].

Negative-strand RNA viruses are unique in that their RNA

genomes are always encapsidated by a viral coded nucleoprotein to

form a ribonucleoprotein (RNP) complex. This complex serves as

the template for viral RNA synthesis and forms the structural core of

the viruses when packaged into virions [8]. The RNP is formed

concurrently with transcription/replication by the viral RNA-

dependent RNA polymerase (RdRp). For all of Mononegavirales, the

RdRp complex is composed of the negative-sense RNA genome

and three proteins: nucleoprotein (N), phosphoprotein (P) and the

large subunit polymerase protein (L). The RNA genome of this

complex is always found associated with the nucleoprotein as the

RNP. This structure is resistant to nucleases, even during synthesis

[9,10]. The nucleoprotein, not only important for the encapsidation

of the RNA for transcription, has also been identified in interactions

with itself, the L polymerase and phosphoprotein for the generation

of mRNAs in protein expression [11].

The nucleoprotein plays a critical role by polymerizing to cover

the entire length of the genome, thereby protecting it from
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ribonuclease digestion [12]. This encapsidation requires associa-

tion with the phosphoprotein to be chaperoned to the RNA

preventing the concentration-dependent aggregation of nucleo-

proteins to each other. This association also keeps the N protein

from encapsidating non-specific RNA transcripts during replica-

tion [13–15]. The nucleoproteins of bovine and human RSV

viruses are able to form nucleocapsid-like structures in the absence

of RNA and the other viral proteins [16,17]. Crystal structure

evidence now exists for the nucleoproteins of VSV, RABV, BDV

and Respiratory Syncytial Virus (RSV). The VSV crystal was isolated

with a 90-nucleotide strand of RNA associated with 10 copies of

the nucleoprotein forming a truncated RNP in the shape of a

cylinder/ring [18]. The RNA was shown to exist tightly bound in

a cavity that provides a hydrophobic space to accommodate the

bases of the RNA. In RSV this cavity exists within a groove at the

N-N interface with seven nucleotides associated with each

nucleoprotein subunit [19]. The structure of the VSV RNA-

nucleoprotein complex also shows a number of interactions

between neighboring nucleoproteins; each one is in contact with

three neighboring N molecules forming a tetramer [20]. A

comparison of the structures of the nucleoproteins of BDV,

RABV and influenza A virus show that the topology of the RNA

binding region from the three nucleoproteins is very similar and

highlights common structural domains. The nucleoproteins each

contained at least five conserved helices in the N-terminal domain

and three in the C-terminal domain [21].

The current proposed mechanism for VSV RNA synthesis

suggests that a portion of the nucleoprotein temporarily dissociates

from the RNA allowing the polymerase access to the genome. This

is supported by the crystal structure of the nucleoprotein from VSV

that shows the neighboring lobe interactions provide more stability

than the positively charged residues of the RNA binding cavity [22].

This work also provides evidence that structurally N would prevent

access to several positions of the RNA, so no Watson-Crick base

pairing could take place, and the RNP remains intact after one

round of RNA synthesis, dispelling the idea that the nucleoprotein

completely dissociates from the RNA during replication/transcrip-

tion. Additionally, a model of RSV RNA synthesis, based on

nucleocapsid-like helical assemblies, suggests that the polymerase

can induce hinge movement of the N-terminal domain to the C-

terminal domain. This hinge movement would result in a transient

opening of the groove allowing RNA access [19].

The use of Bioinformatic methods has been implemented to

produce models of the individual intra-protein contacts and disorder

for the nucleoprotein in the study presented here. The results of

protein disorder prediction, correlated mutations, sequence conser-

vation, and intra-residue prediction methods have been correlated

to characterize the nucleoproteins based on the data these

approaches generate from the protein sequence information. The

purpose of evaluating the regions of disorder within a protein is that

such areas are observed to be binding sites for protein-ligand

interactions. Upon association with the partner ligand the protein

assumes a secondary structure as observed using x-ray crystallog-

raphy [23,24]. The flexibility that disorder imparts allows these

proteins to have multiple binding partners as well as multiple

functions based upon confirmation. Since the nucleoprotein

interacts with the RNA genome, phosphoprotein and polymerase

it is likely these regions or interaction are disordered residues that

disorder prediction methods will highlight. The application of

correlated mutation and intra-protein contact predictors assume

that evolutionary functional constraints are expected to limit the

amino acid substitution rates, resulting in a higher conservation of

structural/functional sites with respect to the rest of the protein.

Once a residue is changed, given the constraints operating on it, this

mutation can be compensated with an additional mutation of a

corresponding residue elsewhere in the protein that may be in close

proximity when folded to maintain the interaction. This enables the

co-evolution of the two residues that can lead to both high specificity

and affinity. These assumptions can be expanded to include inter-

protein residue pairs as well as protein–nucleic acid interactions

[25–27]. The knowledge of these important residues aids in

modeling protein structures when combined with additional

information derived from the disorder prediction and sequence

conservation. The resulting predictions provide sites that can be

pursued for point mutations and inhibition within the nucleoprotein

to interfere with viral transcription/replication.

Results

Phylogenetic Analysis
To explore the relationship of the evolution of the nucleoprotein

within the viral families and among the entire order a phylogenetic

reconstruction was implemented. The multiple alignment of all 63

N sequences was generated by manual curation of a MAFFT

alignment [28] that was then used as the input for MrBayes3.1

[29,30]. The results of a MrBayes3.1 tree (results not shown)

grouped BDV with the Filoviruses, which was different from the

most recent tree created using portions of the polymerase [31]. In

order to increase the confidence in this placement BEASTv1.5.4

analysis was performed and confirmed the overall MrBayes results.

This tree was rooted at the midpoint and reveals three major

clades (Fig. 1). Clade I is BDV and Filoviridae, Clade II contains

Paramyxoviridae and Clade III is Rhabdoviridae; all clades show

posterior probabilities (PP) of 1.

Examination of Clade I reveals that BDV clades with

Filoviridae at a PP of 0.98. The Filoviruses group with each other

and Lake Victoria Marburgvirus (MARV) branches from the

Ebolaviruses at a PP of 1.

Clade II shows Paramyxoviridae branching into the subfamilies

Paramyxovirinae and Pneumovirinae (Fig. 1). Within the subfamily

Pneumovirinae all genera group with PPs of 0.95–1.0. Bovine

Respiratory Syncytial Virus (BRSV) sits outside the human viruses

with a PP of 1. The Paramyxovirinae subfamily branches into two

subclades. The first contains the Rubulavirus, Avulaviruses with the

unclassified Tioman Virus (TIOV). The Rubulaviruses and Avulaviruses

relationships are highly supported by PP of 1 throughout their

topology. TIOV groups within the Rubulaviruses. The second is

made up of Respirovirus, Henipaviruses, Morbilliviruses and the five

unclassified viruses: Fer-de-lance Virus (FDLV), Tupaia Virus (TUPV),

Mossman Virus (MOSV), Beilong Virus (BEIV), and JV with a PP of 1.

FDLV is an outgroup to the Henipaviruses and Morbilliviruses at a PP

of 0.81. Both MOSV and TUPV group with Henipaviruses with PPs

of 0.86 respectively. With a low PP of 0.53, BEIV and J Virus (JV)

form their own group outside the Morbillivirues. The Morbilliviruses

and Respiroviruses resolve relationships with PPs from 0.8–1.0.

Examination of the Rhabdoviridae in Clade III reveals high PPs

across all genera. Within Clade III there are two subclades. The

first subclade is composed of the Ephemroviruses, Vesiculoviruses and

Lyssaviruses. The currently unassigned Flanders Virus (FLAV)

branches with Bovine Ephemeral Fever Virus (BEFV) with a PP of 1

suggesting it belongs to the Ephemeroviruses. Siniperca Chuatsi

Rhabdovirus (SCRV) groups between the Ephemeroviruses and the

other Vesiculosviruses with a PP of 0.99. Lyssaviruses are an outgroup

to the Ephemeroviruses and Vesiculoviruses with a PP of 1.0. The

second subclade contains the Cytorhabdoviruses, Nucleorhabdoviruses

and the Novirhabdovirues. The Novirhabdoviruses are an outgroup

to the plant viruses Cytorhabdoviruses and Nucleorhabdoviruses at a PP

of 0.96.

Study of Mononegavirales Nucleoproteins In Silico
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Disorder Prediction
To identify potential residues that could be involved in inter-

protein binding protein disorder prediction programs were applied

to the nucleoprotein sequences and combined into a consensus

prediction. The results of the four disorder predictions programs

(PONDR [32–34], IUPred [35,36], DisEMBL [37], and Disopred

[38]) were normalized and averaged for each amino acid residue

of the nucleoprotein sequences into a consensus prediction value.

Those values were mapped onto the Multiple Sequence

Alignments (MSAs) of each of the four viral families’ nucleopro-

teins to observe if there is any pattern in the location of disordered

regions (Fig. 2). The Bornaviridae sequence displays four regions of

disorder with the largest being in the N and C-terminals (Fig. 2A,

Table S1A). Filoviridae sequences contain four distinct regions of

disorder with the largest being in the C-terminus. These sequences

also contain the largest region of disorder of the entire order

Figure 1. Phylogenetic reconstruction of 63 nucleoprotein sequences of the order Mononegavirales. The BEASTv1.5.4 tree was created
using two independent Bayesian MCMC chains (10 million steps, 20% burn-in) run under the WAG amino acid substitution model [62] and rate
heterogeneity among sites (gamma distribution with 4 categories). Monophyletic taxon sets consisting of Filoviridae, Rhabdoviridae and
Paramyxoviridae were also used in the model. The posterior probabilities label each node and branch lengths are scaled to expected substitutions per
site. Clade I consists of BDV and Filoviridae, Clade II contains Paramyxoviridae and Clade III is Rhabdoviridae. Brackets indicate virus families:
Bornaviridae, green, Filoviridae, orange, Paramyxoviridae, blue and Rhabdoviridae, red. Unassigned viruses are denoted by stars colored by the family
they are unassigned in.
doi:10.1371/journal.pone.0019275.g001

Figure 2. Disorder and CICP mapped residues of Family MSAs. A.) Bornaviridae B.) Filoviridae C.) Paramyxoviridae D.) Rhabdoviridae. Each
family was aligned according to the process outlined in the methods section and ordered based on the results of the phylogenetic tree (Fig 1). Each
residue is represented by a colored column tick corresponding to Disorder, CICP, both Disordered and CICP or neither a CICP or Disordered residue.
Disordered residues are colored by an increase from yellow, being lowest confidence of disorder, to red, highest confidence of residue disorder. CICPs
are shown in blue. Residues predicted to be both Disordered and a CICP are highlighted in green. Residues that have neither a Disorder or CICP
prediction are represented in grey. Gaps in the alignment are represented in white. The black ticks at the bottom of the alignment denote residue
position and occur every 25 residues. The color of the brackets to the left of the alignment indicate virus families: Bornaviridae, green, Filoviridae,
orange, Paramyxoviridae, blue and Rhabdoviridae, red. Unassigned viruses are denoted by stars colored by the family they are unassigned in.
doi:10.1371/journal.pone.0019275.g002
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averaging over 200 consecutive residues in length beginning just

downstream from residue 400 in the MSA (Fig. 2B, Table S1B).

Paramyxoviridae displays a pattern of four regions of disorder at

residues ,15–50, ,150–180, ,205–225, and after residue 400 in

the MSA. Paramyxovirinae exhibits a majority of disorder beyond

the 400th residue in the MSA (Fig. 2C, Table S1C). Pneumovirinae

has a significantly smaller region of disorder in the C-terminus

compared to the other sequences of Paramyxovirinae (Fig. 2C).

Rhabdoviridae sequences display three regions of disorder with the

largest concentration of disordered residues at the C-terminus

(Fig. 2D, Table S1D). The two smaller regions of disorder are in

the first half of the proteins. One is within first 100 residues of the

amino terminus and the other approximately between residues

150–250 of the MSA (Fig. 2D). The Nucleorhabdoviruses, Cytorhabdo-

viruses and Novirhabdoviruses display a larger concentration of

disorder in these regions compared to the rest of Rhabdoviridae

(Fig. 2D). Disorder for the entire order’s sequences exhibit three

general regions of disorder with the highest concentration of

consecutively disordered amino acids predicted to be at the C-

terminus of the proteins (Fig. 3).

Co-evolution and Intra-residue Contact
To extract information about the structural and functionally

important residues that are constrained by intra-protein evolu-

tionary pressures the results of four prediction programs were

combined into a consensus prediction. The results of the two intra-

residue contact predictors, ConSEQ [39], and CORNET [40,41]

were combined with the two coevolving residue mutation

predictors, XDET [38,42] and CAPS [43] and the result is

referred to as the Co-evolution/Intra-residue contact prediction

(CICP) consensus. CICPs were observed for 36 of the 63 viral

nucleoprotein sequences from Rhabdoviridae, and Paramyxoviridae

subfamily Paramyxovirinae, while Bornaviridae and Filoviridae could not

be analyzed (Fig. 2A & B). These sequences were not analyzed due

to lack of meeting the pair-wise identity criterion of 19–90%. The

four prediction methods require a MSA to have a minimum of 10

sequences meeting this criterion to produce statistically significant

results. The twenty-four Paramyxovirinae sequences that met the

analysis criteria display CICPs throughout the length of the

sequence. The C-terminal regions of the proteins contain few, if

any, predicted CICPs in the region containing a high concentra-

tion of disordered residues (Fig. 2C). However, there is a distinct

CICP pattern of highly conserved residues at positions ,286–323

and ,360–416, and moderately conserved residues at 225–261

throughout the Paramyxovirinae (Fig. 4A). There is a distinct area

of residues that are both disordered and CICPs especially in

TIOV, Rubulaviruses, Henipaviruses, BEIV, JV and Morbilliviruses.

The residues that display disorder and CICP also correlate with

hydrophobic residues and higher MSA conservation as observed

in Jalview [44]. Residues ,360–416 contain the largest number of

CICPs in the sequences correlating with the highest concentration

of hydrophobic residues as well as high conservation scores.

Additional smaller patterns of CICPs are observed at residues ,45

and ,112–130 with lower percentages of conservation in the

MSA. CICPs that flank a distinct region of disorder are observed

at _110–130 and ,225. Areas displaying lower frequencies of

CICPs also were observed to have lower levels of hydrophobic

residues and lower MSA conservation scores.

Twelve sequences meeting the analysis criteria among the

Rhabdoviridae for Lyssavirus, Ephemerovirus, and Vesiculovirus could be

used to estimate CICPs. The CICPs appear throughout the

alignment and there is a dearth of correlation with predicted

contacts in the disordered C-terminus region (Fig. 2C). There are

three short regions of high CICP conservation within the MSA

observed at _170–186, 351–367 and 431–473 (Fig. 4B). These

contacts also correlate with pockets of hydrophobic residues and

MSA sequence conservation.

Examining the MSA of the entire order reveals two regions with

high concentrations of conserved CICPs at ,382–426 and ,447–

522 (Fig. 3, 4C). These regions correlate with higher frequencies of

hydrophobic residues. There does not appear to be a pattern for

regions of residues predicted to be both disordered and CICPs

observable outside of the Paramyxovirinae.

Structural Analysis
To provide a structural perspective of how the disordered

regions and CICPs correlate with the nucleoprotein crystal

structures solved in the last few years we mapped the results of

the predictions onto these 3D structures. Using the crystal

structure for the RABV nucleoprotein complex (pdb id - 2GTT)

[45] from the Research Collaboratory for Structural Bioinfor-

matics (RCSB) protein database repository with the Chimera

molecular viewer [46] the disorder and CICPs were mapped to

the structure by coloring the residues. Figure 5A and 5C shows

the disordered regions of a RABV nucleoprotein located mainly

at the periphery of the folded structure in loop regions

corresponding to residues 378–401, 411–429 and 443–450

(Table S1D). Figure 5, panels B and D, highlight the CICPs

that appear primarily within the interior of the protein where

many residues show contact with distant residues. Figure 6

displays both the disordered and CICPs of a single nucleoprotein

and shows where they overlap near the C-terminus. It should be

noted that the crystal structure is missing structural information

for residues 373–397, which are predicted to be disordered and

residue, 383, is also predicted a CICP.

For a more specific look at the nucleoprotein interaction with

the phosphoprotein a recent crystal structure of the Vesicular

Stomatitis Indiana Virus (VSIV) N:RNA & P complex (pdb id –

3HHZ) [22] was mapped with disorder predictions for the

nucleoprotein (Fig. 7). The disordered region from residues 356–

369 of the nucleoprotein, chain K, appeared to be in contact with

the phosphoprotein, chain A. To confirm the residues were

indeed in contact a MolProbity analysis of all-atom-contact [47]

was performed. The MolProbity results confirm that the

phosphoprotein, chain A, residues ,214–219 and ,253–262

are in contact with the nucleoprotein, chain K, at residues 356–

369. These correlations provide validation that the DisICC

pipeline is a quick approach for suggesting which residues are

involved in intra and inter-protein interactions when little is

known about structure.

Discussion

Phylogenetic Reconstruction
The results of the BEASTv1.5.4 tree is consistent with

previously published relationships of the order (Fig. 1) [31,48].

From the tree structure it appears that BDV and Filoviridae are

closer to each other than they are to Rhabdoviridae or Paramyxoviridae

(Fig. 1). This is an interesting finding as a recent tree of the order

using portions of the polymerase group BDV with Rhabdoviridae

[31]. However, the branch length of BDV within Clade I is long

indicating that it still distant from Filoviridae. This result, produced

by both MrBayes3.1 and BEASTv1.5.4, is strong evidence that the

nucleoprotein of BDV does not clade with Rhabdoviridae.

The Rhabdoviridae sequences in Clade III are organized into their

respective genera as expected (Fig. 1). The relationship of FLAV

with the Ephemeroviruses is supported by percent identity calculation

of the two nucleoprotein sequences of FLAV and BEFV (36.38%),

Study of Mononegavirales Nucleoproteins In Silico
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which indicate they are closer to one another than to any other

sequence in the study. This result is consistent between

BEASTv1.5.4 and MrBayes3.1 analyses.

The phylogenetic reconstruction of the Paramyxovirinae subfamily

reveals some clear relationships of the previously unclassified

viruses. Menangle Virus (MENV) and the unclassified TIOV branch

Figure 3. Entire Order Disorder and CICP mapped residues on the MSA. All sequences analyzed in the study were aligned using the process
described in the methods and put into order according to phylogenetic tree results (Fig. 1). Each residue is represented by a colored column tick
corresponding to Disorder, CICP, both Disordered and CICP or neither a CICP or Disordered residue. Disordered residues are colored by an increase
from yellow, being lowest confidence of disorder, to red, highest confidence of residue disorder. CICPs are shown in blue. Residues predicted to be
both Disordered and a CICP are highlighted in green. Residues that have neither a Disorder or CICP prediction are represented in grey. Gaps in the
alignment are represented in white. The black ticks at the bottom of the alignment denote residue position and occur every 25 residues. The color of
the brackets to the left of the alignment indicate virus families: Bornaviridae, green, Filoviridae, orange, Paramyxoviridae, blue and Rhabdoviridae, red.
Unassigned viruses are denoted by stars colored by the family they are unassigned in.
doi:10.1371/journal.pone.0019275.g003
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together within the Rubulavirus. The association of MENV with the

Rubulaviruses is supported by earlier molecular characterization and

phylogenetic analysis [49]. The unclassified virus FDLV is an

outgroup to the Henipaviruses and Morbilliviruses. Previous results

agree with this observation as the nucleoprotein gene FDLV was

shown to branch between the Henipaviruses, Rubulaviruses and

Morbilliviruses [50]. MOSV and TUPV group between the

Henipaviruses and Morbilliviruses. The relationship of MOSV and

TUPV grouping is supported by previous phylogenetic work and

the results from this study agree with the previous N results [51].

The nucleoprotein of BEIV and JV viruses group together

between the Henipaviruses and Morbilliviruses is supported by

previous phylogenetic analysis [52].

Disorder
Disordered or intrinsically unstructured proteins (IUPs) are able

to exist without a defined secondary structure. It has been shown

that these IUPs can assume a secondary structure after interacting

with their binding ligand. Such regions of disorder within proteins

are observed to be binding sites for proteins assuming a secondary

structure that is observed under x-ray crystallography when in

association with the partner ligand [23,24]. When unassociated

from a binding-ligand these disordered regions are often absent

from crystal structures. Disordered regions allow proteins to have

many binding partners and different functions based upon the

conformations. The results from the disorder predictions reveal the

C-terminus of the Mononegavirales viral nucleoproteins contain the

Figure 4. CICP Alignment Consensus Graphs. A.) Paramyxovirinae MSA. B.) Rhabdoviranae MSA. C.) Order MSA. The number of CICPs occurring
for a position of the analyzed MSA was summed and divided by the total number of sequences that could participate in the CICP study from that
alignment (Paramyxovirinae had 24 sequences, Rhabdoviranae has 12 sequences and the Order had 36 sequences). The y-axis is the percentage of
residues predicted to be a CICP and the x-axis is the residues position in the MSA. The threshold of 50% was set to define a position as showing
significant conservation of a predicted CICP and is plotted in Red. The CICP percentages are plotted in blue.
doi:10.1371/journal.pone.0019275.g004

Study of Mononegavirales Nucleoproteins In Silico
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largest portion of disordered residues (Fig. 2E, Table S1E). This

illustrates the conservation of function over sequence, as the amino

acid conservation of this region is low within each of the four

families and, therefore, the entire order. For example, in SENV

the C-terminal amino acids, 401–524, contain the P-N binding site

[9]; this region lacks residue conservation among the other

Paramyxoviruses but does correspond with being a disordered region

(Fig. 2C). NCDV was previously shown to contain a region

associating with P within the first 25 amino acids of the N-

terminus [53]. Similar to SENV this region lacks amino acid

sequence conservation but a trend of conserved disordered

residues is apparent in that region among the other Paramyxoviruses

(Fig. 2C). Additionally, in Newcastle Disease Virus (NCDV) the C-

terminal region at residues, 376–489, appear to be unnecessary

when it comes to forming an eleven-subunit ring of the

nucleocapsid, suggesting this region functions separately from

the formation of the N-RNA structure [53]. Disorder prediction

for NCDV shows a long disordered region encompassing that

376–389aa region highlighting a possible interaction site for the

phosphoprotein (Fig. 2C). This interaction could be related to the

transcription/translation process [53]. In MeV residues 477–505

have been recognized to interact with the phosphoprotein [54].

Further the disordered region of the N-tail in MeV has been

shown to bind to P even when isolated from all other viral material

[55]; suggesting a strong overall trend of disorder for the family of

Paramyxoviridae in this region.

In Rhabdoviridae the trend is less neatly organized, as the

divergence of these sequence is more than that observed in the

Figure 5. Disorder and CICP mapped Crystal structures of the Rabies Virus Nucleoprotein-RNA complex (2GTT). A.) Nucleoprotein-RNA
ring-complex cavity view mapped with disordered residues in yellow. B.) Nucleoprotein-RNA ring-complex cavity view mapped with CICP residues in
blue. C.) Nucleoprotein-RNA ring-complex side view mapped with disordered residues in yellow. D.) Nucleoprotein-RNA ring-complex side view
mapped with CICP residues in blue. Structure is missing information for residues 1–6, 104–118, 185–187 and 373–397. Residues 1–2, 104–109, 378–
396 are predicted to be disordered.
doi:10.1371/journal.pone.0019275.g005
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other families, but still highlights the flexibility in the C-terminus. In

addition to the C-terminal disorder observed in the other families, a

region within the first 20 amino acids of the Rhabdoviridae sequences

in the N-terminus is observed to contain disorder. In Lettuce Necrotic

Yellow Virus (LNYV) this disordered region is larger than the

corresponding disorder predictions of the other Rhabdoviruses, even

the other Cytorhabdoviruses SCRV and Sonchus Yellow Net Virus (SYNV)

(Fig. 2D). The region does correspond with the other N-terminal

disordered regions of smaller size in the other viruses. Interestingly

earlier in our studies the Orchid Fleck Virus (OFV) showed the closest

match in size to this N-terminal disorder regions. OFV had been

classified as a tentative Rhabdovirus, but has since been removed due

to possessing a bipartite genome. OFV appears to go against the

main trend of the other Rhabdoviruses and the viral order by

displaying a large disordered region in the N-terminus (results not

shown). As OFV is not in the family any longer these results are

likely due to the existence of the OFV genome as bipartite negative-

sense RNA that could require some further flexibility in function/

structure compared to the non-segmented genomes. As LNYV is a

single-stranded virus the similarity is either a coincidence or an

undetermined link.

Filoviridae displays a longer region of disorder in the C-terminus

compared to the other families (Fig. 2B, 3). This larger disordered

region may allow the protein to maintain a similar conformation

for the structural regions that are associated with RNA genome.

The lack of conserved disorder within MARV compared to the

three Ebolaviruses in region 110–140 is of note (Fig. 2B). In support

of the disorder prediction from residue ,400–670 in the

Figure 6. CICP and Disorder mapped Crystal structures of the
Rabies Virus Nucleoprotein-RNA complex (2GTT) subunit-Chain
A. A.) subunit-ChainA from cavity view. B.) subunit-ChainA from a side
view orientation. Residues predicted to be disordered are in yellow,
coevolving in blue and those predicted to be both disordered and
coevolving in green. Structure is missing information for residues 1–6,
104–118, 185–187 and 373–397.
doi:10.1371/journal.pone.0019275.g006

Figure 7. Crystal structure of Vesicular Stomatitis Indiana Virus
nucleocapsid complexed with the phosphoprotein’s nucleo-
capsid-binding domain(3HHW). A.) 5 nucleoproteins colored green
and cyan alternating to make them easily distinguishable and 5
nucleoprotein-binding domains of the phosphoprotein colored in
magenta and purple. The predicted disordered residues are highlighted
in yellow. The predicted disordered nucleoprotein residues 354–367 are
shown in contact with the binding domain of the phosphoprotein. B.)
Two nucleoproteins and two phosphoproteins. Chain K and L are
nucleoproteins colored green and cyan. Chains A and B are
phosphoproteins colored magenta and purple. The blue circle is
highlighting the N-terminus of the nucleoprotein and the blue squares
indicate residues 354 and 367 on each N chain. Predicted disordered
residues are highlighted in yellow.
doi:10.1371/journal.pone.0019275.g007
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Ebolaviruses a study observed that the amino acids 601–739 of the

nucleoprotein were not required in the formation of the

nucleocapsid or replication of a shortened genome; as residues

670+ are predicted to contain secondary structure it appears their

function is unrelated to binding partner ligands (Fig. 2B) [3].

BDV is so different from the rest it really does not group and

this is illustrated by the large disordered region in the N-terminus

as compared to the majority of other viruses (Fig. 2A, 3). BDV

does, however, contain a disorder C-terminal region and two

additional sequence regions of disorder that are congruent with

the rest of the order (Fig. 2A, 3).

Co-evolution and Intra-residue Contact
In evolution functional constraints are expected to limit the

amino acid substitution rates, resulting in a higher conservation of

structural/functional sites with respect to the rest of the protein.

Once a residue is changed, given the constraints operating on it,

this mutation can be compensated with an additional mutation of

corresponding residues across the [inter-protein] interface. This

enables the co-evolution of two proteins that can lead to both high

specificity and affinity. These properties can be applied to

interactions such as intra-protein residue-pairs stabilizing the

protein fold, inter-protein residue binding residues and protein–

nucleic acid interactions [25–27]. The results of two intra-residue

contact predictors, ConSEQ and CORNET, and two coevolving

residue mutation predictors, XDET and CAPS, were combined

into a consensus of structural/functional predictions. ConSEQ

makes predictions by estimating the rate of amino acid evolution at

each position in a MSA of homologous proteins [39]. The

underlying assumption of this approach is that, in general,

structurally and functionally important residues are slowly

evolving. CORNET is a neural network-based method using

correlated mutations, sequence conservation, predicted secondary

structure, and evolutionary information [40,41]. CAPS compares

the correlated variance of the evolutionary rates at two sites

corrected by the time since the divergence of the protein sequences

[43]. XDET compares the mutational behavior of a residue

position with the mutational behaviors of the entire alignment,

which assumes the positions showing a family-dependent conser-

vation pattern will have similar mutational behaviors as the rest of

the family [38,42]. All these methods are combined into the CICP,

which correlates the structure and functional predictions with the

residues that are constrained by intra-protein evolutionary

pressures. The concentration of CICPs correlates with the

evolutionary distances between the sequences used – the closer

the evolutionary distances within a region the higher the

concentration of CICPs for that region given that it also contains

structural or functionally important residues.

As illustrated by the results in Figures 2C, 2D and 3 there are

many residues that are predicted to be CICPs throughout the

nucleoprotein sequences. Many of these residues also seem to be in

contact within the protein as shown in Figures 5B, 5D and 6. These

CICPs are observed to be significantly lower in frequency within the

N-terminal portion of the nucleoproteins (Figs. 3, 4). This absence is

most likely linked to this region being a part of the N:N interface,

which would put these residues under different evolutionary

constraints of inter-protein interaction. A study of the PDPRV

nucleoprotein identified that residues 1–120 and 146–241 are

required for the formation and stability of the N:N interactions [56].

These residues needed for N:N stability correlate with the absence

of highly conserved concentrations of CICPs (Figs. 2, 3, 4).

The majority of the CICPs fall in ,382–426 and ,447–522

within the entire order (Figs. 3, 4C), which corresponds, to residue

,286–323 and ,360–416 of Paramyxoviridae (Figs. 2C, 4A) and

residue 351–367 and 431–473 of Rhabdoviridae (Figs. 2D, 4B).

These regions are more conserved and contain more hydrophobic

residues. Combined with the high concentrations of CICPs these

regions appear to be important for intra-protein structural/

functional interactions. While the C-terminal region has been

previously shown to interact with the phosphoprotein and the first

,240 residues of the N-terminus are part of the N:N interface, the

region ,382–426 and ,447–522 (Figs. 3, 4C) is well conserved

containing both a high concentration of hydrophobic residues and

a high frequency of CICPs. Logically such constraint would be due

to the intra-protein structure and function, and possibly the

interactions associated with encapsidating the RNA. This region

would have less flexibility to mutate and, therefore, be conserved

within the families. Contained within this region for SENV are

residues 362–371, which were identified by point mutations to be

essential in RNA replication [57]. The Paramyxovirinae show little

pattern of correlation between CICPs and the concentration of

disorder in the N-terminus; however, there is an overlap of

residues that are correlated mutations and predicted disordered in

the C-terminus residues ,546–547 of the MSA (Figs. 3, 4C). This

overlap suggests these residues may play a role in both the

structure of the nucleoprotein as indicated by the CICP but also

involved in inter-protein interactions at some time during the

transcription/replication cycle and conformational changes that

may likely involve a binding ligand interaction with the

phosphoprotein or polymerase. Within the Vesiculoviruses, VSIV

and Spring Viremia of Carp Virus (SVCV) (Fig. 2D, Table S1D) also

display the disorder and CICP residue overlap and these residues

fall into a previously identified region within RABV from residues

,298–352 that was experimentally shown to be involved in RNA

binding [58]. The RABV residues 315–319 and SENV residues

364–369 are aligned in MSA supporting functional similarity for

RNA binding at this region. Further, MolProbity analysis reveals

residues 287, 290, 291, 292, 312, 315 and 317 in VSIV N align

within RABV residues 289–352 to be in contact with the RNA

(data not shown).

Structural Analysis
Based on the distribution of the large disordered regions of the

C-terminus of the nucleoproteins being at the fringes of the

nucleocapsid-ring complex (Fig. 5A, 5C) it can be inferred that

these disordered regions are responsible for interacting with other

nucleoproteins. When multiple units of these highlighted com-

plexes are lined up it is obvious that a large disordered region

exists that could offer access to the RNA genome encapsidated

within. This disordered region could then also be defined as

interfacing with the phosphoprotein, which would likely be

coupled with the L polymerase to provide an interaction site for

facilitating transcription or replication of the genome. This

hypothesis is further supported by a previous study that found

the RABV N-RNA rings had bound phosphoprotein on the tips of

the rings when stained and visualized with electron microscopy

[59]. More recently, a crystal structure of the VSIV N:RNA & P

complex has been solved [22] and was used to examine the

mapping of the predictions to the identified binding regions in the

Nucleoprotein (Fig. 7). The results of the mapping show that the

predicted disordered region in the C-terminus is bound to the

phosphoprotein. Further, this binding region lacks CICPs

calculated for the intra-protein interactions. The presence of the

disorder and absence of the intra-protein interactions in the

binding region supports what we would expect biologically and,

therefore, we can infer that similar characterization of the other

proteins of the order Mononegavirales with the same disorder and

CICP predictions highlights their regions of interaction.
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From the evidence of this study and the corroborating findings

of individual viral nucleoproteins from previous studies we can

strongly infer that Rhabdoviridae and Paramyxoviridae, and more

generally the other viruses in Mononegavirales, have similar

functional/structural regions corresponding specifically to those

regions showing conservation in disorder and co-evolution even

though they may have weak amino acid sequence conservation.

Specifically the C-terminal end of the nucleoprotein is predicated

to be involved with binding to the phosphoprotein in a manner

important to transcription/replication and not necessarily impor-

tant to the formation of the nucleocapsid for every virus evaluated

in this study. Also, it appears that evolution has constrained the

function of some binding proteins not simply through sequence

conservation but through conserving regions to remain disordered.

These disorder and CICP residue presence and absence findings

are validated by the existing experimental and crystal structure

information for RABV (Figs. 5, 6) and VSIV (Fig. 7). This

concordance provides confidence that the DisICC pipeline

predications are valuable for sequences currently without struc-

tural information such as MuV and NIPH that both infect

humans. The validation of the DisICC disorder predictions and

presence or absence of CICPs with previous structural and

experimental observations support our ongoing studies using

predictive methods involving the other two proteins, P and L that

make up the transcription/replication complex. Additionally,

inter-protein prediction calculations will be performed on the

each of the possible protein-protein pairs. This inter-protein

contact information combined with the predicted disorder, intra-

protein contacts and MSA will be used to extrapolate the

definition of binding sites and residues that can be targeted for

interruption to prevent viral replication.

The validation of this study by current structural information

illustrates that the combination of evolutionary dynamics,

disorder prediction, intra-protein structure/function predictions

and co-evolving residue prediction provides the ability to identify

residues and regions important for protein-ligand interactions,

intra-protein interactions and protein-protein monomer inter-

faces. The DisICC pipeline uses sequence information to

characterize proteins by predicting the residues and regions that

would be necessary to target disruption in viruses that have little

structural information available. As more viruses are discovered,

and epidemics occur, methods such as the DisICC pipeline can

quickly provide the information to aide researchers with

response and development of treatments without structural

information on these new and emerging viruses. For example,

DisICC has the ability to produce information about protein

residue positions in emerging viral strains that would point to

changes resulting from new selective pressures providing

researchers with possible regions to target as well as further

insight into viral evolutionary strategies. The information a

method like DisICC provides would also point to protein regions

likely to remain unchanged as these viruses mutate thereby

indicating new targets in the development of longer lived

treatments. DisICC can also be applied to other multi-protein

systems where identifying residues to disrupt structural/func-

tionally conserved residues and even possible ligand binding

regions without 3D structure information.

In summary, experimental and structural data validate a

combined analytical approach to predicting residues and regions

important for protein-ligand interactions, intra-protein interac-

tions and protein-protein monomer interfaces. We have created

the DisICC pipeline to continue our studies on the structure/

function of the three proteins necessary for the replication/

transcription complex of the order Mononegavirales. This pipeline

will also add other researchers in inferring contacts among

proteins complexes when little structural information is available.

Materials and Methods

Phylogenetic Reconstruction
The multiple sequence alignments for each family were created

by submitting the sequences to the MAFFT ver.6 server (http://

mafft.cbrc.jp/alignment/server/index.html) using the E-INS-i

strategy. Each family alignment was manually curated to ensure

optimal alignments. For the alignment of the entire order, each

independent family alignment were organized into one FASTA file

and submitted to the MAFFT ver. 6 alignment server using the E-

INS-i strategy [26]. The MSA output was then manually curated

due to the wide divergence of the sequences. This alignment was

the input for MrBayes3.1 [29,30] and BEASTv1.5.4 [60] for the

generation of the phylogenetic trees. The parameters used for

MrBayes3.1 were a mixed amino acid model, eight category

gamma distribution rate, and 1,000,000 generations of the Markov

Chain Monte Carlo analysis. In our studies, constraints were

designed from our knowledge of the family classifications of the

sequences resulting in four constraints. It should be noted that

although the constraint parameter was invoked for the trees

MrBayes3.1 overrides any constraint if the data do not support it.

It has been previously explored that MrBayes3.1 with appropriate

constraints, produced trees with higher confidence at each node

than other tree methods: neighbor-joining, minimum evolution,

maximum parsimony, and the un-weighted pair group method

with arithmetic mean [61]. The outgroup used was BDV due to its

difference from the other families. The BEASTv1.5.4 tree was

created using two independent Bayesian MCMC chains (10

million steps, 10% burn-in) run under the WAG amino acid

substitution model [62] and rate heterogeneity among sites (four

category gamma distribution rate). Monophyletic taxon sets

consisting of Filoviridae, Rhabdoviridae and Paramyxoviridae were also

used in the model. The following viral proteins were included in

the study: SEBOV, Sudan Ebola Virus (YP_138520.1); ZEBOV,

Zaire Ebola Virus (NP_066243.1); REBOV, Reston Ebola Virus

(NP_690580.1); MARV, Lake Victoria Marburgvirus (NP_042025.1);

BDV, Borna Virus (NP_042020.1); HMPNV, Human Metapneumo-

virus (YP_012605.1); AVPNV, Avian Pneumovirus (AAT58236.1);

HRSVB1, Human Respiratory Syncytial Virus B1 (NP_056858.1);

HRSVA2, Human Respiratory Syncytial Virus A2 (P03418); HRSVS2,

Human Respiratory Syncytial Virus S2 (AAC57022.1); RSV, Respiratory

Syncytial Virus (NP_044591.1); BRSV, Bovine Respiratory Syncytial

Virus (NP_048050.1); PNVM15, Pneumonia Virus of Mice 15

(AAW02834.1); PNVMJ3666, Pneumonia Virus of Mice J3666

(YP_173326.1); MuV, Mumps Virus (NP_054707.1); TIOV, Tioman

Virus (NP_665864.1); MENV, Menangle Virus (YP_415508.1);

SPIV41, Simian Parainfluenza Virus 41 (YP_138504.1); HPIV2,

Human Parainfluenza Virus 2 (NP_598401.1); SPIV5, Simian

Parainfluenza Virus 5 (YP_138511.1); AVPMV6, Avian Paramyxovirus

6 (NP_150057.1); GPV, Goose Paramyxovirus SF02 (NP_872273.1);

NCDV, Newcastle Disease Virus (NP_071466.1); TUPV, Tupaia

Paramyxovirus (NP_054690.1); FDLV, Fer-de-lance Virus

(NP_899654.1); NIPH, Nipah Virus (NP_112021.1); HV, Hendra

Virus (NP_047106.1); MOSV, Mossman Virus (NP_958048.1);

BEIV, Beilong Virus (YP_512244.1); JV, J Virus (YP_338075.1);

CDV, Canine Distemper Virus (NP_047201.1); PDV, Phocine Distemper

Virus (CAA53376.1); DMV, Dolphin Morbillivirus (NP_945024.1);

PDPRV, Peste-des-petits-ruminants Virus (YP_133821.1); MeV, Mea-

sles Virus (NP_056918.1); RPV, Rinderpest Virus (YP_087120.2);

HPV1, Human Parainfluenza Virus 1 (NP_604433.1); SENV, Sendai

Virus (NP_056871.1); BPV3, Bovine Parainfluenza Virus 3
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(NP_037641.1); HPV3, Human Parainfluenza Virus 3 (NP_067148.1);

FLAV, Flanders Virus (AAN73283.1); BEFV, Bovine Ephemeral Fever

Virus (NP_065398.1); SCRV, Siniperca Chuatsi Rhabdovirus

(YP_802937.1); ISFV, Isfahan Virus (Q5K2K7); CHPV, Chandi-

pura Virus (P11211); SVCV, Spring Viremia of Carp Virus

(NP_116744.1); VSNJV, Vesicular Stomatitis New Jersey Virus

(P04881); VSIV, Vesicular Stomatitis Indiana Virus (NP_041712.1);

VSSJV, Vesicular Stomatitis San Juan Virus (P03521); ABLV,

Australian Bat Lyssavirus (NP_478339.1); RABV, Rabies Virus

(NP_056793.1); MOKV, Mokola Lyssavirus (YP_142350.1);

NCMV, Northern Cereal Mosaic Virus (NP_057954.1); LNYV, Lettuce

Necrotic Yellows Virus (YP_425087.1); SYNV, Sonchus Yellow Net Virus

(NP_042281.1); MFSV, Maize Fine Streak Virus (YP_052843.1);

RYSV, Rice Yellow Stunt Virus (NP_620496.1); MMV, Maize Mosiac

Virus (YP_052850.1); TVCV, Taro Vein Chlorosis Virus

(YP_224078.1); SNAKV, Snakehead Virus (NP_050580.1); VHSV,

Viral Hemorrhagic Septicemia Virus (NP_049545.1); HIRV, Hirame

Virus (NP_919030.1); IHNV, Infectious Hematopoietic Necrosis Virus

(NP_042676.1).

Disorder
Disorder calculations were performed using PONDR, IUPred

[35,36], DisoPRED2 [38] and DisEMBL [37] prediction pro-

grams. PONDR was run under the default setting and the VX-LT

results were used. IUPred was run under the long sequence default

settings. DisEMBL was run using default settings and the Hot-loop

and Coil results were both included in our evaluation. DisoPRED2

was run under default setting. All the disorder prediction results

from these methods were normalized to a 0–1 scale of disorder

with values of 0.5 and greater indicating the tendency of a residue

to be considered disordered. These normalized values were then

combined and averaged to a consensus value using the same scale.

This calculated value is used as the overall indicator for the

prediction of disorder in the results. It should be noted that this

consensus method provides an overall conservative prediction of

disorder revealing residues with high probability of disorder and

preventing over-prediction.

Correlated Mutations and Intra-Residue Contact
Prediction

The correlated mutation prediction programs used in this study

were XDET [38,42] and CAPS [43] and the intra-residue contact

prediction programs implemented were ConSEQ [39] and

CORNET [40,41]. The input files for these applications were

generated by calculating the pair wise percent identities within

each family. MSAs of nucleoprotein amino acid sequence with less

than 90% sequence identity but greater than 19% were used in the

analyses. XDET, CAPS and CORNET were both run under the

default parameters and ConSEQ used all defaults except the

‘‘amino acid conservation method’’ was set to Bayesian. The

resulting predictions from each program were combined and any

residues that showed a positive agreement of three or more

predictors was classified as a CICP. Calculation of conservation of

CICPs within the alignments is calculated per alignment position

by summing up the CICP occurrences per column and dividing by

the total number of sequences that participated in the CICP study

for that alignment.

Hydrophobic residues and MSA conservation
The correlation of residues in the MSAs that contained

hydrophobic residues and/or high MSA sequence conservation

was studied using Jalview [44]. Jalview provides visualization of

hydrophobicity and sequence conversation. Conservation annota-

tion scores were then compared with hydrophobicity for the MSA

residues that displayed CICPs.

Structural Analysis
The validity of the predictions of disorder and correlated

mutations were corroborated against structural information. The

existing crystal structure for the nucleoprotein complex of RABV

(pdb id - 2GTT) was selected for comparison. The amino acid

sequence information from the protein database file was extracted

for individual nucleoprotein subunits and aligned with the

corresponding amino acid sequence used in the predictions. The

aligned positions were then used to map the appropriate

prediction to the crystal structure with a color to highlight the

corresponding residue. Chimera [46] used the prediction and

alignment information to create the highlighted pdb images.

To explore predicted features that may point to protein-protein

interaction the crystal structure of the VSIV N:RNA & P complex

(pdb id – 3HHZ) was used. The nucleoproteins in the complex

were mapped using the same method as above. MolProbity all-

atom-contact analysis [47] was conducted to verify interacting

residues between the N and P proteins, and RNA interactions.

The results were compared with the disordered residues and those

residues reported to be in contact between N and P were reported.

Supporting Information

Table S1 List of predicted Disordered and Coevolving/
Intra-residue contact residues for each virus. Results are

organized by family and in the same order as the phylogenetic tree

(Fig. 1). The numbers in the Disorder Regions and CICP Regions

columns correspond to the unaligned residue position(s) of each

sequence. A.) Bornaviridae B.) Filoviridae C.) Paramyxoviridae D.)

Rhabdoviridae.
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