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Abstract

Viral vectors that can infect neurons transsynaptically and can strongly express foreign

genes are useful for investigating the organization of neural circuits. We previously devel-

oped a propagation-competent rabies virus (RV) vector based on a highly attenuated HEP-

Flury strain (rHEP5.0-CVSG), which selectively infects neurons and propagates between

synaptically connected neurons in a retrograde direction. Its relatively low level of transgene

expression, however, makes immunostaining necessary to visualize the morphological fea-

tures of infected neurons. To increase the transgene expression level of this RV vector, in

this study we focused on two viral proteins: the large protein (L) and matrix protein (M). We

first attempted to enhance the expression of L, which is a viral RNA polymerase, by deleting

the extra transcription unit and shortening the intergenic region between the G and L genes.

This viral vector (rHEP5.0-GctL) showed increased transgene expression level with efficient

transsynaptic transport. We next constructed an RV vector with a rearranged gene order

(rHEP5.0-GML) with the aim to suppress the expression of M, which plays a regulatory role

in virus RNA synthesis. Although this vector showed high transgene expression level, the

efficiency of transsynaptic transport was low. To further evaluate the usability of rHEP5.0-

GctL as a transsynaptic tracer, we inserted a fluorescent timer as a transgene, which

changes the color of its fluorescence from blue to red over time. This viral vector enabled us

the differentiation of primary infected neurons from secondary infected neurons in terms of

the fluorescence wavelength. We expect this propagation-competent RV vector to be useful

for elucidating the complex organization of the central nervous system.

Introduction

Transsynaptic tracers are useful tools to reveal the hierarchical connectivity in the central ner-

vous system. Neurotropic viruses that can propagate within synaptically connected neural

circuits and amplify signals through replication, such as the herpes simplex virus type 1, the

pseudorabies virus, and the rabies virus (RV), have been used as such an anatomical tool [1–

3]. Among these viruses, RV is preferred owing to its ability to selectively infect neurons and

low cytotoxicity [4–6].
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We previously developed a recombinant RV vector based on a vaccinated HEP-Flury strain

(HEP) [7], since vaccinated strains show higher levels of transcription than pathogenic strains

[8,9]. This vector was further developed by replacing the glycoprotein (G) gene of HEP with that

of CVS, and adding an additional transgene insertion site between the N and P genes [10]. Since

this recombinant RV vector (rHEP5.0-CVSG) efficiently propagated transsynaptically in a retro-

grade direction and expressed transgene in the infected neuron, this viral vector could be used as

a potential tool for selective gene delivery in the central nervous system. Note that this RV vector

differs from G-gene deleted RV vectors [11–15], which are now widely used in the field of neuro-

science, in terms that this vector can propagate transsynaptically without supplying the G-gene

in trans within the infected cells. By using this propagation-competent RV vector, we have

revealed the mutlisynaptic connections in the medial temporal lobe memory system [16,17].

Although our RV vector was designed to express the transgene at high levels, the transgene

expression level of this propagation-competent RV vector was significantly lower than that of

the G-deleted RV vector, and expressed marker proteins must be immunostained to clearly

visualize the morphological features of infected neurons [11]. Increasing the transgene expres-

sion level will expand the usability of this vector as a neurotracing tool since it will not only

enable us to examine the morphology of targeted neurons without requiring any staining pro-

cedure, but may solve one of the pitfalls of transsynaptic tracing. In poly(trans)synaptic trac-

ing, several samples with different survival times must be prepared to distinguish primary

infected neurons (1st-order neurons) from secondary infected ones (2nd-order neurons). This

requires the use of many experimental animals with accurate injection. This problem may be

solved by using a propagation-competent RV vector with a high expression level of a fluores-

cent timer, which changes the color of its fluorescence over time [18], since it would enable the

differentiation between the 1st- and the 2nd-order neurons in the same sample.

To develop a recombinant RV vector with a high level of transgene expression, in this study

we focused on two viral proteins: the large protein (L) and the matrix protein (M). The L gene

encodes the viral RNA polymerase, and it has been reported that the overexpressed L gene

increases viral-gene mRNA transcripts and the expression level of nucleoprotein (N) and phos-

phoprotein (P) [19,20]. Indeed, we have recently shown that the enhanced transgene expression

of a G-deleted RV vector compared with a propagation-competent RV vector is partially due to

the increased transcription level of the L gene [11,21]. M protein is mainly responsible for the

assembly and budding of bullet-shaped viral particles [22], but is also a regulatory element that

balances viral transcription and replication [8,20,23,24]. It has been reported that a recombi-

nant RV with an attenuated M expression shows a high-transcription-level phenotype [24].

We constructed an RV vector with deleted extra transcription unit and modified intergenic

region between the G and L genes with the aim to enhance the expression of the L gene

(rHEP5.0-GctL). To construct an RV vector with attenuated M-gene expression (rHEP5.0-

GML), we modified the order of the M and G genes. As we expected, rHEP5.0-GctL and

rHEP5.0-GML showed higher transgene expression levels than rHEP5.0-CVSG in vitro and in
vivo. rHEP5.0-GctL, which shows a high transgene expression level and efficient transsynaptic

transport, enabled not only the visualization of infected neurons without requiring any stain-

ing but also the differentiation of secondary infected neurons from primary infected neurons

in terms of the fluorescence wavelength of the expressed fluorescent timer.

Materials and methods

Plasmid construction and virus recovery

To construct an RV vector with enhanced L gene expression (rHEP5.0-GctL), the viral tran-

scriptional unit between the G and L genes was deleted from pHEP5.0-CVSG (DDBJ/
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GenBank/EMBL accession number, AB839170). A PCR fragment spanning the 5’-noncoding

region upstream of the L gene and the 5’-terminal part of the L gene was amplified using the

primers L-BsiWI-5 (5’- AACCGTACGGAGACCCATATCAAGATGCTGGATCCGGGAG-3’; the

Bsi WI site is underlined) and L-ClaI-3 (5’- ACAAGATCGATCTGTTGCCTTCTTTCATAGT
GGTTG-3’; the Cla I site is underlined). The sequence between the Bsi WI site and the Cla I

site was removed from pHEP5.0-CVSG and replaced with the PCR fragment shown above.

As a result, in addition to the deletion of transcription unit between G and L genes, the IGR

upstream of the L gene was shortened from 24 nucleotides to 2 nucleotides. The resulting plas-

mid was designated as pHEP5.0-GctL.

To construct an RV vector with attenuated M-gene expression (rHEP5.0-GML), the posi-

tions of the M gene and G gene of pHEP5.0-CVSG were exchanged, since it has been reported

that viral genes located closer to the 3’ end show higher expression levels than downstream

genes [25–27]. We first constructed an M-gene-deleted RV vector (pHEP5.0-CVSG-ΔM) by

inserting the following two PCR fragments into pHEP5.0-CVSG. The fragment containing the

Blp I site, the 3’-terminal part of the P gene, and the Nhe I site was amplified using the primers

P-BlpI-5 (5’-CAAGCTAAGCAAAATCATGCAAGATGA-3’; the Blp I site is underlined) and

P-NheI-3 (5’-GTTGCTAGCTTTTTTTCATATCGACTCC-3’; the Nhe I site is underlined).

The fragment containing the Spe I site, CVS-G gene, and Bsi WI site was amplified using the

primers G-SpeI-5 (5’-AAAACTAGTAACATCCCTCAAAAGACTTAAGGA-3’; the Spe I site is

underlined) and G-BsiWI-3 (5’-AATCGTACGAGAGGTGT-3’; the Bsi WI site is underlined).

The two PCR fragments were ligated utilizing the Nhe I site and Spe I site, which produce com-

patible cohesive ends, and inserted between the Blp I site and Bsi WI site of pHEP5.0-CVSG.

The length of IGR at the border between the P and G genes was 6 nt in the resulting plasmid

pHEP5.0-CVSG-ΔM. In the next step, we amplified a PCR fragment of the M gene containing

the Bsi WI site and Nhe I site using the primers M-BsiWI-5 (5’- ACCCGTACGAAAATGAAC
TTTCTATGT-3’; the Bsi WI site is underlined) and M-NheI-3 (5’-ATTGCTAGCTTATTC
TAAAAGCAGAGAAGAGTCTTTG-3’; the Nhe I site is underlined). We then inserted this frag-

ment into the transgene insertion site between the G and L genes of pHEP5.0-CVSG-ΔM

using the Bsi WI and Nhe I restriction sites. The resulting plasmid was designated as pHEP5.0-

GML.

In this study, we used RV vectors that express mRFP as a transgene [28]. A PCR fragment

containing the Not I site, mRFP open reading frame, and Sac II site was inserted into the addi-

tional transcription insertion unit between the N and P genes of pHEP5.0-CVSG, pHEP5.0-

GctL, pHEP5.0-GML. The resulting plasmids were designated pHEP5.0-CVSG-mRFP,

pHEP5.0-GctL-mRFP, and pHEP5.0-GML-mRFP, respectively (Fig 1A).

To construct a recombinant RV that highly expresses a slow fluorescent timer (sFT) [18],

one to three copies of sFT were inserted into pHEP5.0-GctL as transgenes. An RV vector with

a single copy of sFT (pHEP5.0-GctL-sFT) was constructed by inserting a PCR fragment con-

taining the Not I site, sFT open reading frame, and Sac II site into the additional transcription

insertion unit between the N and P genes of pHEP5.0-GctL. An RV vector with two copies of

sFT (pHEP5.0-GctL-FPF) was constructed by inserting two genes of sFT linked by a P2A self-

cleavage sequence (FPF). Two PCR fragments containing the sFT sequence were inserted in

the synthesized sequence (5’-GAATTCAAACGTACGGGAAGCGGAGCTACTAACTTCAGCCTG
CTGAAGCAGGCTGGAGACGTGGAGGAGAACCCTGGACCTTCCGGAAAAGCGGCCGC-3’; the

Eco RI, Bsi WI, Bsp EI, and Not I sites are underlined in this order; the P2A sequence is shown

in bold) using the following primers. sFT-EcoRI-NotI-5 (5’- ATTGAATTCGCGGCCGCAC
CATGGTGAGCAAGGGCGAGGAGGATAA-3’; the Eco RI and Not I sites are underlined in order)

and sFT-BsiWI-3 (5’- GTTCGTACGCTTGTACAGCTCGTCCATGCCGCCGGTGGAGTG-3’;

the Bsi WI is underlined) were used as primers for the first sFT fragment, and sFT-BspEI-5
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(5’-ATTTCCGGAACCATGGTGAGCAAGGGCGAGGAGGATAA-3’; the Bsp EI site is under-

lined) and sFT-NotI-SacII-3 (5’- GTTGCGGCCGCGGTTACTTGTACAGCTCGTCCATGCC-3’;

the Not I and Sac II sites are underlined) for the second sFT fragment. The FPF sequence was

inserted into pHEP5.0-GctL using Not I and Sac II. An RV vector with three copies of sFT

(pHEP5.0-GctL-FTFPF) was constructed by inserting three genes of sFT linked by the T2A-

and P2A-self-cleavage sequence (FTFPF). Three PCR fragments containing the sFT sequence

were inserted into the synthesized sequence (5’- GAATTCAAACCCGGGAAATCTAGAGGAA
GCGGAGAGGGCAGAGGAAGTCTGCTAACATGCGGTGACGTCGAGGAGAATCCTGGACCTGCA
TGCAAACGTACGGGAAGCGGAGCTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGG
AGGAGAACCCTGGACCTTCCGGAAAAGCGGCCGC-3’; the Eco RI, Xma I, Xba I, Sph I, Bsi
WI, Bsp EI, and Not I sites are underlined in this order; the T2A and P2A sequence is shown in

bold) using the following primers. sFT-EcoRI-NotI-5 and sFT-XbaI-3 (5’- GTTTCTAGACT
TGTACAGCTCGTCCATGCCGCCGGTGGAGTG-3’; the Xba I site is underlined) were used as

Fig 1. Characteristics of RV vectors in cultured cells. A: Genome organization of recombinant RV vectors. The transcription start

and stop/polyadenylation signals are respectively indicated by black bars and black arrowheads in the schematic diagram, and the

number of nucleotides of IGR are shown below the diagram. LS, leader sequence; TS, trailer sequence. B: Photomicrographs of RV-

infected NA cells at 2 dpi. The three RV vectors expressed the transgene mRFP (red), which was inserted between the N and P genes.

Infection of the viral vector can be confirmed by immunofluorescence of the N protein (green). Scale bar = 20 μm. C: Fluorescence

intensities of mRFP in infected cells at 2 dpi [mean ± standard errors, numbers of analyzed cells: 189 (rHEP5.0-CVSG), 382

(rHEP5.0-GctL), 276 (rHEP5.0-GML), *** p < 0.001]. D: Viral titer growth curves of RV vectors (mean ± standard errors, N = 6). No

viruses were detected in rHEP-5.0-GctL-infected cells at 1 dpi.

https://doi.org/10.1371/journal.pone.0180960.g001
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primers for the first sFT fragment, sFT-SphI-5 (5’- ATTGCATGCACCATGGTGAGCAAGGGC
GAGGAGGATAA-3’; the Sph I site is underlined) and sFT-BsiWI-3 for the second sFT frag-

ment, and sFT-BspEI-5 and sFT-NotI-SacII-3 for the third sFT fragment. The FTFPF sequence

was inserted into pHEP5.0-GctL using Not I and Sac II.

The recombinant RV vectors were recovered using mouse neuroblastoma cells of A/J

mouse origin (NA) as described previously [7]. The recovered viruses generated from

pHEP5.0-CVSG-mRFP, pHEP5.0-GctL-mRFP, pHEP5.0-GML-mRFP, pHEP5.0-GctL-sFT,

pHEP5.0-GctL-FPF, and pHEP5.0-GctL-FTFPF were designated rHEP5.0-CVSG-mRFP,

rHEP5.0-GctL-mRFP, rHEP5.0-GML-mRFP, rHEP5.0-GctL-sFT, rHEP5.0-GctL-FPF, and

rHEP5.0-GctL-FTFPF, respectively. All viral strains were filtered and concentrated by ultra-

centrifugation. A viral suspension was kept in small aliquots at −80˚C. Each aliquot was

thawed in a safety cabinet before each experiment. To determine the viral titer, we conducted

a direct florescence test using NA cells as described elsewhere [29].

Viral infection in cultured cells

NA cells were plated on glass coverslips in a 4-well plate and maintained at 37˚C in mini-

mum essential medium supplemented with 10% heat-inactivated fetal bovine serum (NA

culture medium). To evaluate the efficiency of mRFP expression and the cytotoxicity of the

mRFP-expressing RV vectors, each RV vector was applied to the dish at a multiplicity of

infection (MOI) of 10. Six hours after infection the inoculum was replaced with a fresh

medium and cells were incubated at 34˚C. The fluorescence intensity of mRFP was examined

two days and six days postinfection (dpi). Cells were fixed for 1 h at 4˚C in phosphate-buff-

ered saline (PBS) containing 4% paraformaldehyde, washed with PBS three times, and then

soaked for 1 h at room temperature in PBS containing 5% goat serum and 0.1% Triton X-

100. Cells were then incubated overnight at 4˚C with monospecific rabbit anti-N antiserum

[30] diluted in PBS containing 0.1% Triton X-100 and 0.025% NaN3. After the primary anti-

body was aspirated, cells were washed and permeabilized in PBS containing 0.1% Triton X-

100 (PBT). Cells were then incubated for 4 h at room temperature in Alexa Fluor 488-conju-

gated anti-rabbit goat IgG (1:300; Jackson ImmunoResearch) and Hoechst 33258 solution

(1:1000; Dojindo) diluted in PBT, and were washed 3 times with PBS. Fluorescence labeling

was assessed using a confocal laser-scanning microscope (LSM 5 Exciter, Carl Zeiss). The

fluorescence intensity of mRFP was quantified by measuring the average fluorescence inten-

sity per pixel of the infected neurons with ImageJ software (http://rsb.info.nih.gov/ij) and

normalized on the basis of the fluorescence intensity of rHEP5.0-CVSG-mRFP-infected

cells. The apoptotic cells were assessed by examining nuclear DNA fragmentation by the ter-

minal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) method (In situ apo-

ptosis detection kit, Takara). To prevent detachment of the cells, Poly-L-Lysine coated dishes

were used for this apoptosis detection.

To assess the multistep-growth curves of the RV vectors, confluent NA cell monolayers

grown in 6-well plates were infected with the vectors at MOI of 0.01. After 1 h incubation at

34˚C, the inoculum was washed twice with NA culture medium and fresh medium was added.

The inoculum was further incubated at 34˚C. Supernatant was harvested at the indicated time

points, and the virus was titrated using NA cells. Differences in viral titer at each time point

were analyzed by two-way ANOVA with Bonferroni’s multiple comparison test.

To evaluate the sFT expression levels of rHEP5.0-GctL-sFT, rHEP5.0-GctL-FPF, and

rHEP5.0-GctL-FTFPF, each virus was applied to NA cells at MOI of 20. The blue form of sFT

was imaged using the confocal laser-scanning microscope LSM 5 Exciter after two days of

infection. Fluorescence intensity was quantified by measuring the average fluorescence

Improved rabies virus vector for transsynaptic tracing
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intensity per pixel with ImageJ software and normalized on the basis of rHEP5.0- GctL-sFT-

infected cells.

Viral infection in vivo

Young adult male Wistar rats weighing 200–230 g were used in this study. All experiments

were approved by the Center for Laboratory Animal Research, Tohoku University, and con-

ducted in accordance with the Guidelines of the National Institutes of Health and the Guide-

lines for Animal Care and Use published by our institute. We set clinical signs of rabies (slow

and circular movements, paralysis, cachexia) as humane endpoints. However, since none of

the rats showed any clinical signs of rabies, they were all sacrificed with an overdose of sodium

pentobarbital after a certain survival time in accordance with the experimental schedule. All

experiments requiring injections of recombinant RV vectors were carried out in a special labo-

ratory (biosafety level 2) designed for in vivo infectious experiments.

Rats were deeply anaesthetized with ketamine (60 mg/kg, i.p.) and xylazine (4.8 mg/kg, i.p.)

and mounted on a stereotaxic frame. The skull was exposed, and a small burr hole was drilled

above the injection site. Injections were carried out using a glass micropipette (tip diameter

= 30 μm) connected to a 2-μl Hamilton microsyringe. To evaluate mRFP expression and trans-

synaptic transport in vivo, either 600 nl of rHEP5.0-CVSG-mRFP (3.0×108 FFU/ml, n = 3 for 3

dpi, n = 4 for 5 dpi), rHEP5.0-GctL-mRFP (3.0×108 FFU/ml, n = 2 for 3 dpi, n = 2 for 5 dpi),

or rHEP5.0-GML-mRFP (3.0×108 FFU/ml, n = 2 for 3 dpi, n = 3 for 5 dpi) was injected into

the medial entorhinal cortex (MEC). Each virus was injected with 1% pontamine sky blue so

that the injection sites could be located. After the injection at 60 nl/min, the pipette was left in

place for another 10 min before it was withdrawn. The skin wound was sutured, and the ani-

mal was monitored for recovery from anesthesia and returned to its home cage. Throughout

the survival period, the rats were kept inside a small safety cabinet. After a survival period of

either 3 or 5 days, the animals were deeply anaesthetized with sodium pentobarbital (100 mg/

kg, i.p.) and transcardially perfused and fixed with 10% sucrose in 0.1 M phosphate buffer (PB;

pH 7.4) followed by 4% paraformaldehyde in 0.1 M PB. The brains were removed from the

skulls, postfixed in the same fresh fixative for 4 h at 4˚C and then cryoprotected for at least 48

h at 4˚C in PB containing 30% sucrose. The brains were coronally sectioned at 50 μm on a

freezing microtome. An immunostaining procedure similar to that used for the in vitro study

was conducted to visualize RV-infected neurons. To clearly visualize the infected neurons and

count them in CA3, the sections were also stained with with rabbit anti-RFP antibody (1:400;

Molecular Probes). The distribution of labeled neurons was examined under a Zeiss Axiovert

200M and imaged using a digital camera (AxioCam MRm). To quantify mRFP fluorescence

intensity, the images of infected cells were captured using a laser scanning confocal microscope

(LSM 5 Exciter, Carl Zeiss) under identical conditions between different viral vectors. The

average intensity per pixel of mRFP fluorescence in the soma was measured using ImageJ soft-

ware and normalized on the basis of the fluorescence intensity of rHEP5.0-CVSG-mRFP-

infected neurons. Differences in fluorescence intensity and the number of infected CA3 cells

were analyzed by two-way ANOVA with Bonferroni’s multiple comparison test.

To evaluate sFT labeling, 1800 nl of rHEP5.0-GctL-FTFPF (2.2×109 FFU/ml, n = 4) was

injected into MEC, and the animal was perfused and fixed after six days of survival. The brain

was sectioned at 60 μm and the sFT native fluorescence of both the blue and red forms was

imaged using the confocal laser-scanning microscope LSM 5 Exciter. The average fluorescence

intensity per pixel was measured using ImageJ software, and the red-to-blue ratio was calcu-

lated. The fluorescence intensity ratio of CA3-infected cells was normalized on the basis of

that of CA1-infected cells. The statistical definition for identifying a Blue- or Red-neuron was
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determined by classifying the fluorescence ratio of each infected neuron into one of two clus-

ters by k-means clustering.

Results

Effects of intergenic region, transcription unit, and gene order

modifications on transgene expression

We first attempted to increase the expression level of the L gene, which is related to viral tran-

scription and replication. We previously have shown that the deletion of the upstream viral

gene with its transcription unit results in an increase of L gene transcription [21]. In addition,

it has been reported that the expression level of the L gene changes depending on the length of

the sequence of IGR between the G gene and the L gene, and that a shorter IGR in front of the

L gene enhances viral gene expression via enhanced L expression [19]. Thus, to increase the

expression level of the L gene, we deleted the extra transcription unit between the G and L

genes, and shortened the IGR upstream of the L gene from 24 nucleotides to 2 nucleotides

(rHEP5.0-GctL, Fig 1A). We also focused on the M gene, which has been suggested to regulate

the balance between virus transcription and replication [24]. To attenuate the expression of M,

we shifted the position of the M gene, which was located upstream of the G gene, to down-

stream of the G gene (rHEP5.0-GML, Fig 1A).

The mRFP gene was inserted into the transgene insertion site between the N and P genes

(Fig 1A), and the mRFP expression levels of rHEP5.0-GctL-mRFP and rHEP5.0-GML-mRFP

were compared with that of rHEP5.0-CVSG-mRFP in NA cells. Cells were infected with one

of these three viruses, and the fluorescence intensity of mRFP was examined at 2 dpi (Fig 1B

and 1C) and 6 dpi (S1 Fig). At 2 dpi the mean fluorescence intensities of the rHEP5.0-GctL-

mRFP- and rHEP5.0-GML-mRFP-infected cells were significantly higher than that of the

rHEP5.0-CVSG-mRFP-infected cells, and the rHEP5.0-GctL-mRFP-infected cells showed

a significantly higher fluorescence intensity than the rHEP5.0-GML-mRFP-infected cells

(p< 0.0001, one-way ANOVA; post-hoc t-test, Bonferroni-corrected, p< 0.00033 for all pairs,

Fig 1B and 1C). Six days after infection, the degree of intensity difference increased between

rHEP5.0-CVSG-mRFP and the other two vectors (p< 0.0001, one-way ANOVA; post-hoc t-

test, Bonferroni-corrected, p< 0.00033 for rHEP5.0-CVSG-mRFP infection vs rHEP5.0-GctL-

mRFP infection and rHEP5.0-CVSG-mRFP infection vs rHEP5.0-GML-mRFP infection, S1A

and S1B Fig). This result indicates that the transgene expression levels of rHEP5.0-GctL and

rHEP5.0-GML are higher than that of rHEP5.0-CVSG. There were also differences in the

intensity of anti-N antibody labeling between these three vectors at 6 dpi (S1C Fig). The inten-

sity of anti-N antibody labeling of rHEP5.0-GctL-mRFP-infected cells was higher than that

of rHEP5.0-CVSG-mRFP-infected cells, and the intensity of anti-N antibody labeling of

rHEP5.0-GML-mRFP-infected cells was higher than that of rHEP5.0-CVSG-mRFP- and

rHEP5.0-GctL-mRFP-infected cells (p< 0.0001, one-way ANOVA; post-hoc t-test, Bonfer-

roni-corrected, p< 0.0033 for rHEP5.0-CVSG-mRFP infection vs rHEP5.0-GctL-mRFP infec-

tion, p< 0.00033 for rHEP5.0-CVSG-mRFP infection vs rHEP5.0-GML-mRFP infection, and

rHEP5.0-GctL-mRFP infection vs rHEP5.0-GML-mRFP infection).

We also observed differences in the number of attached cells among the three dishes with

cells infected with these three viral vectors after long periods (S1A Fig). Although there were

no significant differences in the number of attached cells among these three dishes at 2 dpi

(p = 0.90, one-way ANOVA), the numbers of cells in the rHEP5.0-GctL-mRFP- and rHEP5.0-

GML-mRFP-infected dishes became significantly smaller than that in the rHEP5.0-CVSG-

mRFP-infected dish at 6 dpi (p< 0.0001, one-way ANOVA; post-hoc t-test, Bonferroni-cor-

rected, p< 0.0033 for rHEP5.0-CVSG-mRFP infection vs rHEP5.0-GctL-mRFP infection and
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rHEP5.0-CVSG-mRFP infection vs rHEP5.0-GML-mRFP infection, S1D Fig). To examine the

extent of apoptosis induced by these three viruses, we compared the percentage of cells with

fragmented nuclei using the TUNEL technique. Although TUNEL-positive cells were hardly

observed at 2 dpi in either of the infected dishes, the number of TUNEL-positive cells

increased at 5 dpi (S2A Fig). The percentage of TUNEL-positive cells in the rHEP5.0-GctL-

mRFP- and rHEP5.0-GML-mRFP-infected dishes were significantly larger than that in the

rHEP5.0-CVSG-mRFP-infected dish (p< 0.01, one-way ANOVA; post-hoc t-test, Bonferroni-

corrected, p< 0.016 for rHEP5.0-CVSG-mRFP infection vs rHEP5.0-GctL-mRFP infection

and rHEP5.0-CVSG-mRFP infection vs rHEP5.0-GML-mRFP infection, S2B Fig).

The efficiency of viral production is also an important factor for a transsynaptic viral vector

since it likely affects the efficiency of viral propagation. To determine whether the modifica-

tions affect viral growth kinetics, we compared the mutistep-growth curves of the three viral

vectors in NA cells (Fig 1D). rHEP5.0-GML-mRFP showed the lowest growth rate among all

viruses (p< 0.05 at 2 dpi, one-way ANOVA; post-hoc t-test, Bonferroni-corrected, p< 0.016

for rHEP5.0-CVSG-mRFP vs rHEP5.0-GML-mRFP, p< 0.0001 at each time point from 3 to

6 dpi, one-way ANOVA; post-hoc t-test, Bonferroni-corrected, p< 0.00033 for rHEP5.0-

CVSG-mRFP vs rHEP5.0-GML-mRFP at 3–6 dpi and rHEP5.0-CVSG-mRFP vs rHEP5.0-

GctL-mRFP at 4–6 dpi, p< 0.0033 for rHEP5.0-CVSG-mRFP vs rHEP5.0-GctL-mRFP at 3

dpi), and its titer was 100-fold lower than that of parental rHEP5.0-CVSG-mRFP and 50-

fold lower than that of rHEP5.0-GctL-mRFP at 6 dpi. The growth curve of rHEP5.0-CVSG-

mRFP and rHEP5.0-GctL-mRFP was comparable, and there was no significant difference in

viral titer between these two viruses except at 5 dpi (post-hoc t-test, Bonferroni-corrected,

p< 0.0033 for rHEP5.0-CVSG-mRFP vs rHEP5.0-GctL-mRFP at 5 dpi).

We next examined the expression levels of rHEP5.0-GctL-mRFP, rHEP5.0-GML-mRFP,

and rHEP5.0-CVSG-mRFP in vivo by injecting these viral vectors into the deep layer of MEC

of the rat. We first examined the labeling of infected neurons at 3 dpi, which is a suitable sur-

vival period to examine the 1st-order neurons [16,17]. 1st-order neurons were observed in the

ipsilateral CA1 region which projects directly to the deep layer of MEC (Fig 2A–2C). Similar to

the in vitro results at 2 dpi (Fig 1C), the mean mRFP fluorescence intensity of rHEP5.0-GctL-

mRFP- and rHEP5.0-GML-mRFP-infected cells were significantly higher than that of the

rHEP5.0-CVSG-mRFP-infected cells, and the rHEP5.0-GctL-mRFP-infected cells showed a

significantly higher fluorescence intensity than the rHEP5.0-GML-mRFP-infected cells

(p< 0.0001, one-way ANOVA; post-hoc t-test, Bonferroni-corrected, p< 0.00033 for

rHEP5.0-CVSG-mRFP infection vs rHEP5.0-GctL-mRFP infection and rHEP5.0-GctL-mRFP

infection vs rHEP5.0-GML-mRFP infection, p< 0.0033 for rHEP5.0-CVSG-mRFP infection

vs rHEP5.0-GML-mRFP infection, Fig 2D). We next examined the labeling of infected neu-

rons at 5 dpi, which is a suitable survival period for examining both the 1st- and 2nd-order neu-

rons [16,17]. In addition to the 1st-order neurons in ipsilateral CA1, 2nd-order neurons was

observed in the ipsi- and contralateral CA3 regions, which indirectly project to MEC via CA1

region. Numerous infected neurons were observed in both the CA1 and CA3 regions in rats

injected with either rHEP5.0-GctL-mRFP or rHEP5.0-CVSG-mRFP (Fig 2E and 2H). In agree-

ment with our previous study [16], the number of labeled neurons was larger in the contralat-

eral CA3 than in the ipsilateral CA3 region in these samples. Similar to the in vitro results, the

mean mRFP fluorescence intensity of rHEP5.0-GctL-mRFP-infected cells was higher than

that of the rHEP5.0-CVSG-mRFP-infected cells both in CA1 (p< 0.0001, one-way ANOVA;

post-hoc t-test, Bonferroni-corrected, p< 0.00033 for rHEP5.0-CVSG-mRFP infection vs

rHEP5.0-GctL-mRFP infection, Fig 2F, 2I and 2O) and CA3 (p< 0.0001, one-way ANOVA;

post-hoc t-test, Bonferroni-corrected, p< 0.00033 for rHEP5.0-CVSG-mRFP infection vs

rHEP5.0-GctL-mRFP infection, Fig 2G, 2J and 2P). The detailed structure, including the
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dendritic spines, of the CA1 neurons could be observed with the native mRFP fluorescence

expressed by rHEP5.0-GctL-mRFP (Fig 2Q), and no apparent morphological changes were

observed in the infected neurons (Fig 2R). In contrast to these two vectors, the number of

infected CA3 neurons were significantly lower in the rHEP5.0-GML-mRFP-injected sample

Fig 2. Characteristics of RV vectors in vivo. A-C: Fluorescence photomicrographs demonstrating mRFP

fluorescence of infected CA1 at 3 dpi of either rHEP-CVSG-mRFP (A), rHEP-GctL-mRFP (B), or rHEP-GML-

mRFP (C) into MEC of left hemisphere. Scale bar = 50 μm in (A) [applies to (B) and (C)]. D: Fluorescence

intensity of infected CA1 neurons [mean ± standard errors, number of analyzed cells: 129 (rHEP5.0-CVSG),

160 (rHEP5.0-GctL), and 149 (rHEP5.0-GML), *** p < 0.001, * p < 0.05]. E-M: Fluorescence photomicrographs

demonstrating immunoreactivity against N protein in dorsal hippocampus (E, H, K) and mRFP fluorescence of

infected CA1 (F, I, L) and contralateral CA3 neurons (G, J, M) at 6 dpi of either rHEP-CVSG-mRFP (E-G),

rHEP-GctL-mRFP (H-J), or rHEP-GML-mRFP (K-M) into MEC of left hemisphere. CA3 (G, J, M) was imaged at

higher laser power and optical gain than CA1 (F, I, L). Scale bar = 1000 μm in (E) [applies to (H) and (K)], 50 μm

in (G) [applies to (G), (I), (J), (L), and (M)]. N: Number of infected neurons in CA3 per section [mean ± standard

errors, number of analyzed sections: 6 (rHEP5.0-CVSG), 4 (rHEP5.0-GctL), and 6 (rHEP5.0-GML), *** p <
0.001]. O-P: Fluorescence intensity of infected CA1 (O) and CA3 (P) neurons [mean ± standard errors, number

of analyzed cells: 346 (rHEP5.0-CVSG), 225 (rHEP5.0-GctL), and 234 (rHEP5.0-GML) for CA1; 48

(rHEP5.0-CVSG), 50 (rHEP5.0-GctL), and 19 (rHEP5.0-GML) for CA3, *** p < 0.001, * p < 0.05]. Q: High-

magnification photomicrographs of rHEP-GctL-mRFP-infected neurons showing labeled dendritic spines. Scale

bar = 5 μm. R-S: Apical dendrites of CA1 pyramidal neurons infected with rHEP-GctL-mRFP (R) and

rHEP-GML-mRFP (R). Scale bar = 5 μm in (R) applies to (S).

https://doi.org/10.1371/journal.pone.0180960.g002
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(p< 0.0001, one-way ANOVA; post-hoc t-test, Bonferroni-corrected, p< 0.00033 for

rHEP5.0-CVSG-mRFP infection vs rHEP5.0-GML-mRFP and rHEP5.0-GctL-mRFP infection

vs rHEP5.0-GML-mRFP infection, Fig 2K and 2N). The mRFP fluorescence intensity of the

rHEP5.0-GML-mRFP-infected neurons was significantly higher than that of the rHEP5.0-

CVSG-mRFP-infected neurons in CA1 (p< 0.0001, one-way ANOVA; post-hoc t-test, Bonfer-

roni-corrected, p< 0.00033 for rHEP5.0-CVSG-mRFP infection vs rHEP5.0-GML-mRFP

infection, Fig 2F, 2L and 2O) but lower than that in CA3 (p< 0.0001, one-way ANOVA; post-

hoc t-test, Bonferroni-corrected, p< 0.016 for rHEP5.0-CVSG-mRFP infection vs rHEP5.0-

GML-mRFP infection, Fig 2G, 2M and 2P). Although the dendrites and axons of rHEP5.0-

GML-mRFP-infected CA1 pyramidal cells can be clearly visualized, the apical dendrites

showed an abnormal wavy morphology (Fig 2S). Similar to the in vitro results at 6 dpi (S1 Fig),

the rHEP5.0-GML-mRFP-infected CA1 cells also showed a significantly higher intensity of

anti-N antibody labeling than rHEP5.0-GctL-mRFP- and rHEP5.0-CVSG-mRFP-injected

rats (p< 0.0001, one-way ANOVA; post-hoc t-test, Bonferroni-corrected, p< 0.00033 for

rHEP5.0-CVSG-mRFP infection vs rHEP5.0-GML-mRFP infection and rHEP5.0-GctL-mRFP

infection vs rHEP5.0-GML-mRFP infection, Fig 2E, 2H and 2K, and S3 Fig).

Expression of fluorescent timer by high-transgene-expression-level RV

vector

Among the propagation-competent RV vectors that we constructed, rHEP5.0-GctL was the

most superior vector in terms of transgene expression and transsynaptic propagation. To fur-

ther evaluate the usefulness of this vector, we constructed an RV vector that expresses a slow-

fluorescent timer (sFT), which is an mCherry-derived monomeric variant that changes the

color of its fluorescence from blue to red over time [18]. It has been reported that the fluores-

cence maxima of sFT for the blue forms is 9.8 h, and the maturation half-times for the red

forms is 28 h at 37˚C. Since this blue-to-red chromophore maturation speed of sFT is similar

to the speed of the RV vector to cross one synapse, that is approximately 2 days [16,31], we

expected that the sFT-expressing RV vector would enable us to differentiate 1st-order neurons

from 2nd-order neurons in terms of the red-to-blue fluorescence intensity ratio of sFT.

Because of the relatively low fluorescent intensity of sFT, native sFT fluorescence was hardly

detected in NA cells infected with sFT-expressing rHEP5.0-GctL (rHEP5.0- GctL-sFT, Fig 3A

and 3B). To increase the expression level of sFT, we constructed an RV vector with either two-

(rHEP5.0-GctL-FPF) or three-sFT genes linked by 2A sequences (rHEP5.0- GctL-FTFPF, Fig

3A). Increasing the number of inserted sFT genes markedly increased the fluorescent intensity,

and rHEP5.0-GctL-FTFPF-infected cells showed an approximately twofold higher intensity of

blue form fluorescence than rHEP5.0-GctL-FPF-infected cells, and a three-fold higher inten-

sity of blue form fluorescence than rHEP5.0-GctL-sFT-infected cells at 2 dpi (p< 0.0001, one-

way ANOVA; post-hoc t-test, Bonferroni-corrected, p< 0.00033 for all pairs, Fig 3C).

We next evaluated the use of rHEP5.0-GctL-FTFPF as a transsynaptic tracer in vivo by

injecting this vector into MEC and examining the sFT fluorescence in CA1 and CA3 (Fig 4A).

After six days of survival period, sFT fluorescence was detected without any signal amplifica-

tion by immunostaining in the hippocampus. Labeled neurons were observed both in the ipsi-

lateral CA1 region and bilateral CA3 regions, which represent the 1st- and 2nd-order infected

areas, respectively (Fig 4B). There were significant differences in the sFT fluorescence ratio of

the blue-form to the red-form between the 1st- and 2nd-order infected area, and the ratio in

CA3 was higher than that in CA1 (p< 0.0001, Mann-Whitney U test, Fig 4C). We also classi-

fied each sFT-labeled neuron into either the Blue- or Red-neuron based on its fluorescence

ratio by k-means clustering (Fig 4D). In CA1, 85.5% of the infected neurons (614 out of 718
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cells) were Red-neurons, and the proportions of Red- and Blue-neurons were similar along

the transverse axis. On the other hand, 78.2% of CA3 neurons (509 out of 651 cells) were Blue-

neurons, and the proportion of Blue-neurons increased in the proximal CA3 and contralateral

CA3. These findings indicate that 1st- and 2nd-order neurons can be distinguished, although

not perfectly, by using rHEP5.0-GctL-FTFPF.

Discussion

In this study we aimed to develop a propagation-competent RV vector with a high transgene

expression level, and have shown that rearranging the order of the M gene or shortening the

IGR upstream of the L gene increase the transgene expression level. We have also shown that

simply increasing the number of inserted transgenes can markedly increase the transgene

expression level. These results not only enable the construction of advanced transsynaptic trac-

ing tools but also provide useful information for further developing superior RV vectors that

can be used for structural and functional analyses.

M is known to regulate the balance between viral transcription and replication, namely,

inhibiting transcription while stimulating replication [24]. As we expected, replacing the

order of the M and G genes resulted in an increase in transgene expression level. This can be

explained by the enhancement of RV transcription, which is accompanied by the decreased

expression level of M. The translocation of the M gene also resulted in reduced efficiencies

of viral production and transsynaptic transport. This can also be explained by the change in

M expression level since it has been reported that viral replication would be suppressed by

decreasing M expression level [24]. This suppressed viral replication likely reduced viral

Fig 3. Characteristics of sFT-expressing RV vectors in vitro. A: Genome organization of recombinant RV vectors. B-C:

Fluorescence photomicrographs of NA cells infected with sFT-expressing RV vectors (B) and fluorescence intensity of sFT in infected

cells [mean ± standard errors, numbers of analyzed cells: 1199 (rHEP5.0-GctL-sFT), 924 (rHEP5.0-GctL-FPF), and 646

(rHEP5.0-GctL-FTFPF), *** p < 0.001] at 2 dpi (C). Scale bar = 20 μm.

https://doi.org/10.1371/journal.pone.0180960.g003
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growth rate and led to the subsequent reduction in transsynaptic transport. rHEP5.0-GML

also showed increased cytotoxicity compared with rHEP5.0-CVSG. This increase in cytotoxic-

ity can be attributed to the increased expression level of G, which is accompanied by the trans-

location of the G gene, since G is a major factor for cytotoxicity [9,11,32–34]. This increased

cytotoxicity can also be explained by the accumulation of other viral proteins, such as the N

protein, within infected cells. As shown in our in vitro and in vivo studies, the expression level

of N in rHEP5.0-GML-mRFP-infected cells is higher than those in rHEP5.0-CVSG-mRFP-

and rHEP5.0-GctL-mRFP-infected cells. The increase in viral transcription activity together

with the suppressed viral release may have resulted in this accumulation of the N protein,

which could have affected the viability of infected cells.

The transcription of the L gene, which encodes viral RNA polymerase, is attenuated by its

location at the 5’ terminal and by the 24-nucleotides IGR at the G/L gene border. This attenu-

ated expression of L results in the downregulation of virus replication and transcription, which

appears to be the self-limiting strategy of RV to optimize gene expression and support pro-

longed host cell survival. We previously described that deleting the transgene and its transcrip-

tion unit upstream of L gene enhances L gene expression. It also has been reported that

replacing 24-nucleotides IGR at the G/L gene border with 2-nucleotides IGR increases L gene

expression level and subsequently increases viral transcription [19]. Consistent with these

Fig 4. Characteristics of sFT-expressing RV vectors in vivo. A: Schematic diagram of transsynaptic tracing with sFT-expressing RV

vector. B: Fluorescence photomicrographs of sFT fluorescence in the 1st-order infected area (CA1) and 2nd-order infected area

(contralateral CA3) 6 dpi of rHEP5.0-GctL-FTFPF into MEC. Scale bar = 50 μm. C: Blue-to-red fluorescence intensity ratio

(mean ± standard errors, numbers of analyzed cells: 717 for CA1 and 651 for CA3, *** p < 0.001) of infected CA1 and CA3 neurons. D:

Proportions of Red-neurons and Blue-neurons in CA1 and CA3. The number in each pie chart shows the number of analyzed neurons.

dCA1, distal CA1; mCA1, medial CA1; pCA1, proximal CA1; dCA3, distal CA3; pCA3, proximal CA3; con-dCA3, contralateral distal CA3;

con-pCA3, contralateral proximal CA3.

https://doi.org/10.1371/journal.pone.0180960.g004
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findings, we succeeded in enhancing transgene expression by removing the extra transcription

unit between the G and L gene and truncating the IGR upstream of L gene. Similar to this pre-

vious report, we also obtained the increase in cytotoxicity in vitro by shortening IGR. However,

we did not see any marked difference in the morphology of infected cells in vivo which sug-

gests that rHEP5.0-GctL can be used as a transsynaptic tracer. This high-transgene-expres-

sion-level vector enabled the detection of infected neurons in vivo without requiring any

staining. No antibodies to fluorescent proteins will be required and they may be used for other

purposes, such as the identification of the characteristics of infected neurons using cell-type

specific molecular markers. We also showed that the transgene expression level can be further

increased by simply inserting several genes linked by the 2A sequence. This will enable the use

of fluorescent proteins with relatively low fluorescent intensities.

Cytotoxicity is a major issue in the field since viral vectors with low cytotoxicity would be a

useful tool not only to study the connections and structures but also to monitor and manipu-

late the activity of targeted neurons. Although our main aim of this study was to enhance

the transgene expression level, our results also provide clues to lower the cytotoxicities of G-

deleted RV vectors. We previously showed that the deletion of the G gene results in a marked

increase in transgene expression level and decrease in cytotoxicity [11]. This decrease in cyto-

toxicity is due to the lack of the G protein, which strongly affects the viability of infected cells

[9,32–34]. Even with the G-deleted RV vector (rHEP5.0-ΔG), however, the basic properties of

infected neurons can be maintained only for 16 days. This limitation is probably due to the

high activity of viral transcription, since rHEP5.0-ΔG showed approximately twofold larger

amounts of mRNAs encoding N, P, M, and L than rHEP5.0-CVSG in NA cells [21]. To further

reduce the cytotoxicity of G-deleted RV vectors, we presume that it is necessary to suppress

the expression of viral proteins. This may be realized by conducting the opposite manipula-

tion, which we carried out in this study: extend the IGR in front of the L gene in order to sup-

press the expression of the L gene and move the position of the M gene upstream of the P gene

to enhance the expression of the M gene. It may also be useful to insert an additional transcrip-

tion unit with the M gene in front of the L gene. This would result in an increase in M expres-

sion level by duplicating the M gene and a decrease in the L expression level by displacing the

L gene in the posterior of the genome. Although this manipulation likely affects not only viral

transcription but also transgene transcription, the reduction of transgene expression can be

compensated by inserting multiple transgenes linked by 2A sequences, as shown in this study.

Recently, it has been reported that changing the backbone of the viral vector from the vaccine

strain SAD-B19 to the fixed strain CVS-N2c markedly reduces the cytotoxicity of the vector

[14]. This G-deleted RV based on CVS-N2c showed low cytotoxicity, and the infected cortical

neurons maintained normal cell physiology and functional responses for up to 28 days after

infection. Applying the modification described above to the CVS-N2c-based G-deleted RV

vector may further improve this vector with low cytotoxicity.

Transsynaptic tracing using RV vectors is a useful method to delineate the hierarchical con-

nections of the complicated central nervous system. However, there are two major pitfalls in

this tracing method. First, samples with different survival periods must be prepared to identify

the 1st- and 2nd-order neurons. The use of sFT-expressing RV vectors could be a solution to

this problem, and decrease the number of animals used in tracing studies. This method, how-

ever, cannot perfectly differentiate 1st-order neurons from 2nd-order neurons, as shown in the

proportion of Blue- and Red-neurons in Fig 4D. Even though it is not perfect, it is interesting

that the ratio of Blue-neurons increases in proportion to the distance from the 1st-order neu-

rons, such as the proximal CA3 and the contralateral CA3. Replacing sFT with a fluorescent

timer, which shows chromophore maturation that perfectly matches the viral transsynaptic

transport speed, could make this viral vector a superior tracing tool. The second problem is the
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difficulty in accurately identifying the infection pathway of the RV vector, that is, the synapti-

cally connected circuit. The use of a G-deleted RV vector would be a solution for this problem.

By supplying the G gene with other viral vectors, the G-deleted RV vector enables the identifi-

cation of neurons that specifically project to targeted projection neurons [35,36]. However, it

is difficult to cover the entire multisynaptic inputs to the targeted area by this method. The

combination of these two RV vectors by first using the propagation-competent RV vectors,

which can easily reveal overall afferent inputs to the targeted area, and then using the G-

deleted RV vectors, which is useful for the accurate identification of the synaptic connections,

would be a useful strategy for unraveling the complex architecture of the central nervous

system.

Supporting information

S1 Fig. Characteristics of RV vectors in cultured cells after long-term survival. A: Photomi-

crographs of RV-infected NA cells at 6 dpi. The three RV vectors expressed the transgene

mRFP (red), which was inserted between the N and P genes. Infection of the viral vector

can be confirmed by the immunofluorescence of the N protein (green), and the number of

attached cells can be observed by Hoechst staining (blue). Scale bar = 20 μm. B-C: Fluores-

cence intensities of mRFP (B) and anti-N antibody staining (C) in infected cells at 6 dpi

[mean ± standard errors, numbers of analyzed cells: 76 (rHEP5.0-CVSG), 57 (rHEP5.0-GctL),

25 (rHEP5.0-GML), ��� p< 0.001, �� p< 0.01]. D: Number of attached cells in the infected

dish per that in control dish at 6 dpi (mean ± standard errors, N = 16, ��� p< 0.0001).

(TIF)

S2 Fig. Cytotoxicity of RV vectors in cultured cells. A: Photomicrographs of RV-infected NA

cells at 2- and 5-dpi. Cells were stained with Hoechst (Blue) and subjected to TUNEL (Green).

White arrow heads show TUNEL-positive cells. Scale bar = 20 μm. B: Percentage of TUNEL-

positive cells at 2- and 5-dpi (mean ± standard errors for triplicate samples, � p< 0.05).

(TIF)

S3 Fig. Anti-N antibody staining of RV vectors in vivo. A: Fluorescence photomicrographs

demonstrating anti-N antibody staining of infected CA1 and contralateral CA3 neurons at 6

dpi after injection of either rHEP-CVSG-mRFP (E-G), rHEP-GctL-mRFP (H-J), or rHEP-

GML-mRFP (K-M) into MEC. Scale bar = 1000 μm. B-C: Fluorescence intensity of anti-N

antibody staining in CA1 (B) and CA3 (C) [mean ± standard errors, number of analyzed cells:

346 (rHEP5.0-CVSG), 225 (rHEP5.0-GctL), and 234 (rHEP5.0-GML) for CA1; 48 (rHEP5.0-

CVSG), 50 (rHEP5.0-GctL), and 19 (rHEP5.0-GML) for CA3, ��� p< 0.001].

(TIF)
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