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Background: COVID-19 patients with underlying medical conditions are

vulnerable to drug-drug interactions (DDI) due to the use of multiple

medications. We conducted a discovery-driven data analysis to identify potential

DDIs and associated adverse events (AEs) in COVID-19 patients from the FDA

Adverse Event Reporting System (FAERS), a source of post-market drug safety.

Materials and Methods: We investigated 18,589 COVID-19 AEs reported in the

FAERS database between 2020 and 2021. We applied multivariate logistic

regression to account for potential confounding factors, including age, gender,

and the number of unique drug exposures. The significance of the DDIs was

determined using both additive and multiplicative measures of interaction. We

compared our findings with the Liverpool database and conducted a Monte Carlo

simulation to validate the identified DDIs.

Results: Out of 11,337 COVID-19 drug-Co-medication-AE combinations

investigated, our methods identified 424 signals statistically significant, covering

176 drug-drug pairs, composed of 13 COVID-19 drugs and 60 co-medications.

Out of the 176 drug-drug pairs, 20were found to exist in the Liverpool database. The

empirical p-value obtained based on 1,000 Monte Carlo simulations was less than

0.001.Remdesivirwasdiscovered to interactwith the largest numberof concomitant

drugs (41). Hydroxychloroquine was detected to be associated with most AEs (39).

Furthermore, we identified 323 gender- and 254 age-specific DDI signals.

Conclusion: The results, particularly those not found in the Liverpool database,

suggest a subsequent need for further pharmacoepidemiology and/or

pharmacology studies.
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1 Introduction

Coronavirus Disease 2019 (COVID-19) pandemic has

continued to spread worldwide since late 2019. Over 2 years,

after becoming a global pandemic, COVID-19 infection has

been linked to over 267 million cases and over 5.2 million

deaths worldwide as of 9 December 2021 (2021). Various

antiviral medicines and other medications currently used in

clinics with a well-established safety profile were repurposed for

COVID-19 patients in order to prevent symptoms from

deteriorating (Arshad et al., 2020; Wu et al., 2020). The

United States Food and Drug Administration (FDA) approved

one drug treatment (remdesivir) for COVID-19 and authorized

others (e.g., bamlanivimab and etesevimab, COVID-19 convalescent

plasma) for emergency use during this public health emergency and

these drugs have shown promising efficacy against COVID-19

(Sheahan et al., 2017; Martinez, 2020; Mitja and Clotet, 2020).

However, one of the primary concerns is drug safety, particularly

with regard to drug-drug interactions (DDIs). Patients impacted by

severe COVID-19 include not just the elderly, but also younger

persons who are struggling with co-morbid conditions (Ji et al.,

2020; Simonnet et al., 2020; Zhou et al., 2020). As many as 20–51%

of affected COVID-19 patients have at least one comorbidity (Chen

et al., 2020; Huang et al., 2020), and those patients are more likely to

use polypharmacy, increasing the risk of adverse DDIs (Back and

Marzolini, 2020). Additionally, amore complicatedDDI is expected

for COVID-19 patients because changes in the expression and

activity of transporters and drug metabolizing enzymes (DMEs)

during highly prevalent acute and chronic inflammatory conditions

may alter the pharmacokinetics and pharmacodynamic properties

of therapeutic drugs used in COVID-19 treatment (Mann, 2006).

Although the prevalence of DDIs in COVID-19 patients has not

been thoroughly evaluated, observational studies indicate that there

are potential health risks associated with the use of repurposed

drugs for COVID-19 treatments (Agency., 2020). For instance,

several studies have recently been published which demonstrate

that the combination of hydroxychloroquine and azithromycin

increases the risk of QTc-time prolongation (Nguyen et al.,

2020). Moreover, it was shown that patients on direct oral

anticoagulants who were admitted with COVID-19 had

significantly increased plasma concentrations due to interactions

with antiviral agents used to treat COVID-19 (Testa et al., 2020).

All drugs, including those used to treat COVID-19, are

subjected to rigorous safety and efficacy testing in clinical trials

before their approval for use. However, while clinical trials are

frequently used to demonstrate drug efficacy, they rarely detect all

safety concerns prior to its use in the real world. This is because

clinical trials involve a relatively small number of randomly

selected participants for a short period. Certain adverse effects

may manifest themselves only after these products have been used

by a larger and more heterogeneous population, including those

with concurrent diseases, over a long period of time. Nonetheless,

premarketing clinical trial data on drug efficacy are generally more

comprehensive and reliable, although complete safety profiles

cannot be obtained (Amery, 1999). Moreover, the efficacy and

safety concerns about the use of repurposed drugs in COVID-19

patients are unclear and should be assessed, as the safety profile of a

drug for one indication cannot always be extrapolated to another

indication, necessitating continual monitoring of adverse events.

Thus, there is a need for pharmacovigilance studies, which provide

a rapid, inexpensive, and real-time monitoring of emergent safety

concerns via the analysis of spontaneous reporting systems (SRS).

A primary goal of pharmacovigilance is to detect new adverse

events (AEs) or changes in the incidence of AEs previously

associated with the drugs in question, referred to as signal

detection. Prior to the advent of powerful computer

technology, signal detection relied solely on a qualitative

approach or case-by-case analysis, implying that each

incoming case report of a suspected AE submitted to a

spontaneous reporting system was evaluated by an expert

assessor (Wysowski and Fourcroy, 1996; Bennett et al., 2002).

Despite the fact that the qualitative approach has been shown to

be effective, as data availability and the complexity of drug–AE

associations (i.e., DDIs) has increased, quantitative approaches to

analyzing disproportionately abundant adverse events have

become valuable in addition to qualitative signal detection. In

contrast to hypothesis testing, which uses estimates to indicate

the strength of interaction, quantitative approaches in SRS are

primarily used for hypothesis generation, i.e., to find potential

DDI signals supporting the need for future research to confirm

associations between drugs. Several studies have used

quantitative approaches to detect suspected AEs and to

generate hypotheses about new AEs in real-world settings, and

the SRS database has proven to be a useful source of evidence in

the safety evaluation process (Ibrahim et al., 2016; Chasioti et al.,

2019; Yao et al., 2020). Especially, the US Food and Drug

Administration’s Adverse Event Reporting System (FAERS)

database, which was created to support the FDA’s post-

marketing safety surveillance program for drugs, has the

advantage of being updated quarterly and including millions

of reports, which is critical when investigating rare events.

In this study, we examined the potential DDIs in COVID-19

patients using a quantitative approach based on the FAERS

database to evaluate the real consequences of potential DDIs.

Furthermore, we examined age and gender disparities in DDI-

related AEs.

2 Materials and methods

2.1 FAERS database

FAERS is a database that contains approximately 20 million

reports of spontaneous AEs submitted by pharmaceutical

companies, clinicians, pharmacists, and patients. It contains

the following types of data: demographic (e.g., age and
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gender) and administrative information; drug names; AEs;

patient outcomes (e.g., death, life-threatening, and disability);

report sources; therapy dates; and indications for use (e.g.,

COVID-19). Were used. Each report refers to a single patient

and may include one or more indications, drugs, and AEs. The

AEs and indications in the FAERS database are coded using the

Medical Dictionary for Regulatory Activities (MedDRA)

Preferred Terms (PT), each of which is a single medical

concept for a symptom, sign, disease diagnosis, therapeutic

indication, investigation, etc. Our study used 21 months

(January 2020—September 2021) of demographic

(DEMOyyQq.TXT), drug (DRUGyyQq.TXT), indication for

use (INDIyyQq.TXT), and outcome (OUTCyyQq.TXT) files

in the FAERS database.

The FAERS database requires significant curation before it

can be used effectively, and the procedures used to clean and

normalize the data can have a considerable effect on the analytic

outcomes. For instance, drug names in the FAERS database have

not been curated, resulting in a number of ambiguous drug

names that may be misclassified or misinterpreted. The Adverse

Event Open Learning through universal Standardization

(AEOLUS) (Banda et al., 2016) has been widely used and has

been demonstrated to be a valuable solution for cleaning and

normalizing the FAERS database. In this study, the AEOLUS was

used to eliminate duplicate case records and apply standardized

vocabularies by mapping drug names to RxNorm ingredients.

Among 10, 758, 911 drug names, we achieved 96% coverage (10,

119, 657 drug names were mapped to RxNorm ingredients). We

found that the remaining 4% (639,254 drug names) were not

mapped because some of them lacked RxNorm ingredient

information, while others had non-specific drug names, so we

excluded those drug names. Our drug name mappings account

for more than 99% of the 21-months reports found in the FAERS

database.

2.2 COVID-19 and concomitant
medications

To extract reports involving COVID-19 from the FAERS

database, we used the following narrow Standardized MedDRA

Query (SMQ) in the indication field: SARS-CoV-2 test positive,

COVID-19, exposure to SARS-CoV-2, COVID-19 pneumonia,

symptomatic COVID-19, occupational exposure to SARS-CoV-

2, COVID-19 treatment, Coronavirus test positive, coronavirus

infection, COVID-19 immunization, COVID-19 prophylaxis,

exposure to SARS-CoV-2, SARS-CoV-2 antibody test positive,

SARS-CoV-2 carrier, SARS-CoV-2 sepsis, SARS-CoV-2 - test

false negative, and SARS-CoV-2 viraemia.

To avoid duplication of clinically similar AEs in COVID-19

reports, we grouped MedDRA PTs into their primary MedDRA

High-Level Terms (HLTs). We note that MedDRA PTs are

grouped into HLTs, which are grouped in High-Level Group

Terms (HLGTs), which are included in indicating specific System

Organ Classes (SOCs). We excluded MedDRA HLTs that were

included in the following six SOCs: Injury, poisoning, and

procedural complications; Social circumstances; Product

issues; Surgical and medical procedures; Investigations;

General disorders, and administration site conditions. These

SOCs contain nonspecific disorders, laboratory test results,

social issues, and therapeutic procedures, which are not the

focus of our study.

To investigate COVID-19 DDIs, we partitioned the drugs

into two groups: COVID-19 drugs contained only drugs used to

treat the COVID-19; Co-medications included COVID-19 drugs,

as well as drugs used to treat other disorders. We selected

COVID-19 drugs using the criteria from Hodge et al. (Hodge

et al., 2020), which selected experimental COVID-19 drugs based

on a search of ClinicalTrials.gov. Their evaluation panel

comprised of pharmacists, pharmacologists, and infectious

diseases specialists discussed potential inclusion for all

candidates identified. The list of experimental COVID-19

therapies is periodically updated and as of 7 February 2022,

34 drugs had been advanced for DDI analysis: Anakinra, aspirin,

azithromycin, bamlanivimb (alone), bamlanivimab/etesevimab,

baricitinib, budesonide, canakinumab, casirivimab/imdevimab,

CD24Fc immunomodulator, chloroquine, colchicine,

convalescent plasma, COVID-19 vaccine, dalteparin,

dexamethasone, enoxaparin, etesevimab (alone), favipiravir,

fluvoxamine, hydrocortisone, hydroxychloroquine, infliximab,

interferon beta, ivermectin, methylprednisolone, molnupiravir,

niclosamide, nirmatrelvir/ritonavir, nitazoxanide, prednisolone,

prednisone, remdesivir, ribavirin, ruxolitinib, sarilumab,

sotrovimab, tixagevimab/cilgavimab, and tocilizumab. The

number of co-medications was 1,420.

2.3 DDI analysis

Analyses were performed and figures were generated using

the open-source scripting language Python (version 3.8.10) and R

(version 4.2.0).

The presence of statistical interaction indicates that the

concurrent use of two drugs confers an increased risk of AE

beyond that caused by each of the two drugs alone. Several

statistical algorithms have been proposed to detect DDI signals

from spontaneous reporting systems (Noguchi et al., 2019; Jeong

et al., 2022), and previous studies investigated the detection

tendency of models (Noguchi et al., 2020). However, there is

no de facto standard for DDI signal detection models. Among

several methods for detecting DDI, logistic regression has the

benefit of adjusting for covariates. Confounders are hidden

factors that may be responsible for falsely flagging critical

DDI signals. For instance, males and females respond

differently to drug treatment (Farkouh et al., 2020), and

elderly patients are more susceptible to severe drug
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interactions than younger patients (Egger et al., 2007). We

account for such confounding variables using logistic

regression to detect more reliable DDIs.

The additive and multiplicative are the two most frequently

used models to estimate DDIs. We applied an approach by

incorporating logistical regression into additive and

multiplicative models (VanderWeele and Knol, 2014). In the

approach, we calculated covariate-adjusted additive and

multiplicative interactions from the logistic regression. On an

additive scale, interaction indicates that the combined effect of

two drugs is greater than the sum of their individual effects,

whereas, on a multiplicative scale, interaction indicates that the

combined effect is greater than the product of their individual

effects. Since reporting interactionmeasures on both additive and

multiplicative scales is generally recommended because both can

be informative (VanderWeele and Knol, 2014), we assessed

interactions on both the additive and multiplicative scales.

Our DDI detection framework is made up of three

components: 1) logistical regression, which is to adjust for

covariates; 2) relative excess risk due to interaction (RERI),

which is to assess the additive interaction of two drugs; and

3) multiplicative interaction. We determined DDIs signals as

there was evidence of an interaction on at least one scale.

Furthermore, we assessed whether there existed differences in

detected DDIs signals between patient groups divided by age and

gender.

2.3.1 Logistic regression
We used a penalized likelihood-based method called Firth

logistic regression (Heinze and Schemper, 2002) with the

occurrence of AEs as the dependent variable and the use of

COVID-19 drugs and co-medications as the independent

variables as follows:

Logit[P(AE � 1)] � β0 + β1COVID − 19Drug + β2Co−medication + β3COVID − 19DrugpCo −medication

+ β4covariates (1)

When the number of events per variable (EPV) is small, the

logistic regression is imprecise and biased (Jewell, 1984; Nemes

et al., 2009). As such, we used the Firth logistical regression with a

sample size criterion of 5 EPV. Firth’s penalization has gained

increasing popularity to reduce the small-sample bias of

maximum likelihood estimations (MLEs) by adding a penalty

term that removes the first-order term in the asymptotic bias

expansion of MLEs. Our model was adjusted with confounding

factors, including age, gender, and the number of unique drug

ingredient exposures.

2.3.2 Additive interaction
The RERI is defined as the increased risk due to the

interaction given as the difference between the effect of the

combination of a COVID-19 drug and a co-medication and

the effect based on the sum of individual effects of a COVID-19

drug and a co-medication (Schottenfeld, 2002) (See Figure 1).

The RERI has become a widely used metric for determining

whether or not effects are additive (Hallan et al., 2006; Yang et al.,

2009), which is defined as:

RERIRR � RR11 − RR10 − RR01 + 1 (2)

where RR11 is the relative risk of developing a targeted AE if

both a COVID-19 drug and a co-medication are present, RR10 is

the relative risk of developing a targeted AE if a COVID-19 drug

is present but a co-medication is absent, and RR01 is the relative

risk of developing a targeted AE if a co-medication is present but

a COVID-19 drug is absent.

However, since FAERS is a cross-sectional database

containing self-reported AEs and potentially associated drugs,

FAERS does not provide for a denominator (that is, how many

people are actually taking the drug), such that the incidence is

unknown. This limitation necessitates the use of a case-control

study design. Since the relative risk is the measure of association

in a cohort study and cannot be estimated directly in a case-

control study design, we cannot directly estimate the RERIRR in

our study design. However, for rare outcomes (typically,

occurring in less than 10% of the study population), the odds

ratios provide a reasonable approximation of the risk ratios

(Greenland and Thomas, 1982; Shapiro, 1982), indicating that

we could replace each of the risk ratios in RERIRR with odds

ratios to obtain approximations to each of these measures of

additive interaction, as follows:

RERIOR � OR11 − OR10 − OR01 + 1 ≈ RR11 − RR10 − RR01 + 1

� RERIRR

(3)
Since confounders need to be identified and adjusted from

the observed marginal associations (Greenland and

Morgenstern, 2001; Brookhart et al., 2010; Harpaz et al.,

2012), we obtained estimates of RERIOR based on the logistic

regression model. RERIOR can be estimated using the parameters

in Equation 1, described as follows:

RERIOR � OR11 − OR10 − OR01 + 1

� e(β1+β2+β3) − eβ1 − eβ2 + 1 (4)

The delta method was used to calculate the 95% confidence

intervals of RERIOR (Assmann et al., 1996). RERIOR � 0 indicates

that there is no interaction or that it is exactly additivity;

RERIOR > 0 indicates that there is positive interaction or that

there is more than additivity; RERIOR < 0 indicates that there is

negative interaction or that there is less than additivity

(VanderWeele and Robins, 2007; Rothman et al., 2008;

VanderWeele and Knol, 2011). Thus, DDIs were considered

significant in our study when both the estimate and 95%

confidence interval lower bound for RERIOR are greater than 0.
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2.3.3 Multiplicative interaction

The presence of interaction on the multiplicative scale for

odds ratio was tested as follows:

OR11

OR10OR01
� eβ3 (5)

Multiplicative interaction was evaluated using Equation 1

interaction effect eβ3 , which is equivalent to OR11
OR10OR01

, with a value

greater than 1 and a p-value less than 0.05 indicating a DDI.

2.3.4 Age and gender disparities in AEs

Age was partitioned into two groups: younger than 65 and

older or equal to 65, while gender was stratified into females and

males. Odds ratios were calculated and p-values less than

0.05 were considered age- or gender-specific DDIs.

To interpret the DDI results, RxNorm ingredients were

mapped to 1st level Anatomical Therapeutic Chemical (ATC)

classes using the RxNorm API for drug classification purposes.

The ATC classification, which was developed by the World

Health Organization’s (WHO) Collaborating Centre for Drug

Statistics Methodology, categorizes drugs into five levels, the first

four of which correspond to anatomical, therapeutic,

pharmacological, and chemical groups, and the fifth of which

includes the actual drugs. We included the ATC 1st level, which

contains 14 major anatomical or pharmacological groups, in our

analysis of the findings. If a RxNorm ingredient had multiple

ATC 1st level codes, all ATCs were counted separately. The

COVID-19 drugs were assigned to the COVID-19 category

rather than ATC 1st level. Also, MedDRA SOC was included

to illustrate which adverse event categories were associated with

interactions.

2.4 COVID-19 DDIs evaluation

The Liverpool database was used to assess which COVID-19

DDIs identified in our study were already known or novel. The

Liverpool database is an open database based on Covid19-

druginteraction.org developed by the University of Liverpool

(Hodge et al., 2020) that assesses the risk of DDI associated with

experimental COVID-19 therapies and is freely available to

healthcare workers, patients and researchers. It is updated

regularly as new treatment regimens for COVID-19 emerge,

and the last update was performed on 13 June 2022. The

Liverpool database contains information on the safety of

combining COVID-19 drugs with concomitant drugs. The

Liverpool database assessed DDIs using clinical pharmacology

data extracted from approved product labels, published

submissions to regulatory authorities, published case reports

or studies, and, when none of the above were available,

personal communication with the manufacturer. The risk of

drug interaction was evaluated according to known

pharmacokinetics (i.e., drugs involved against known

Absorption, Distribution, Metabolism, and Excretion (ADME)

pathway), overlapping toxicities, and QT risk. DDIs were graded

into four levels: no interaction, potential weak interaction,

potential interaction, and do not co-administer. DDIs were

defined as interactions that did not fall into the “no

interaction” category. It is updated regularly as new treatment

FIGURE 1
A measure of additive interaction between a COVID-19 drug and a co-medication on a targeted AE.
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TABLE 1 Summary characteristics of the study population in the FAERS database from January 2020 to September 2021.

Adverse event reports involving at least one COVID-19 drug (n = 18,589)

Female n (%) Male n (%) Total n (%)

Age

<65 4,971 (26.74) 5,020 (27.01) 9,991 (53.75)

≥65 3,819 (20.54) 4,779 (25.71) 8,598 (46.25)

Number of drug exposures

≤2 4,059 (21.84) 4,152 (22.34) 8,211 (44.17)

3–4 1,575 (8.47) 1,923 (10.34) 3,498 (18.82)

≥5 3,156 (16.98) 3,724 (20.03) 6,880 (37.01)

COVID-19 treatments

Hydroxychloroquine 1,252 (6.74) 2,162 (11.63) 3,414 (18.37)

Remdesivir 1,293 (6.96) 1,977 (10.64) 3,270 (17.59)

Bamlanivimab 1,134 (6.1) 1,607 (8.6) 2,741 (14.7)

Azithromycin 971 (5.22) 1,901 (10.23) 2,872 (15.45)

Enoxaparin 786 (4.23) 1,226 (6.6) 2,012 (10.82)

Dexamethasone 779 (4.19) 1,230 (6.62) 2,009 (10.81)

Tocilizumab 499 (2.68) 1,211 (6.51) 1,710 (9.2)

Casirivimab/Imdevimab 721 (3.88) 641 (3.45) 1,362 (7.33)

Aspirin 509 (2.74) 762 (4.1) 1,271 (6.84)

Methylprednisolone 404 (2.17) 771 (4.15) 1,175 (6.32)

Prednisone 322 (1.73) 462 (2.49) 784 (4.22)

Bamlanivimab/Etesevimab 225 (1.21) 169 (0.91) 394 (2.12)

Baricitinib 117 (0.63) 161 (0.87) 278 (1.5)

Prednisolone 133 (0.72) 140 (0.75) 273 (1.47)

Hydrocortisone 88 (0.47) 164 (0.88) 252 (1.36)

Convalescent Plasma 76 (0.41) 131 (0.7) 207 (1.11)

Favipiravir 68 (0.37) 129 (0.69) 197 (1.06)

Budesonide 99 (0.53) 68 (0.37) 167 (0.9)

Anakinra 54 (0.29) 102 (0.55) 156 (0.84)

Chloroquine 42 (0.23) 108 (0.58) 150 (0.81)

Ivermectin 35 (0.19) 51 (0.27) 86 (0.46)

Sarilumab 31 (0.17) 51 (0.27) 82 (0.44)

Colchicine 28 (0.15) 48 (0.26) 76 (0.41)

Ribavirin 26 (0.14) 37 (0.2) 63 (0.34)

Interferon-Beta 14 (0.08) 42 (0.23) 56 (0.3)

Infliximab 28 (0.15) 25 (0.13) 53 (0.29)

Dalteparin 7 (0.04) 38 (0.2) 45 (0.24)

Canakinumab 9 (0.05) 21 (0.11) 30 (0.16)

Ruxolitinib 13 (0.07) 13 (0.07) 26 (0.14)

Fluvoxamine 9 (0.05) 8 (0.04) 17 (0.09)

Casirivimab 2 (0.01) 6 (0.03) 8 (0.04)

Sotrovimab 2 (0.01) 6 (0.03) 8 (0.04)

Etesevimab 2 (0.01) 0 (0) 2 (0.01)

Nitazoxanide 0 (0) 2 (0.01) 2 (0.01)

CD24Fc 0 (0) 0 (0) 0 (0)

leronlimab 0 (0) 0 (0) 0 (0)

Niclosamide 0 (0) 0 (0) 0 (0)
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regimens for COVID-19 emerge, and the last update was

performed on 13 June 2022.

2.5 Monte Carlo simulation

We calculated an empirical p-value using 1,000 Monte Carlo

simulations. We generated random drug-drug pairs with the same

number of our significant drug-drug pairs in each simulation by

shuffling between COVID-19 drugs and co-medications for each

simulation.We calculated the empirical p-value asp � (r+1)
(n+1), where

r is the number of times that random drug-drug pairs contained

more or an equal number of confirmed DDIs (as determined by

the Liverpool database) than our drug-drug pairs, and n is the

number of replicate samples that have been simulated, which is

1,000 (North et al., 2002).

3 Results

3.1 Clinical and demographic
characteristics of the patients

Table 1 summarizes the characteristics of the study

population. There were 18,589 adverse reports, comprising

937 MedDRA HLTs and 1,420 RxNorm ingredients. After

applying an EPV of 5 as a minimal guideline criterion, the

COVID-19 cohort contained 10,195 COVID-19 drugs-co-

medications-AE combinations. The female: male ratio was

47.3:52.7 and 9,991 reports were made by patients aged

younger than 65 (55.6%). Hydroxychloroquine was the most

frequently used drug (3,414 [18.4%]), followed by remdesivir

(3,270 [17.6%]) and azithromycin (2,872 [15.5%]).

3.2 Potential DDIs

Among 11,337 COVID-19 drug–Co-medication–AE

combinations, 424 (176 unique COVID-19 drug-Co-

medication pairs) were significant. Among the

424 combinations, there were 53 AEs, 13 COVID-19 drugs,

and 60 co-medications (Supplementary Table S1). Figure 2

depicts a network of significant DDIs, displaying the overall

DDI patterns at a glance.

Of 424 significant drug-drug-AEs, enoxaparin was ranked as

the top 1 (98 combinations [26.5%]), followed by remdesivir

(94 [22.2%]) and hydroxychloroquine (86 [20.3%]) (Figure 3A).

Remdesivir interacted with 41 concomitant drugs, which is

the highest number (Figure 3B and Figure 4), while

hydroxychloroquine was affiliated with the highest number of

unique AEs (39 AEs) (Figure 3C and Figure 5). The heat maps in

Supplementary Figures depict all the significant drug-drug-AEs

for each COVID-19 drug.

Among the 60 unique co-medications, Alimentary Tract and

Metabolism drugs (ATC 1st level: A) had the largest number of

interactions with COVID-19 drugs (11 drugs [18.3%]). Among

the 53 unique AEs, renal failure and impairment was the most

prevalent AEs (56 [13.2%]).

Elderly patients exhibited a higher chance of being involved

in DDIs than younger patients (176 vs 78 DDIs). Meanwhile,

male patients were more vulnerable to DDIs than females (222 vs

101 DDIs) (Supplementary Table S1). The five DDIs most related

to elderly and young and male and female patients are shown in

Tables 2 and 3, respectively.

3.3 DDIs assessment

The Liverpool database covers interactions between

34 COVID-19 drugs and 572 co-medications, with

282 potential weak interactions, 1,382 potential interactions,

and 248 do not co-administer as of 26 January 2022. Since

the Liverpool database lacks information on specific adverse

events, we compared our findings to the Liverpool database

using drug-drug level data (176 drug-drug pairs) rather than

drug-drug-AE level data (424 drug-drug-AE combinations).

Of the 176 significant drug-drug pairs, 20 DDIs (19 potential

interactions and 1 do not co-administer) were documented in the

Liverpool database, 135 DDIs were determined to be non-

significant by the Liverpool database, and the remaining

21 DDIs lacked relevant information in the Liverpool database

(Supplementary Table S1 and Figure 4).

The empirical p-value generated by Monte Carlo simulations

was approximately 0.001.

4 Discussion

This retrospective study examined potential DDIs with drugs

used for COVID-19 treatment using the spontaneous reporting

system database and compared the findings to the DDI source in

the Liverpool database in order to identify previously

unrecognized interactions. According to the results of the

Monte Carlo simulation, the detected drug-drug interactions

are most likely not coincidental (p-value = 0.001). Thus, there

is a high likelihood of developing clinical trial hypotheses based

on the detected novel DDIs.

Some of our findings are consistent with DDIs documented in

the Liverpool database and other published studies. According to

Nguyen et al. (Nguyen et al., 2020), hydroxychloroquine and

azithromycin, alone or in combination, were suspected to be

associated with prolonged QT and/or ventricular tachycardia. We

detected that hydroxychloroquine and azithromycin interaction

was related to cardiac conduction disorders. In addition,

hydroxychloroquine-levofloxacin and hydroxychloroquine-

lopinavir/ritonavir interactions detected by our methods were
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FIGURE 2
Drug-drug interaction network. The size of a node is proportional to the number of neighboring drugs, while the color corresponds to the ATC
1st level. The width of an edge is proportional to the number of unique AEs, while its color indicates whether or not an interaction was documented in
the Liverpool database.

FIGURE 3
(A) The number of significant DDIs. (B) The number of unique co-medications that caused interactions with the COVID-19 drugs. (C) The
number of unique AEs.
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confirmed by the published finding - co-prescribing levofloxacin or

lopinavir/ritonavirwith hydroxychloroquine can result in a dramatic

increased risk of cardiotoxicity (Cattaneo et al., 2020; Singh et al.,

2021). Meanwhile, QT prolongation is associated with the

interaction between azithromycin and lopinavir/ritonavir

(Samarendra et al., 2001; Zequn et al., 2021). As demonstrated in

our findings, the interaction between azithromycin and lopinavir/

ritonavir may be associated with Cardiac conduction disorders.

Notably, we included well-known interactions as well as

significant DDIs that were previously deemed to have no

interaction in the Liverpool database. For example, while the

Liverpool database indicated that there was no interaction

FIGURE 4
Heatmap depicting statistically significant associations between the COVID-19 drugs (on the bottom) and the co-medications (clustered by
ATC 1st level, on the left). The cells were colored white to red according to the number of AEs present (grey if there was insufficient data in the FAERS
database to investigate associations). Asterisks were used to denote the DDIs in the Liverpool database (*: potential weak interaction, **: potential
interaction, and ***: do not co-administer).
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between azithromycin and ceftriaxone, there is a case report about a

heart transplant recipient who developed elevated tacrolimus blood

levels following the administration of intravenous azithromycin and

ceftriaxone (Shullo et al., 2010). Additionally, we discovered an

interaction between dexamethasone and vancomycin, and treatment

failures for adult pneumococcal meningitis were reported in adults

receiving standard vancomycin doses with adjunctive

dexamethasone (Viladrich et al., 1991; de Gans and Van de

Beek, 2002). Also, our findings indicated that the interaction

between dexamethasone and albuterol resulted in Rate and

rhythm disorders NEC, despite the fact that the Liverpool

database determined that this interaction had no adverse effects.

The concomitant use of beta-2 adrenergic agonists and

corticosteroids may have additive hypokalemic effects (Taylon

et al., 1992). Since beta-2 agonists can sometimes cause QT

interval prolongation (Wong et al., 1990), the development of

hypokalemia may increase the risk of ventricular arrhythmias,

including torsade de pointes. Combining hydroxychloroquine and

linezolidmay increase the risk or severity of nerve damage, which is

a potential side effect of both medications (Argov and Mastaglia,

1979; Carrion et al., 1995), and this interaction was significant in our

findings. The interaction between hydroxychloroquine and heparin

resulted in Non-site specific embolism and thrombosis and

Thrombocytopenias, and hydroxychloroquine which interferes

with platelet aggregation reactions (Cornwell et al., 2021) (the

main hemostatic defense of heparinized patients (Mohammad

et al., 1981)) may induce bleeding when it is used in patients

receiving heparin.

Additionally, our findings included novel DDIs not

previously investigated in the Liverpool database. For instance,

the Liverpool database did not contain information about the

interaction between azithromycin and ascorbic acid, but our

findings indicated that this interaction was associated with

Respiratory acidoses. Although no pharmacokinetic interaction

FIGURE 5
Heatmap depicting statistically significant associations between theCOVID-19 drugs (on the bottom) andMedDRAHLTs (clustered byMedDRA
SOC, on the left). The cells were colored white to red according to the number of drugs in the co-medications that caused an AE when combined
with a drug in the COVID-19 drugs (grey if there was insufficient data in the FAERS database to investigate associations).
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between these two drugs is known at the moment, there are 3 case

reports of COVID-19 patients developing adverse drug reactions

such as supraventricular tachycardia, chest discomfort, headache,

sinus tachycardia, dyspnoea, and abdominal pain after receiving

combinations of COVID-19 therapies including azithromycin

and ascorbic acid (Darko, 2021).

We rely upon the Liverpool database to evaluate our findings

because it is currently one of themost reliable databases containing

information on COVID-19 DDIs. However, a recent study found

that if clinicians relied solely on the Liverpool database, a

substantial number of potentially significant DDIs may be

overlooked (Biswas and Roy, 2021). It should be noted that

many of the DDIs listed in the Liverpool database are

theoretical and have not been demonstrated to cause harm to

patients. In this project, we detected DDI signals which were

confirmed by literature, however, those signals were previously

deemed to have no interaction in the Liverpool database. Our

study investigated a broader range of drug combinations than the

Liverpool database did (34 COVID-19 drugs-1,420 co-medications

vs 34 COVID-19 drugs-572 co-medications), allowing us to

identify many novel DDIs that were not previously depicted in

the Liverpool database.

We further identified age- and sex-related differences in drug-

drug interaction. For instance, the interaction between

TABLE 2 The five highest and lowest adjusted odds ratios (OR) of the DDI risk associated with age.

COVID-19 drug Co-medication MedDRA HLT <65 ≥65 ORa (CI)
(≥65)

Highest OR

Azithromycin Hydroxychloroquine Heart failures NEC 13 18 1.98 (1.44–2.73)

Hydroxychloroquine Lopinavir/ritonavir Oral Tablet Encephalopathies NEC 5 23 1.79 (1.24–2.59)

Hydroxychloroquine Piperacillin Dermatitis ascribed to specific agent 12 14 1.73 (1.20–2.48)

Tocilizumab Meropenem Aspergillus infections 24 12 1.72 (1.3–2.29)

Enoxaparin Hydroxychloroquine Dermatitis ascribed to specific agent 15 16 1.72 (1.2–2.47)

Lowest OR

Azithromycin Ceftriaxone Labor onset and length abnormalities 35 0 0.01 (0–0.09)

Hydroxychloroquine Oseltamivir Labor onset and length abnormalities 26 0 0.01 (0–0.1)

Hydroxychloroquine Ceftriaxone Labor onset and length abnormalities 33 0 0.01 (0–0.1)

Azithromycin Oseltamivir Labor onset and length abnormalities 25 0 0.07 (0–0.11)

Hydroxychloroquine Ceftriaxone Elevated triglycerides 27 6 0.31 (0.18–0.55)

aAdjusted for gender, number of drug exposures, use of COVID-19, drug, and use of co-medication.

TABLE 3 The five highest and lowest adjusted odds ratios (OR) of the DDI risk associated with gender.

COVID-19 drug Co-medication MedDRA HLT Female Male ORa (CI)
(male)

Highest OR

Aspirin Atorvastatin Sepsis, bacteraemia, viraemia, and fungaemia NEC 3 26 1.09 (1.08–1.1)

Azithromycin Furosemide Sepsis, bacteraemia, viraemia, and fungaemia NEC 5 24 1.09 (1.07–1.1)

Enoxaparin Azithromycin Sepsis, bacteraemia, viraemia, and fungaemia NEC 14 41 1.08 (1.07–1.09)

Aspirin Heparin Sepsis, bacteraemia, viraemia, and fungaemia NEC 2 25 1.08 (1.07–1.09)

Hydroxychloroquine Ceftriaxone Bullous conditions 16 10 1.08 (1.07–1.09)

Lowest OR

Tocilizumab Ceftriaxone Eosinophilic disorders 7 22 0.87 (0.82–0.92)

Hydroxychloroquine Ceftriaxone Eosinophilic disorders 27 35 0.89 (0.84–0.95)

Hydroxychloroquine Lopinavir/ritonavir Oral Tablet Eosinophilic disorders 34 45 0.91 (0.86–0.97)

Methylprednisolone Hydroxychloroquine Eosinophilic disorders 13 12 0.91 (0.86–0.96)

Interferon-beta Lopinavir/ritonavir Oral Tablet Eosinophilic disorders 14 25 0.92 (0.86–0.98)

aAdjusted for age, number of drug exposures, use of COVID-19, drug, and use of co-medication.
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hydroxychloroquine and azithromycin was considered significant

in our study and was also documented in the Liverpool database.

However, we discovered that this combination was associated with

a higher risk of adverse events in elder patients than in young

patients, information that the Liverpool database didn’t provide.

Additionally, hydroxychloroquine and lopinavir/ritonavir had an

interaction in both our findings and the Liverpool database, but

our finding additionally provided that this interaction was

associated with a higher risk of adverse events in female

patients than in male patients.

Our project is a pilot study, and there are limitations that we

want to acknowledge as guidelines for further studies on the DDI

research using the FAERS database. First, although post-

marketing pharmacovigilance databases serve an important

role, there is no certainty that the reported adverse event was

due to the drug since the FAERS database does not include

patient characteristics, their medical history, dosage information,

or route information (eye drop or pill), which are important risk

factors of the occurrence of drug-drug interactions (Romagnoli

et al., 2017). The FDA does not demand proof of a causal

relationship between a drug and an incident, and reports may

not always provide sufficient information to evaluate an event.

For example, even though we found the interaction between

aspirin and enoxaparin may be related to Renal failure and

impairment, (Shullo et al., 2002), renal impairment might be

caused by a patient’s medical condition, such as COVID-19 or

sepsis, rather than by DDI. Additionally, this could have

represented a drug-disease interaction since enoxaparin is

removed by the kidneys, and renal failure or impairment

would increase enoxaparin levels and the risk of AEs, such as

bleeding. Due to this limitation, we further note that while we

controlled for potentially confounding demographic factors and

the number of drug exposures, we did not account for other

potentially significant confounding variables such as smoking

behaviors and general health state. Second, reporting bias, such as

under-reporting or selective reporting of ADRs, limits the utility

of using the FAERS database to detect actual DDI signals (Ghosh

and Dewanji, 2015; Noguchi et al., 2021). An analysis of

37 studies showed that 94 percent of ADR occurrences were

not recorded (Hazell and Shakir, 2006). Unknown causality, the

ADR being insignificant, or the ADR being too well known are

potential causes for the reporting bias. Third, the quality of the

FAERS database needs further improvement. For instance, there

are many duplicative reports and some reports are incomplete in

the FAERS data. The data cleaning and missing value imputation

can be potential solutions.

5 Conclusion

This work contributes to the current range of evidence regarding

DDIs in patients with COVID-19 by examining DDIs with a high

number of adverse reports. Our exploratory data analysis for

hypothesis generation presented insight into the DDIs associated

with COVID-19 drugs for subsequent confirmatory analysis, which

involves additional validation studies for the drugs’ pharmacokinetic

properties, metabolic pathways, and pharmacodynamics.
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