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Abstract: Introduction: Focal adhesion kinase (FAK) plays a crucial role in cancer development
and progression. FAK is overexpressed and/or activated and associated with poor prognosis
in various malignancies. However, in lung cancer, activated FAK expression and its prognostic
value are unknown. Methods: FAK and activated FAK (phospho-FAK Y397) expressions were
analyzed by multiplex immunofluorescence staining in formalin-fixed paraffin-embedded tissues
from 95 non-small-cell lung cancer (NSCLC) and 105 small-cell lung cancer (SCLC) patients, and
37 healthy donors. The FAK staining score was defined as the percentage (%) of FAK-stained
tumor area multiplied by (×) FAK mean intensity and phospho-FAK staining score as the (% of
phospho-FAK-stained area of low intensity × 1) + (% of phospho-FAK-stained area of medium
intensity × 2) + (% of the phospho-FAK-stained area of high intensity × 3). FAK and phospho-FAK
staining scores were compared between normal, NSCLC, and SCLC tissues. They were also tested for
correlations with patient characteristics and clinical outcomes. Results: The median follow-up time
after the first treatment was 42.5 months and 6.4 months for NSCLC and SCLC patients, respectively.
FAK and phospho-FAK staining scores were significantly higher in lung cancer than in normal
lung and significantly higher in SCLC compared to NSCLC tissues (p < 0.01). Moreover, the ratio
between phospho-FAK and FAK staining scores was significantly higher in SCLC than in NSCLC
tissues (p < 0.01). However, FAK and activated FAK expression in lung cancer did not correlate
with recurrence-free and overall survival in NSCLC and SCLC patients. Conclusions: Total FAK
and activated FAK expressions are significantly higher in lung cancer than in normal lung, and
significantly higher in SCLC compared to NSCLC, but are not prognostic biomarkers in this study.
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1. Introduction

Lung cancer is histologically divided into two main types: Non-small cell lung cancer (NSCLC)
and small cell lung cancer (SCLC), representing 85% and 15% of the cases, respectively [1,2]. In recent
years, oncogenic drivers with sensitivity to targeted therapies (e.g., tyrosine kinase inhibitors (TKIs)
targeting epidermal growth factor receptor (EGFR) mutations, anaplastic lymphoma kinase (ALK)
rearrangements, or other oncogenic abnormalities) have been discovered in NSCLC, leading to
improvements in the outcome of oncogenic-driven NSCLC patients [3]. Immunotherapy with
anti-programmed death-ligand 1 (PD-L1) immune checkpoint inhibitors (ICIs) has also significantly
improved the five-year overall survival (OS) of metastatic NSCLC patients without oncogenic drivers
from 6% to 15% [4,5]. Clinically, SCLC is the most aggressive type of lung cancer, characterized by a
high growth rate and a tendency for early metastasis, with two-thirds of the patients diagnosed with
extensive stage (ES) disease and a five-year OS as low as 5% [2]. Despite improved understanding of the
molecular steps leading to SCLC development and progression these last years, there is still no effective
targeted therapies in SCLC, as opposed to NSCLC. After four decades, the only modest improvement
in OS of patients suffering from ES-SCLC has been shown recently in a trial combining atezolizumab,
an anti-PD-L1 immune checkpoint inhibitor, with carboplatin and etoposide, chemotherapy agents [6].

Focal Adhesion Kinase (FAK) is a 125 kDa cytosolic non-receptor tyrosine kinase widely expressed
in various cell types and tissues. It is localized to focal adhesions or contact points between the actin
cytoskeleton and the extracellular matrix. Once activated by integrins, G protein-coupled receptor
ligands, or growth factors and neuromediators, FAK is autophosphorylated at tyrosine 397 (Y397),
then binds and activates downstream proteins such as Src, p130CAS, paxillin, and PI3KR2 [7–9],
finally leading to cell adhesion, migration, invasion, survival, proliferation, angiogenesis, immune
suppression, and regulation of DNA damage repair [8–11]. Because of these roles and its overexpression
in many cancers, with the correlation to poor prognosis in some of them [12–23], FAK is believed to
play a role in cancer development and progression. Small-molecule inhibitors targeting the FAK kinase
domain (e.g., PF-573,228) have, therefore, been developed as potential anti-cancer targeted therapies.
They decreased FAK phosphorylation at Y397 and led to antitumoral effects in various cancer types,
including NSCLC and SCLC [24–27]. In preclinical and clinical studies, they induced cancer regression
or stability in several cancers, including NSCLC [26,28–31].

FAK gene copy number gain has previously been reported in 50% of 46 SCLC tissues analyzed
by array comparative genomic hybridization and validated by fluorescent in situ hybridization and
quantitative real-time polymerase chain reaction [32]. FAK activation has also been observed in SCLC
cell lines, and inhibition of FAK phosphorylation at Y397 with PF-573,228 decreased cell proliferation,
survival, migration, and invasion in SCLC cell lines [25]. These results suggested that FAK is important
in SCLC biology and that targeting its kinase domain may have a therapeutic potential in SCLC
patients. Moreover, total FAK expression has been evaluated by immunohistochemistry (IHC) in tissue
microarrays (TMAs) including SCLC tissues from 85 patients, revealing an expression of FAK in 92%
of the tumors, scored low in only 13%, while moderate in 20%, and strong in 59% of the samples [33].
However, no correlation was found between total FAK expression and recurrence-free survival (RFS)
or OS in these SCLC patients [33]. Nevertheless, total FAK expression does not necessarily indicate an
activated FAK pathway, as opposed to phospho-FAK expression.

Because there is a lack of data evaluating the expression of phospho-FAK in human lung
cancer tissues as opposed to total FAK expression [19,33,34], we aimed to evaluate the expression of
phospho-FAK (Y397) in SCLC and NSCLC tissues, and correlate the data to patients’ prognosis.
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2. Materials and Methods

2.1. Patients and Tissues Samples

Formalin-fixed paraffin-embedded (FFPE) tissue blocks from patients with lung cancer and healthy
donors were obtained from the tumor registry of Cliniques Universitaires St-Luc, CHU UCL Namur
(Godinne Site), and Katholieke Universiteit Leuven. Lung cancer tissues were collected between
January 2011 and February 2016 from 95 NSCLC and 105 SCLC patients at the time of diagnosis before
any medical treatment. Normal lung samples, used as controls, were collected from 37 healthy donors
between February 2016 and March 2019. All tumor sections were reviewed by an experienced lung
cancer pathologist (D.H.), and only tumor sections with representative areas of tumor and adjacent
lung parenchyma were included in the study. Sixty-seven of the NSCLC tissues were represented in
TMAs (prepared in accordance with reported methods) [35,36], while none of the SCLC tissues were
because they were all transbronchial or transthoracic biopsies, with no surgical specimens, as opposed
to the NSCLC tissues.

Treatment was administered on an individual basis according to the disease stage and patient
performance status as per the standard of care. All patients were followed with chart review until
death or until data analysis of the manuscript. Clinical data were obtained from the tumor registry and
hospital charts. Histological classification of the tumors was based on the World Health Organization
criteria [37]. All tumors were staged according to the 7th lung cancer TNM pathological classification
and staging system of the International Union Against Cancer (UICC) [38]. Patient characteristics are
summarized in Table 1A,B. This study was approved by the institutional ethical review board (CHU
UCL Namur (Godinne)) at each medical center (number of approval: 115/2014). The normal lung
samples were obtained from unused lungs of donors and collected according to existing Belgian law
and approved by the hospital’s ethical committee (S59648, S61653).

Table 1. Clinical and pathological characteristics of (A) NSCLC patients, (B) SCLC patients, and (C)
healthy donors.

A

Variable NSCLC Patients (n = 95)

Histological subtype
Squamous 34 (35.8)

Non-squamous 61 (64.2)
Stage-n (%)

I 45 (47.4)
II 23 (24.2)
III 19 (20.0)
IV 8 (8.4)

Gender-n (%)
Female 26 (27.4)
Male 69 (72.6)

Age at diagnostic >75 y/o-n (%)
No 74 (77.9)
Yes 21 (22.1)

Smoking history-n (%)
Unknown 1 (1.1)

Never 4 (4.2)
Ex 57 (60.0)

Current 33 (34.7)
Pack per year

Median 40
Range 2–107
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Table 1. Cont.

B

Variable SCLC Patients (n = 105)

Stage-n (%)
ED 69 (65.7)
LD 21 (20.0)

Unknown 15 (14.3)
Gender-n (%)

Female 38 (36.2)
Male 67 (63.8)

Age at diagnostic >75 y/o-n (%)
No 78 (74.3)
Yes 27 (25.7)

Smoking history-n (%)
Unknown 10 (9.5)

Never 1 (1.0)
Ex 32 (30.5)

Current 62 (59.0)
Pack per year

Median 43
Range 1–170

C

Variable Healthy Donors (n = 37)

Gender-n (%)
Female 3 (8.1)
Male 34 (91.9)

Age >75 y/o-n (%)
No 36 (97.3)
Yes 1 (2.7)

Agee (year)
Median 59.5
Range 19−79

Smoking history-n (%)
Unknown 19 (51.4)

Never 8 (21.6)
Yes 10 (27.0)

Abbreviations: ED, extensive-stage disease; LD, limited-stage disease; NSCLC, non-small-cell lung cancer; SCLC,
small-cell lung cancer, y/o: Years old.

2.2. Multiplex Immunofluorescence Immunohistochemistry (mIF-IHC)

FFPE tissue blocks were sectioned at 5 µm. After deparaffinization in toluene and methanol,
endogenous peroxidases were inhibited for 15 min in Bloxall (Vector Laboratories, Peterborough, UK)
followed by 30 min in 0.3% hydrogen peroxide. Sections were then submitted to microwave antigen
retrieval in 10 mM citrate pH 6.0 buffer containing 0.1% triton and to blocking of specific antigen-binding
sites (Tris buffered saline (TBS) containing 5% normal goat serum and 0.1% Tween 20). The first primary
antibody was incubated in TBS containing 1% normal goat serum and 0.1% Tween 20 and detected by
corresponding horseradish peroxidase (HRP)-conjugated polymer secondary antibodies for 40 min
at room temperature (RT). HRP was then visualized by tyramide signal amplification (TSA) using
AlexaFluor-conjugated tyramides (Thermo Fisher Scientific, Paisley, UK). After a new citrate buffer
incubation step, the same protocol was applied with other primary antibodies and different AlexaFluor
or fluorescein-conjugated tyramides. In this study, 2 sequential incubations with phospho-FAK Y397
rabbit antibody (0.5 µg/mL, 1 h at RT; Thermo Fisher Scientific) and total FAK mouse antibody (5 µg/mL,
overnight at 4 ◦C; Thermo Fisher Scientific) were performed. Total FAK and phospho-FAK Y397 were,
respectively, revealed with TSA-conjugated fluorophores, AF647 and AF594 (1:150 dilution in 0.1 M
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Borate pH 7.8 buffer, 10 min at RT; Thermo Fisher Scientific). Finally, nuclei were counterstained with
Hoechst 33342 (Thermo Fisher Scientific) diluted in TBS containing 10% BSA and 0.1% Tween 20,
washed in TBS containing 0.1% Tween 20, and mounted with a Dako fluorescence mounting medium
(Dako, Glostrup, Denmark). Negative controls were established by adding nonspecific isotype controls
as primary antibodies. Slides were stored at −20 ◦C until multispectral image acquisition.

After the image acquisition, coverslips were removed by immersion of the slides into water
overnight at room temperature (RT). Sections were incubated with 5% human serum before adding
anti-pan cytokeratin CKAE1-AE3 antibody (1:200, 1 h at RT; Dako), followed by HRP-conjugated
polymer secondary antibody for tumor detection. Peroxidase activity was revealed through 5 min
incubation with diaminobenzidine (DAB) substrate (IM2394; Immunotech, Marseille, France). Slides
were finally counterstained for 3 min with hematoxylin (Dako).

2.3. Stained Slides Imaging

Multiplex immunofluorescence immunostained slides were digitalized in fluorescence using a
Pannoramic 250 FlashIII scanner (3DHistech, Budapest, Hungary) at 20× magnification using the
following filter cubes: DAPI1 (ex: 377/50 nm–em: 477/60 nm), SpRed (ex: 586/20 nm–em: 628/32 nm),
and Cy5 (ex: 328/40 nm–em: 692/40 nm). After pan-CKAE1-AE3 staining, slides were re-scanned in
brightfield at the same magnification.

2.4. Quantitative Evaluation of Immunostaining

FAK and phospho-FAK stainings were quantified on multiplex-stained paraffin sections (TMA
or not) with software applications (APP) using the image analysis tool Oncotopix version 2017.2
(Visiopharm, Hørsholm, Denmark). Using the first APP, the tumor was delineated based on the
CKAE1-AE3 staining at low digital magnification (3×) using a thresholding classification method
based on the HDAB-DAB feature of the software and post-processing steps. These are designed to
fill the detected area and to outline it within a region of interest (ROI). For TMA sections, each TMA
plug was outlined with a different ROI (Figure 1). Within the delineated tumor, CKAE1-AE3-stained
tumor clusters were delineated in a second APP at low digital magnification (5×) using a thresholding
classification method based on the HDAB-DAB feature of the software. Large empty spaces (alveoli,
vessels, and damaged tissues) were discarded. Delineated scans were then duplicated to proceed in
parallel to the detection and quantification of FAK and phospho-FAK at high magnification (20×).

FAK-stained areas were detected with a thresholding classification method on the Alexa fluor 647
staining. The mean fluorescence intensity of the pixels within the tumor cluster ROI was also calculated.
FAK expression results were reported using a FAK staining score, corresponding to the percentage (%)
of FAK-stained tumor area multiplied by (×) FAK mean intensity. Phospho-FAK stained areas were
detected using 3 thresholds of intensity of the AlexaFluor594 to highlight the differences in staining
intensity, much lower than the total FAK, and, therefore, requiring a different method of detection.
Phospho-FAK expression results were reported using a phospho-FAK staining score, corresponding
to (% of phospho-FAK-stained tumor area of low intensity × 1) + (% of phospho-FAK-stained tumor
area of medium intensity × 2) + (% of phospho-FAK-stained tumor area of high intensity × 3). Similar
calculations were used to evaluate FAK and phospho-FAK staining scores in the nuclei (detected with
a thresholding classification method based on the Hoechst nuclear counterstaining).
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acquisitions, IHC was performed with a tumor marker using an antibody against pan-cytokeratin 
CKAE1-AE3 (CK, brown signal) on the same slide and digitalized with a slide scanner. (B) Each TMA 
plug was then automatically delineated via the image analysis tool Oncotopix version 2017.2 
(Visiopharm). (C) CK-positive tumor regions were semi-automatically delineated from CK-negative 
stroma. (D) These tumor regions, detected on the brightfield scan, were transposed to the aligned 

Figure 1. Illustration of focal adhesion kinase (FAK) and phospho-FAK staining quantification on a tissue
microarray section of non-small-cell lung cancer (NSCLC) stained by multiplex immunofluorescence (IF)
immunohistochemistry (IHC). (A) Tissue microarray (TMA) sections were sequentially stained by mIF
with an antibody against phospho-FAK (red signal) and FAK (orange signal), followed by the Hoechst
nuclear marker (blue signal). After whole slide fluorescence image acquisitions, IHC was performed
with a tumor marker using an antibody against pan-cytokeratin CKAE1-AE3 (CK, brown signal) on the
same slide and digitalized with a slide scanner. (B) Each TMA plug was then automatically delineated
via the image analysis tool Oncotopix version 2017.2 (Visiopharm). (C) CK-positive tumor regions were
semi-automatically delineated from CK-negative stroma. (D) These tumor regions, detected on the
brightfield scan, were transposed to the aligned fluorescent scan with the Visiopharm Tissue Align
module. (E) FAK and phospho-FAK stained areas were finally detected and quantified as illustrated for
phospho-FAK in Figure D.2., with staining detection according to three thresholds of intensity (low,
yellow; medium, orange; high, red), while Figure D.1. shows phospho-FAK staining without the mask.
Original magnification: A, B, C: 1×; D: 2×; E: 20×.

2.5. Western Blot

Thirty frozen NSCLC, 10 frozen SCLC, and 9 frozen normal lung tissues were lysed with 250 µL
of RadioImmunoPrecipitation Assay (RIPA) buffer with anti-protease and anti-phosphatase agents
(Roche Diagnostics, Mannhein, Germany). Equal amounts of lysate were separated by 12% SDS-PAGE
and electrotransferred onto a nitrocellulose membrane. After blocking 1 h with 5% W/V BSA (Sigma,
Saint-Louis, MO, USA) in TBS with 0.1% Tween 20 (Sigma), the membrane was incubated overnight at
4 ◦C with phospho-FAK Y397 rabbit antibody (1/1000 Cell Signaling Technology, Danvers, MA, USA)
or total FAK mouse antibody (1/250, Santa Cruz Biotechnology, Dallas, TX, USA) and glyceraldehyde
3-phosphate dehydrogenase (GAPDH) rabbit antibody (1/5000, Sigma). Secondary antibodies consisted
of HRP-conjugated goat anti-rabbit IgG (Cell Signaling Technology) or HRP-conjugated goat anti-mouse
IgG (Sigma). Immunoreactivity bands were developed using chemiluminescence (Amersham ECL,
GE Healthcare, Little Chalfont, Buckinghamshire, UK) and detected with a chemidoc XRS apparatus
(Bio-rad, Hercule, CA, USA) and quantified using the Quantity One software (Bio-rad).
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2.6. Statistical Analysis

RFS and OS were computed for all patients as the time between first treatment (i.e., surgery,
chemoradiation, or first-line chemotherapy) and the first relapse or death. Patients were right censored
at the time of their last date of physical examination when they were still alive and without relapse at
the time of analysis. Univariate and multivariate hazard ratios were computed on RFS using univariate
and multivariate Cox proportional hazard regression models. p-values were obtained using linear
models and adjusted for multiple testing using the Bonferroni method. All data were analyzed using
R.3.4.0. A p-value p < 0.05 was considered to be statistically significant.

3. Results

3.1. Patient Characteristics

A total of 95 patients diagnosed with NSCLC were included in the study based on the availability
of archival pathology specimens. NSCLC patient characteristics are described in Table 1A. Of the
95 patients, 26 (27.4%) were women, and 69 (72.6%) were men. Only four (4.2%) patients had never
smoked, and one (1.1%) had an unknown smoking history, while all the others were current (n = 33,
34.7%) or ex-smokers (n = 57, 60.0%) with a median pack-year history of 40 (range: 2 to 107). The median
age at diagnosis was 66 years (range: 30 to 85), with 21 (22.1%) patients older than 75 years. The disease
was stage I for 45 (47.4%), II for 23 (24.2%), III for 19 (20.0%), and IV for 8 (8.4%) patients. All patients
received medical treatment according to the disease stage and performance status as per the standard
of care therapy. Recurrence free survival (RFS) was assessed according to Response Evaluation Criteria
in Solid Tumors guidelines and was available for all patients. The median time of follow-up after the
first treatment was 42.5 months (range: 1.3 to 92.4). At two and five years, the RFS was 76.6% (95% CI:
68.3–85.9%) and 67.5% (95% CI: 58.2–78.3%), respectively. At two and five years, OS was 80.9% (95%
CI: 73.3–89.2%) and 66.2% (95% CI: 56.9–77.0%), respectively.

A total of 105 patients diagnosed with SCLC were included in the study based on the availability
of archival pathology specimens. SCLC patient characteristics are described in Table 1B. Of the
105 patients, 38 (36.2%) were women, and 67 (63.8.6%) were men. Only one (1.0%) patient had
never smoked, and 10 (9.5%) had an unknown smoking history, while all the others were current or
ex-smokers with a median pack-year history of 43 (range: 1 to 170). The median age at diagnosis
was 66 years (range: 43 to 89), with 27 (25.7%) patients older than 75 years. The disease stage was
extensive for 69 (65.7%), limited for 21 (20.0%), and unknown for 15 (14.3%) patients. The median time
of follow-up after the first treatment was 6.4 months (range: 0.1 to 79.0). At two and five years, the RFS
was 13.1% (95% CI: 7.8–22.0%) and 7.6% (95% CI: 2.7–15.5%), respectively. At two and five years, the
OS was 20.2% (95% CI: 13.7–29.7%) and 7.0% (95% CI: 3.3–15.0%), respectively.

A total of 37 healthy donors provided normal lung tissues. Their clinical characteristics are
described in Table 1C. Of the 37 patients, 3 (8.1%) were women, and 34 (91.9%) were men. Eight
of them (21.6%) had never smoked, 10 (27.0%) were current or ex-smokers, and 19 (51.4%) had an
unknown smoking history. The median age at diagnosis was 59.5 years (range: 19 to 79).

3.2. FAK Expression and Activity Are Higher in SCLC than NSCLC and Normal Lung

FAK and phospho-FAK (Y397) staining pattern in NSCLC whole slide samples was homogenous,
with either all the cells staining for FAK or phospho-FAK or none at all, although the staining intensity
was clearly different between samples (Figure 2A–D). Based on this observation, it is concluded that the
FAK staining quantification could also be performed on NSCLC samples organized in TMAs (available
for NSCLC but not for SCLC).
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Figure 2. Illustrations of FAK and phospho-FAK (Y397) expression evaluated by multiplex
immunofluorescence (IF) immunohistochemistry (IHC) in lung cancer and normal lung tissues.
(A) Lung adenocarcinoma with the absence of phospho-FAK expression but homogenous cytoplasmic
FAK staining (orange) in the tumor core, adjacent non-tumoral bronchi, and some stromal cells
(including vessels and lymphoid structures). (B) Lung adenocarcinoma with nuclear phospho-FAK
staining (red) and homogenous cytoplasmic FAK staining (orange). (C) Lung squamous carcinoma
with the absence of phospho-FAK expression but weak cytoplasmic FAK staining. (D) Lung squamous
carcinoma with nuclear phospho-FAK staining (red) and homogenous cytoplasmic FAK staining
(orange). (E) Small-cell lung cancer with nuclear phospho-FAK staining (red) and cytoplasmic FAK
staining (orange). (F) Normal lung with cytoplasmic FAK staining in bronchi and some stromal cells
(including vessels and lymphoid structures). (G) Lung squamous carcinoma used as a negative control,
showing the absence of phospho-FAK and FAK staining. Original magnification: 20×; scale bar: 50 µm.
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FAK expression was mainly cytoplasmic, while phospho-FAK (Y397) staining was mainly nuclear,
both in NSCLC (Figure 2A–D) and SCLC (Figure 2E). FAK staining was found in tumor and normal
broncho-epithelial cells, as well as in immune and endothelial cells from the tumor microenvironment.
Phospho-FAK was mainly expressed in tumor, endothelial, and some immune cells but not in the normal
broncho-epithelial cells (Figure 2A–G). Of note, peritumoral normal lung and tumor microenvironment
were observed only in the NSCLC samples because the SCLC biopsies were small and almost exclusively
consisting of tumor cells.

FAK expression was significantly higher in SCLC compared with NSCLC and normal lung tissues
as assessed by mean FAK staining scores (11863 ± 5798 vs. 8727 ± 4501 vs. 418 ± 468, respectively)
(p < 0.01) (Figure 3A). FAK activity, represented by phospho-FAK (Y397) expression, was predominantly
found in tumor cells, whereas its expression was low in normal lung alveoli and interstitial tissue
(Figure 2A–D). Phospho-FAK (Y397) expression was significantly increased in SCLC compared with
NSCLC and normal tissues as assessed by mean phospho-FAK staining scores (146 ± 50 vs. 67 ± 32 vs.
17 ± 11, respectively) (p < 0.01) (Figure 3B). Interestingly, the proportion of activated FAK compared
with total FAK expression was significantly increased in SCLC as compared with NSCLC, as assessed
by the ratio between mean phospho-FAK staining score and mean FAK staining score (0.025 ± 0.063 vs.
0.011 ± 0.014) (p < 0.01) (Figure 3C).
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was found that the mean nuclear FAK staining scores were significantly increased in lung cancer as 
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Figure 3. Quantification of FAK and phospho-FAK (Y397) expression evaluated by multiplex
immunofluorescence immunohistochemistry in 37 normal lungs, 95 non-small-cell lung cancer (NSCLC),
and 105 small-cell lung cancer (SCLC) tissues: (A) FAK staining score: Percentage (%) of FAK-stained
tumor area multiplied by (x) FAK mean intensity, (B) phospho-FAK (Y397) staining score: (% of
phospho-FAK-stained tumor area of low intensity × 1) + (% of phospho-FAK-stained tumor area of
medium intensity × 2) + (% of phospho-FAK-stained tumor area of high intensity × 3), and (C) ratio
between phospho-FAK and FAK staining scores. Each dot represents one sample. Data presented as
the mean ± S.D. p-values were obtained using linear models and adjusted for multiple testing using the
Bonferroni method.

In a second step, the FAK and phosphor-FAK nuclear staining were specifically evaluated. It was
found that the mean nuclear FAK staining scores were significantly increased in lung cancer as
compared to normal lung tissues, but without significant difference between NSCLC and SCLC
(146.5 ± 61.4 vs. 130.4 ± 39.4 vs. 55.2 ± 19.5, respectively) (p < 0.01 only for comparison between normal
and lung cancer) (Figure 4A), while mean nuclear phospho-FAK staining scores were significantly
increased in SCLC as compared to NSCLC and normal lung samples (91 ± 47 vs. 37 ± 11 vs. 25 ± 12,
respectively) (p < 0.01) (Figure 4B).

In order to validate the observations made by mIF-IHC, the FAK and phospho-FAK expression
by western blot (WB) in 10 SCLC, 30 NSCLC, and nine normal lung tissue lysates were evaluated.
This technique confirmed a significant increase in SCLC, compared with NSCLC and normal lung
tissues, of FAK expression (0.177 ± 0.169 vs. 0.052 ± 0.066 vs. 0.013 ± 0.024, respectively) (p = 0.04)
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(Figure 5A–C) and phospho-FAK expression (0.727 ± 0.448 vs. 0.021 ± 0.053 vs. 0.056 ± 0.09) (p < 0.001)
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Figure 4. Quantification of nuclear FAK and nuclear phospho-FAK (Y397) expression evaluated by
multiplex immunofluorescence immunohistochemistry in 37 normal lung, 95 non-small-cell lung
cancer (NSCLC), and 105 small-cell lung cancer (SCLC) tissues: (A) Nuclear FAK staining score:
Percentage (%) of FAK-stained nucleus area multiplied by (×) nuclear FAK mean intensity, (B) nuclear
phospho-FAK (Y397) staining score: (% of phospho-FAK-stained nucleus area of low intensity × 1) + (%
of phospho-FAK-stained nucleus area of medium intensity × 2) + (% of phospho-FAK-stained nucleus
area of high intensity × 3). Each dot represents one sample. Data presented as the mean ± S.D. p-values
were obtained using linear models and adjusted for multiple testing using the Bonferroni method.
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Figure 5. Quantification of (A) FAK and (B) phospho-FAK expression evaluated by Western blot (WB),
with normalization to glyceraldehyde 3-phosphate dehydrogenase (GAPDH ) expression, in nine normal
lungs, 30 non-small-cell lung cancer (NSCLC), and 10 small-cell lung cancer (SCLC) tissue lysates.
Each dot represents one sample. Data presented as the mean ± S.D. Significance determined by the
Kruskal-Wallis test. (C) Illustration of a representative WB of FAK and phospho-FAK (Y397) expression in
normal lung, NSCLC, and SCLC tissue lysates. All the WB are represented in Supplementary Figure S1.
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3.3. FAK Expression and Activity Do Not Correlate with Patient Characteristics or Survival

The availability of the clinical data for each sample from the NSCLC (n = 95) and the SCLC
(n = 105) patients enabled the assessment of the impact of FAK expression and activity on survival
outcomes. Univariate analysis of staining scores treated as continuous variables showed no significant
correlation of FAK and phospho-FAK expression with RFS and OS in NSCLC (Table 2A) and SCLC
(Table 2B) patients.

Table 2. Correlation of FAK and phospho-FAK expression with recurrence-free survival and overall
survival in (A) NSCLC and (B) SCLC patients in a univariate analysis.

A

Variable
Recurrence-Free Survival Overall Survival

HR (95% CI) p-Value HR (95% CI) p-Value

FAK staining score 1.00 (1.00–1.00) 0.92 1.00 (1.00–1.00) 0.99
Phospho-FAK staining score 0.99 (0.98–1.00) 0.1 0.99 (0.98–1.00) 0.21

Ratio phospho-FAK/FAK staining
scores 0.86 (0.60–1.23) 0.33 0.89 (0.64–1.21) 0.4

B

Variable
Recurrence-Free Survival Overall Survival

HR (95% CI) p-Value HR (95% CI) p-Value

FAK staining score 1.00 (1.00–1.00) 0.76 1.00 (1.00–1.00) 0.66
Phospho-FAK staining score 1.00 (1.00–1.01) 0.5 1.00 (0.99–1.00) 0.8

100 × ratio phospho-FAK/FAK
staining scores 0.96 (0.90–1.02) 0.13 1.00 (0.97–1.03) 0.75

Abbreviations: CI, confidence interval; FAK, focal adhesion kinase; HR, hazard ratio.

In a multivariate analysis including disease stage, age at diagnosis, smoking history,
and histological subtype, no significant association was found between phospho-FAK staining score
and RFS or OS in NSCLC patients (Table 3A). Similarly, in a multivariate analysis including disease
stage, age at diagnosis, and smoking history, the ratio between phospho-FAK staining score and FAK
staining score was not significantly associated with RFS or OS in SCLC patients (Table 3B). As expected,
the disease stage was the most significant independent predictor of RFS and OS in both NSCLC
and SCLC.

Table 3. Multivariate Cox proportional regression analysis for the association with recurrence-free
survival and overall survival of (A) phospho-FAK staining score in NSCLC (n = 95) and (B) the ratio
between phospho-FAK and FAK staining scores in SCLC patients (n = 105).

A

Variable
Recurrence-Free Survival Overall Survival

HR (95% CI) p-Value HR (95% CI) p-Value

Stage (ref: I)
II 1.06 (0.35–3.20) 0.92 0.63 (0.19–2.04) 0.44
III 1.92 (0.72–5.16) 0.19 2.76 (1.11–6.83) 0.03
IV 5.64 (1.79–17.7) <0.01 3.21 (1.06–9.66) 0.04

Age at diagnostic (ref: <75 y/o)
>75 y/o 1.19 (0.49–3.07) 0.72 0.75 (0.28–2.03) 0.57

Smoking history (ref: ex and never)
Current 0.82 (0.35–1.89) 0.64 0.88 (0.39–1.96) 0.75

Histology (ref: ADC)
SCC 0.66 (0.26–1.69) 0.39 1.59 (0.70–3.62) 0.27

Phospho-FAK staining score 0.99 (0.98–1.00) 0.15 0.99 (0.98–1.01) 0.30
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Table 3. Cont.

B

Variable
Recurrence-Free Survival Overall Survival

HR (95% CI) p-Value HR (95% CI) p-Value

Stage (ref: LD)
ED 3.75 (2.08–6.78) <0.01 3.47 (1.91–6.32) <0.01

Age at diagnostic (ref: <75 y/0)
>75 y/o 1.56 (0.93–2.63) 0.09 1.42 (0.88–2.29) 0.15

Smoking history (ref: ex and never)
Current 1.23 (0.78–1.93) 0.37 1.11 (0.73–1.70) 0.62

100 × ratio phospho-FAK/FAK staining scores 0.95 (0.89–1.02) 0.14 1.00 (0.97–1.03) 0.87

Abbreviations: ADC, adenocarcinoma; CI, confidence interval; ED, extensive-stage disease; LD, limited-stage
disease; FAK, focal adhesion kinase; HR, hazard ratio; SCC, squamous cell carcinoma; y/0: Years old.

4. Discussion

In this study, with mIF-IHC, it is shown that FAK and phospho-FAK are both significantly
overexpressed in lung cancer as compared to normal lung tissues. Interestingly, we also showed that,
among lung cancers, FAK and phospho-FAK expression, as well as the ratio between phospho-FAK and
FAK expression, are significantly higher in SCLC compared to NSCLC. Moreover, these observations
were validated by WB of NSCLC, SCLC, and normal lung tissue lysates. However, no correlation
was found between FAK and activated FAK expression in lung cancer and RFS or OS in NSCLC and
SCLC patients.

The overexpression and activation of FAK that was observed in lung cancer tissues from
treatment-naïve patients, as compared to normal lung tissues, was compatible with the well-known
role of FAK in cancer initiation and progression. Indeed, FAK is known to promote cell proliferation,
survival, migration, invasion, angiogenesis, and immune suppression in several cancers, including
lung cancer [9,11,25,31,39–41].

As in our study, FAK overexpression has previously been reported in many cancers [42], including
NSCLC and SCLC [19,33,34,43–46]. Moreover, FAK overexpression has been associated with poor
survival in various cancers [12,14,20,22,47,48]. In NSCLC, however, discordant results have been
reported. In two studies, including 381 [46] and 249 [44] patients with stage I-III NSCLC, FAK
overexpression evaluated by IHC has been correlated with poor OS. Additionally, FAK overexpression
evaluated by IHC has been correlated with increased lymph node metastasis, more advanced disease
stages, and poor prognosis in a study of 153 patients with stage I–III NSCLC [19]. Nevertheless,
similarly to our study, the prognostic value of FAK overexpression has not been found in a cohort of
103 patients with stage I NSCLC [34]. In SCLC, FAK expression has not been associated either with
RFS and OS [33].

Unlike total FAK expression, phospho-FAK (Y397) expression represents the activation status of
FAK [11,49,50] and is, therefore, expected to be a more relevant biomarker. Aggregation of FAK with
integrins and cytoskeletal proteins in focal adhesion contacts is the best described mechanism leading
to FAK activation through phosphorylation of Y397. However, it is also well known that FAK can be
activated by extracellular growth factors, including those released by lung cancer, such as bombesin,
gastrin-related peptide (GRP), HGF, VEGF, TGF-β, HGF, and FGF [51–59]. This relationship between
FAK and growth factors and neuroendocrine mediators could underline the preferential activation
of FAK observed in this study in SCLC tissues, as compared to NSCLC. Increased FAK activity has
already been reported in various cancer cell lines, with demonstrated antitumoral effects of FAK TKI in
cancer cells where FAK was activated [27,30,40,60–63], including NSCLC and SCLC [24–26,39]. In a
recent study, FAK inhibition with PF-573,228, a small-molecule TKI, decreased proliferation, survival,
migration, and invasion in SCLC cell lines [25,32]. Similar results have also been demonstrated in
NSCLC cell lines, where FAK TKI decreased cell viability [24,39]. However, data related to FAK
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activation status in human cancer samples are scarcer. In a study including 59 patients with stage
I–IV gastric carcinomas, phospho-FAK (Y397) expression evaluated by IHC was correlated with poor
five-year RFS after surgery. Interestingly, multivariate analyses showed that phospho-FAK was an
independent predictor of gastric cancer recurrence rather than total FAK expression [64]. In a study
of 113 patients with stage II osteosarcoma, high FAK and phospho-FAK expression by IHC were
associated with poor metastasis-free and OS [65]. This result was consistent with the prognostic
and predictive value of phospho-FAK overexpression reported in another study of 53 metastatic
osteosarcomas [48]. In NSCLC, expression of phospho-FAK has been evaluated by WB in 44 stage
I–III NSCLC frozen tissues, revealing an increased expression in NSCLC compared with normal lung
tissues [66]. Furthermore, in the same study, increased phospho-FAK expression was correlated with
higher nodal involvement of cancer and a poorer RFS [66]. In another study where phospho-FAK
(Y397) expression was evaluated by IHC in 145 NSCLC tissues, overexpression was found but not
correlated with survival [67].

To the best of our knowledge, FAK activity has not been previously reported in SCLC human
tissues. Our study is, therefore, the first report of phospho-FAK expression in SCLC. It is also the first
report of FAK and phospho-FAK expression in a large cohort of both SCLC and NSCLC. Moreover,
we provide the first comparison of FAK expression and activation status between NSCLC and SCLC
tissues, showing that total FAK expression and FAK activity are both significantly higher in SCLC
than in NSCLC, which suggests that the FAK pathway is more activated in SCLC than in NSCLC.
Based on this observation, it is also hypothesized that the higher activation of FAK in SCLC than in
NSCLC is responsible for the more aggressive biological and clinical behavior of SCLC, known for the
rapid growth, early, and frequent metastasis, and the poorest OS among all lung cancer types. Finally,
high FAK activity in SCLC suggest that FAK may be a good anti-cancer target in SCLC, alone or in
combination with chemotherapy, immunotherapy, and/or radiotherapy.

Despite the lack of prognostic value of total FAK and phospho-FAK expression in SCLC and
NSCLC, a predictive value is not to be ruled out. Several FAK TKI have been tested in clinical trials,
including patients suffering from various advanced-stage cancers, which showed their antitumoral
activity (up to 33% objective response rates) and safety [30,63,68]. However, there is still no biomarker
to identify patients likely to respond to FAK TKI. Thus, our findings provide a framework for clinical
trials evaluating FAK TKI to test, prospectively, the total FAK and activated FAK expression, as well
as the ratio between the activated FAK and total FAK as potential predictive biomarkers of response
to FAK TKI. This would be especially relevant for SCLC patients, facing limited and disappointing
therapeutic options, with the absence of effective targeted therapies.

In the meantime, it would also be interesting to prospectively correlate FAK expression and
activity in formalin-fixed paraffin-embedded (FPPE) human lung cancer tissues with response rates to
FAK TKI of corresponding patient-derived xenograft models (immediate transfer of human cancer
cells from NSCLC or SCLC patients to recipient immunodeficient mice).

The innovative mIF-IHC staining and quantification method used provides an accurate FAK and
phospho-FAK expression evaluation in lung cancer. This accuracy allowed us to specifically analyze
FAK and phospho-FAK expression in the nucleus. Besides the well-known role of FAK in the cytosol
downstream of integrin and growth factor receptor signaling, it has been shown that FAK also plays
a functional role in the nucleus, where it can enter, bind to transcription factors, and regulate gene
expression to influence tumorigenesis [50,69–71]. In this study, it is shown for the first time that nuclear
FAK and phospho-FAK expression is significantly higher in SCLC than in NSCLC and normal lung.
Furthermore, this accuracy of mIF-IHC would be particularly relevant to evaluate and quantify FAK
expression and activation status in tumor microenvironment where FAK has been shown to play a
crucial role in antitumor immune evasion, for instance in pancreatic cancer [40,72]. Finally, the mIF-IHC
method requires smaller amounts of sample than conventional IHC and is, therefore, valuable when
limited tumor tissue is available, as it is usually the case in SCLC where surgical specimens are scarce
because patients are rarely treated by surgery.
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5. Conclusions

Analysis of 105 SCLC, 95 NSCLC, and 37 normal lung tissues revealed that FAK expression
and activity are both significantly higher in SCLC compared with NSCLC and normal lung tissues.
This suggests that the FAK pathway is more activated in SCLC than in NSCLC and that FAK may
be a good anti-cancer target in SCLC, alone or in combination with chemotherapy, immunotherapy,
and/or radiotherapy. Although our study did not find any correlation between FAK expression or
activity and survival, suggesting that they are not prognostic biomarkers in lung cancer patients, the
present workflow may be used to further assess FAK expression and activity as predictive biomarkers
of response (theranostic biomarker) to FAK TKI in future clinical trials.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/10/1526/s1,
Figure S1: Western blot.
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