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Traditionally, running biomechanics analyses have been conducted using 3D motion
capture during treadmill or indoor overground running. However, most runners complete
their runs outdoors. Since changes in running terrain have been shown to influence
running gait mechanics, the purpose of this study was to use a machine learning
approach to objectively determine relevant accelerometer-based features to discriminate
between running patterns in different environments and determine the generalizability
of observed differences in running patterns. Center of mass accelerations were
recorded for recreational runners in treadmill-only (n = 28) and sidewalk-only (n = 25)
environments, and an independent group (n = 16) ran in both treadmill and sidewalk
environments. A feature selection algorithm was used to develop a training dataset
from treadmill-only and sidewalk-only running. A binary support vector machine model
was trained to classify treadmill and sidewalk running. Classification accuracy was
determined using 10-fold cross-validation of the training dataset and an independent
testing dataset from the runners that ran in both environments. Nine features related
to the consistency and variability of center of mass accelerations were selected.
Specifically, there was greater ratio of vertical acceleration during treadmill running and
a greater ratio of anterior-posterior acceleration during sidewalk running in both the
training and testing dataset. Step and stride regularity were significantly greater in the
treadmill condition for the vertical axis in both the training and testing dataset, and
in the medial-lateral axis for the testing dataset. During sidewalk running, there was
significantly greater variability in the magnitude of the vertical and anterior-posterior
accelerations for both datasets. The classification accuracy based on 10-fold cross-
validation of the training dataset (M = 93.17%, SD = 2.43%) was greater than the
classification accuracy of the independent testing dataset (M = 83.81%, SD = 3.39%).
This approach could be utilized in future analyses to identify relevant differences in
running patterns using wearable technology.
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INTRODUCTION

Traditional running biomechanical analysis is confined to
treadmill or over-ground indoor running (Simon, 2004). In
contrast, most runners complete their runs outdoors (Taunton
et al., 2003) and research has shown that machine learning
algorithms trained on gait-related features from an accelerometer
can distinguish whether a runner is running on concrete,
synthetic, woodchip surfaces (Schütte et al., 2016). However, to
our knowledge, no study has examined differences in running
biomechanics between indoor running, where the speed, surface
inclination and available space are often dictated by a treadmill
or a small flat runway, and outdoor running, where these features
are less controlled. Insights gleaned from biomechanical analyses
conducted in less controlled settings may be more applicable to
runners who train and compete outdoors.

Limited research has been conducted to compare treadmill
to overground running, but has shown that the running
biomechanical patterns during treadmill running gait dynamics
do not necessarily reflect overground running patterns (Lindsay
et al., 2014; Schütte et al., 2016). Moreover, methodological
limitations make it difficult to generalize these results. For
example, Lindsay et al. (2014) compared treadmill running
to overground running on an indoor track and Schütte
et al. (2016) performed outdoor investigations on a short,
flat and straight course, limiting the ability to generalize the
findings to runners outside of the study sample and real-
world conditions. Dixon et al. (2019) collected only 8 s of
data, from between 2 and 4 running trials, whilst runners
ran on a straight 90 m segment of either concrete road,
synthetic track, or woodchip trail. Indoor tracks and short,
straight and flat runways do not necessarily reflect real-world
running conditions, particularly for long-distance runners. Thus,
research is needed in order to collect running biomechanical
data in a runner’s natural environment. Considering that
the vast majority of running biomechanical data collected to
date have been in controlled laboratory settings, it will be
beneficial to understand which biomechanical variables are
similar, or dissimilar, to those exhibited during running in real-
world environments.

Inertial measurement units (IMUs) are portable devices that
can be used to quantify running biomechanical patterns in
a runner’s natural environment (Norris et al., 2014; Reenalda
et al., 2016), yet, these investigations are still rare (Benson
et al., 2018a). Running biomechanical analysis using IMUs
is commonly conducted by recording 3D center of mass
accelerations and extracting features related to the magnitude,
consistency and variability of the signal (Henriksen et al.,
2004; Moe-Nilssen and Helbostad, 2004; Kobsar et al., 2014;
Benson et al., 2018b; Clermont et al., 2018). There remains
an absence of an association between joint-level mechanics
commonly investigated using laboratory-based motion capture
systems and features generated from center of mass accelerations.
Thus, a challenge in identifying new methods for collecting
biomechanical data using wearable sensors is to identify which
accelerometer-based features are relevant for observing running
patterns in real world settings.

The purpose of this study was to determine whether running
environments could be successfully classified from movement
patterns quantified by the use of a single accelerometer, with
generalizability to an independent dataset. A secondary objective
was to determine which features drive successful classification
between treadmill-only and sidewalk-only running. It was
expected that key features would quantify the consistency and
variability of running patterns, and that the model would be
generalizable to an independent set of runners.

MATERIALS AND METHODS

Participants and Equipment
A total of 69 self-identified recreational runners provided
informed consent to participate in this study approved by the
Ethics Board at the University of Calgary (REB16-1183). Both
male and female runners with no running-related injury in the
previous 6 months were included. All participants were outfitted
with an IMU (Shimmer3 GSR+ R©

±8 g, Shimmer Inc., Dublin,
IE, United States) on the lower back near the center of mass, such
that the positive x-axis pointed to the right, the positive y-axis
pointed vertically, and the positive z-axis pointed posteriorly.
Three-dimensional accelerations were recorded at 201.03 Hz
and stored on an SD card. Additionally, a GPS-capable watch
(Garmin vivoactive HR, Garmin Inc., Olathe, KS, United States)
with a sampling rate of 1 Hz was worn on the preferred wrist.
Participants wore their preferred clothes and shoes.

Data Collection
Each participant was included in just one of three protocols,
based on weather (i.e., outdoor running only occurred on days
with no snow or rain) and availability to attend multiple sessions
(Table 1). In Protocol 1, 28 participants ran on a level treadmill
(Bertec, Columbus, OH, United States) only. The speed was
initially set to a speed equal to what the participant self-reported
as their typical training pace, and was subsequently adjusted in
0.1 m/s increments until it matched the participant’s preferred
speed, described as “a pace which you would be comfortable
to run for about 45 min and represents a usual, common, or
typical pace (Lindsay et al., 2014).” Participants first completed
a 5–10 min warmup at this speed. Next, data were recorded
as the participants ran at their preferred speed (recorded as
the treadmill setting) for 5 min. In Protocol 2, 25 different
participants ran outdoors on a concrete sidewalk only. First,
participants completed a 5–10 min warmup at their own pace.
Then, data were recorded as the participants ran at their preferred
running speed (recorded with GPS watch) on a continuous
stretch of sidewalk that featured a straightaway, curve and slight
incline typical of real-world outdoor running conditions. The
sidewalk was 300 m, and the participants paused for 10 s at
the turnaround to complete a total of 600 m (Figure 1). It was
expected that all runners would complete the 600 m course
within 5 min (8:20/km pace). In Protocol 3, a different set of 16
participants completed both the treadmill and sidewalk runs on
separate days, with the order of days randomized, via a coin flip,
for each participant.
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TABLE 1 | Mean (SD) descriptive variables for each protocol.

Protocol 1 Protocol 2 Protocol 3

Environments TM (5 min) only S (600 m) only TM (5 min) and S (600 m)

Sex 18M, 10F 12M, 13F 8M, 8F

Height, m 1.74 (0.09) 1.73 (0.10) 1.70 (0.09)

Mass, kg 70.5 (10.3) 70.2 (13.0) 67.1 (8.1)

Age, yr 32.2 (13.4) 36.9 (10.1) 31.3 (10.2)

TM speed, m/s 2.78 (0.26) – 2.75 (0.39)*

S speed, m/s – 3.24 (0.42) 3.10 (0.60)*

TM, treadmill; S, sidewalk. * Within Protocol 3, TM speed was significantly lower than S Speed, p = 0.001. There were no significant differences between protocols
for any variables.

FIGURE 1 | Map of outdoor running path (300 m from start to turn around)
and associated altitude along path.

Data Processing
For each run, the accelerometer data were filtered using a 4th-
order low-pass Butterworth filter with a cutoff frequency at 10 Hz
(Wundersitz et al., 2015), and the first and last 5% of the signal
was removed to eliminate effects of starting and stopping. The
trimming was applied to each 300 m section of the sidewalk
runs, as a complete turnaround is likely not generalizable to
real-world running conditions. The acceleration signal was then
aligned with gravity (Moe-Nilssen, 1998) and the direction of
motion within the horizontal plane (Avvenuti et al., 2013). The
signal was segmented into steps (Lee et al., 2010), each step
was normalized to 50 data points, and a previously defined

set of 24 features (Moe-Nilssen and Helbostad, 2004; Kobsar
et al., 2014; Barden et al., 2016) was extracted from the signal
(Table 2). These features included the peaks, magnitude (RMS),
and ratio of the acceleration in three dimensions, averaged across
all steps. Several features related to consistency and variability of
the running pattern across all steps and strides. Regularity is the
consistency of the stride-to-stride or step-to-step pattern, while
symmetry is the difference between step and stride regularity
(Barden et al., 2016), and higher values indicate a more consistent
gait pattern. Mean running speed was included as a 25th feature
for each participant.

Feature Selection
To improve generalizability of classification and to reduce
model complexity, a subject-specific forward-sequential feature
selection algorithm with a linear discriminant analysis wrapper
and 10-fold cross-validation (Chizi and Maimon, 2010; Caby
et al., 2011) was applied to the data from Protocols 1 and
2 to identify relevant features, ranked based on their order
of selection, for the classification of running environments
(Figure 2). Only the features selected in at least 10% of

TABLE 2 | All features extracted from the accelerometer signal for each participant
and running condition.

Feature Independent of axes AP ML VT

Speed* X

Step time CV X

Stride time CV X

RMS tesultant X

Regularity step X X X

Regularity stride X X X

Symmetry (regularity
step/regularity stride)

X X X

Peak X X X

RMS X X X

RMS CV X X X

Ratio (RMS/RMS
resultant)

X X X

AP, anterior-posterior axis; ML, medial-lateral axis; VT, vertical axis; CV, coefficient of
variation; RMS, root mean squared. *Speed was determined from the GPS watch
or treadmill setting, not the accelerometer signal.
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FIGURE 2 | The data from Protocol 1 and Protocol 2 were used to create a model to distinguish treadmill running from sidewalk running. Prior to building the model,
the number of features in the training dataset was reduced following a feature selection task. The two environments from Protocol 3 were used as an independent
testing dataset for the model. The features in the testing dataset matched the selected features in the training dataset. TM, treadmill; S, sidewalk; SVM, support
vector machine; CA, classification accuracy; 10-CV, 10-fold cross-validation of the training dataset.

100 iterations were retained, and the selected features in
Protocols 1 and 2 became the training dataset. All data
processing and feature selection was done using custom
MATLAB software (v9.1.0.441655, Mathworks, Inc., Natick,
MA, United States).

Classification
The training dataset was used to train a binary support vector
machine classifier (Shmilovici, 2010) for treadmill and sidewalk,
with all hyper-parameters optimized with the MATLAB function
fitcsvm. The model was tested two ways: (1) 10-fold cross-
validation of the training dataset from Protocol 1 and 2, with
each participant’s data in only one fold at a time, and (2) the
selected features from both runs in Protocol 3 were used as
an independent testing dataset. The classification process was
repeated for 100 iterations, and an average classification accuracy
across all iterations was determined.

Statistical Analysis
Height, mass, age, and treadmill or sidewalk speed were
checked for normality and compared across protocols in separate
ANOVAs. A paired t-test was used to detect differences in
speed between treadmill and sidewalk among participants within
Protocol 3. Differences between treadmill and sidewalk for each
of the selected features were determined with independent t-tests
for the training dataset and paired t-tests for the testing dataset.
For each statistical test, significance was determined at p < 0.05,
with a Bonferroni adjustment based on number of comparisons.
All statistical analyses were done using SPSS (v24.0.0.1, SPSS,
Inc., Chicago, IL, United States).

RESULTS

There was no significant effect of protocol for height, mass, age,
or treadmill or sidewalk speed (p > 0.05). Within Protocol 3,
speed was significantly different (p = 0.001) between treadmill
running (M = 2.75 m/s, SD = 0.39 m/s) and sidewalk running
(M = 3.10 m/s, SD = 0.60 m/s).

Nine features were selected to discriminate treadmill and
sidewalk running (Table 3 and Figure 3). There was a greater
ratio of vertical acceleration during treadmill running and a
greater ratio of anterior-posterior acceleration during sidewalk
running in both the training and testing dataset. Step and stride

TABLE 3 | Selected features used in the classification model.

Mean rank Selected features

1.00 Ratio VT

1.05 Ratio AP

2.06 Regularity step ML

2.06 RMS CV ML

2.30 Regularity stride VT

2.39 RMS CV AP

2.67 RMS CV VT

2.86 Regularity stride ML

3.00 Regularity step VT

AP, anterior-posterior; ML, medial-lateral; VT, vertical; CV, coefficient of variation;
RMS, root mean squared. Features were ranked according to the order in which
they were selected during the 10-fold cross-validation of the feature selection
algorithm, and the mean rank over 100 iterations of feature selection is reported
for features selected at least 10% of the time.
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FIGURE 3 | Comparisons between treadmill (black) and sidewalk (gray) conditions for each of the nine selected features used in the model. Independent t-tests were
used for the training dataset comparisons and paired t-tests were used for the testing dataset comparisons. Since a total of 18 comparisons were made,
significance (*) was determined at p < 0.003.

regularity were significantly greater in the treadmill condition
for the vertical axis in both the training and testing dataset,
and in the medial-lateral axis for the testing dataset. During
sidewalk running, there was significantly greater variability in
the magnitude of the vertical and anterior-posterior accelerations
for both datasets.

The initial classification accuracy based on 10-fold cross-
validation of the training dataset (M = 93.17%, SD = 2.43%)
was greater than the classification accuracy of the independent
testing dataset (M = 83.81%, SD = 3.39%). Over 100 iterations,
ten participants had both conditions correctly classified at
least 82 times, and the remaining six had poor classification
of one condition but perfect classification of the other
condition (Table 4).

DISCUSSION

The purpose of this study was to classify running environments
based on features extracted from a single accelerometer
and identify features that would represent the difference
between treadmill and sidewalk running. Sidewalk running

was characterized by lower regularity and greater variability
than treadmill running and using these features, classification
accuracy over 80% was achieved for both the training dataset
and an independent dataset. These results are supported by
Lindsay et al. (2014) who also reported that the treadmill
running requires greater constraints and increased voluntary
control during running gait. Thus, researchers must use caution
when generalizing laboratory-based treadmill running results
to real-world conditions for purposes such as rehabilitation
of injuries, improved performance, and/or injury prevention
(Benson et al., 2018a).

The observed changes in running patterns in different running
environments are likely due to the consistency of the surfaces
and/or speed in each environment. For example, a treadmill offers
a smooth and consistent running surface and a constant speed
for every step, whereas outdoor running presents more variable
conditions with opportunities for changes in speed, surface,
inclination, turns in the running path, other pedestrians/runners,
and/or changes in weather or temperature (Ahamed et al.,
2017, 2018; Benson et al., 2019). This lack of consistency likely
contributed to the decrease in regularity in the vertical and
medial-lateral dimensions, and changes in the ratios of the
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TABLE 4 | Number of correctly predicted environments for each participant in the
testing dataset over 100 iterations (max = 100).

Test participant Number correct
treadmill predictions

Number correct
sidewalk predictions

1 100 1

2 100 21

3 100 25

4 100 95

5 100 96

6 100 100

7 100 100

8 100 100

9 99 100

10 92 98

11 87 99

12 84 97

13 82 100

14 53 100

15 40 100

16 13 100

magnitude of the acceleration. The decrease in regularity and
observed shift to a greater ratio of horizontal accelerations
than vertical accelerations when on sidewalk is consistent with
previous research that has shown differences between stable
and unstable surfaces based center of mass accelerations (Menz
et al., 2003; Schütte et al., 2016) and stride time analyses
(Lindsay et al., 2014). Sidewalk running was also characterized
by greater variability in the magnitude of accelerations in
all three dimensions. From a dynamical systems approach, a
lack of coordinative variability in movement patterns may be
associated with an unhealthy or pathological state (Hamill et al.,
2012). However, the current study did not calculate coordinative
variability in a manner similar to the methods proposed by
Hamill et al. (2012), so future prospective studies should consider
a link between the increased center of mass variability observed
during sidewalk running and running-related injuries.

Due to the influence of speed on the magnitude of center of
mass accelerations (Kobsar et al., 2014; Benson et al., 2018b), and
the tendency to preferentially select a slightly slower speed during
treadmill compared to overground running (Kong et al., 2012),
speed was included as a potential feature in the classification
model. However, speed was not one of the selected features
used in the model. Therefore, differences in features related
to the variability and consistency of the accelerometer signal
had a greater role in discriminating between treadmill and
sidewalk running.

The ability to generalize these results beyond the current study
may be influenced by overfitting the classification model to the
study participants (Ferber et al., 2016). Despite the use of 10-
fold cross-validation of the training dataset to attempt to improve
generalizability of classification, the model slightly overfit to the
training dataset as there was lower classification accuracy for
the independent testing dataset compared to the 10-fold cross-
validation of the training dataset. Regarding real-world usability,

previous studies that have classified IMU-generated running
and walking patterns have consistently reported classification
accuracy greater than 80% (Kobsar et al., 2014, 2015; Phinyomark
et al., 2014; Ahamed et al., 2018, 2019; Benson et al., 2018b;
Clermont et al., 2018). Thus, the reported 93.17% accuracy for
the training dataset and 83.81% accuracy for the independent
testing dataset in the current study suggests that this classification
mechanism has practical use.

The nearly 10% difference in classification accuracy between
the training and testing datasets can be attributed to differences
in running patterns between individuals in each dataset. In
the cases where an individual in the testing dataset had a low
classification rate for one environment, there was a perfect
classification rate for the other environment. This result does
not suggest that these misclassified participants have the same
running pattern in both environments, but rather their running
pattern on one environment is similar to the running patterns of
other runners on the opposite. For example, the poor treadmill
classification for test participant 16 (Table 4) was most likely
driven by anterior-posterior variability in the treadmill condition
that was greater than the sidewalk anterior-posterior variability
for all participants in the training dataset. Yet, test participant
16 had perfect classification accuracy in the sidewalk condition
as their anterior-posterior variability in the sidewalk condition
was even greater than their treadmill value. Therefore, the
misclassifications observed in this study highlight the potential
strength of subject-specific models of running biomechanics
to monitor changes in an individual’s running biomechanics
(Ahamed et al., 2018, 2019; Benson et al., 2019) and should be
further investigated in future studies.

In addition to the previous limitations discussed, other
limitations are acknowledged. First is the possibility that
other unmeasured variables may also differ between running
environments. The measured variables were previously used to
quantify running patterns and were thus considered suitable for
this study. However, a priori variable selection suggests a risk
of investigator bias and may lead to the dismissal of potentially
meaningful information that could be represented by other
variables, such as metrics related to the accelerometer signal
frequency content. Second, in addition to other accelerometer-
based features, physiological metrics such as heart rate may
differ between running environments. A further limitation is
that although many of the features used in this study were
on a scale of 0–1 (e.g., ratio of acceleration in a given axis,
symmetry, regularity), other features were not on the same scale
which may have influenced the contribution of each variable in
the classification model. Nevertheless, six of the nine selected
features, and four of the top-five features, were on the 0–1 scale,
suggesting that features with values greater than 1 did not have
an undue influence on the classification model.

In conclusion, we used a machine learning approach to
successfully select features related to the consistency and
variability of center of mass accelerations between treadmill
and sidewalk running. Overall, step and stride regularity were
significantly greater during treadmill running while sidewalk
running resulted in significantly greater variability in the
magnitude of the vertical and anterior-posterior accelerations.
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Based on a 10-fold cross-validation of the training dataset we
achieved a 93.17% classification accuracy, which was greater than
the 83.81% classification accuracy of the independent testing
dataset. The overall machine learning approach presented here
could be utilized in future running biomechanical analyses to
identify relevant differences in running patterns using IMUs.
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