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Abstract: Generalized anxiety disorder (GAD) is marked by uncontrollable, persistent worry and
exaggerated response to uncertainty. Here, we review and summarize the findings from the GAD
literature that employs functional neuroimaging methods. In particular, the present review fo-
cuses on task-based blood oxygen level-dependent (BOLD) functional magnetic resonance imaging
(fMRI) studies. We find that select brain regions often regarded as a part of a corticolimbic circuit
(e.g., amygdala, anterior cingulate cortex, prefrontal cortex) are consistently targeted for a priori
hypothesis-driven analyses, which, in turn, shows varying degrees of abnormal BOLD responsivity
in GAD. Data-driven whole-brain analyses show the insula and the hippocampus, among other
regions, to be affected by GAD, depending on the task used in each individual study. Overall, while
the heterogeneity of the tasks and sample size limits the generalizability of the findings thus far,
some promising convergence can be observed in the form of the altered BOLD responsivity of the
corticolimbic circuitry in GAD.
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1. Introduction

Generalized anxiety disorder (GAD) is characterized by uncontrollable, repetitive
thoughts pertaining to negative emotions—in other words, excessive worry [1]. Patients
with GAD suffer from heightened sensitivity to uncertainty and unpredictability, which
are well-known sources of stress [2]. Indeed, GAD patients report higher levels of stress
from daily life events compared to healthy individuals [3], and, conversely, stress reduction
programs effectively reduce anxiety symptoms in GAD [4].

As with many other psychiatric disorders, researchers have sought to discover and
develop potential brain-based biomarkers for GAD via structural and functional neuroimag-
ing methods [5]. Magnetic resonance imaging (MRI), in particular, offers a non-invasive
means to measure diverse properties of the human brain, including regional volume, func-
tional responsivity to psychological tasks, functional architecture at rest, and connectivity.
Naturally, an abundance of MRI studies of GAD has been made available over the past 20
years (see [6,7] for recent reviews of the literature).

Among them, we specifically focus on the findings from task-based functional mag-
netic resonance imaging (fMRI) experiments. These studies employ psychological tasks in
the scanner, and the subject’s blood oxygen level-dependent (BOLD) signals are acquired
as estimates of brain activity while they are performing the tasks. The rationale for our
decision to focus on neuroimaging studies of GAD using task-based fMRI is twofold. First,
unlike structural MRI or resting-state fMRI studies, task-based fMRI studies are much
more diverse and heterogeneous, as the outcomes are dependent on the nature of the tasks
used in the experiment. Thus, a closer look at the task-based fMRI literature is necessary in
order to draw general conclusions about potential brain-based biomarkers of GAD. Second,
important critiques on the usage of task-based fMRI research in clinical neuroscience have
emerged recently. These include overall power issues in the literature due to small sample
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sizes [8] and the poor test-retest reliability of BOLD signals under certain conditions [9,10].
In light of this, a careful examination of the existing task-based fMRI studies of GAD would
prove to be useful, especially for offering guidelines for future investigations.

Here, we will begin by offering a summary of a popular neurobiological framework
for anxiety: the dysregulation of emotion due to an abnormal corticolimbic circuit that
centers on the amygdala [11–13]. As we will discuss in more detail below, many task-based
fMRI studies of GAD have adopted this framework and specifically targeted the amygdala
and other components of the corticolimbic circuit. Elucidating how different tasks evoke
different corticolimbic responses in GAD would be a key first step in advancing biomarker
development for GAD.

2. Neural Circuitry for Emotional Reactivity and Regulation

Affective neuroscience research has consistently focused on the amygdala and elu-
cidated its functional role in various aspects of emotional processing [14]. This trend
continued when fMRI became widely available as a non-invasive neuroimaging tool for
surveying the human brain [15] based on two lines of prior research: fear conditioning in
animals [16] and studying patients with amygdala lesions [17]. Both lines of work high-
light the functional importance of the amygdala in processing fear and, as an extension,
provide a possible neurobiological mechanism for pathological anxiety [18]. Human fMRI
studies have since offered a more nuanced explanation for the involvement of the amyg-
dala in various aspects of emotion, such as negative affect [19], full range of valence [20],
arousal [21], and socially salient information [22]. Importantly, the amygdala does not
operate in isolation; rather, it works in concert with interconnected brain areas that include
the anterior cingulate cortex (ACC) and prefrontal cortex (PFC), which send and receive
reciprocal signals via monosynaptic pathways [23,24].

Relevantly, emotion regulation, or attempts at controlling or influencing emotional
responses [25], has been suggested as a key transdiagnostic factor for psychopathology [26],
and its underlying neural mechanisms have been studied extensively in the past two
decades [27]. Not surprisingly, the amygdala and corticolimbic circuit have been suggested
to be at the core of this psychological process, particularly the cognitive control of emo-
tion [28]. fMRI research on cognitive control of emotion (i.e., cognitive reappraisal) typically
aims to reduce amygdala responsivity to emotion-inducing stimuli [29], and several PFC
regions have been shown to provide top-down regulatory input to the amygdala [30]. Natu-
rally, the amygdala and corticolimbic circuit have been frequently targeted in fMRI studies
of anxiety [13,31]. As such, understanding the characteristics of the corticolimbic circuit
would serve as a useful prerequisite for reviewing altered BOLD signals in GAD patients.

2.1. Neuroanatomy of the Corticolimbic Circuit

We note that, while the term “corticolimbic circuit” may indicate any neural circuitry
involving at least a pair of cortical and limbic components, we are using it to refer to a neural
circuitry that consists of the amygdala and the prefrontal cortex (including the neighboring
anterior cingulate cortex). In the literature, it is also referred to as the amygdala-prefrontal
circuitry, the frontolimbic pathway, or frontoamygdalar connectivity. Regardless of the
minor differences in nomenclature, a key functional characteristic of this corticolimbic
circuit is the reciprocal relationship between the amygdala and PFC [28,32].

Most of what we know about the neuroanatomy of the amygdala, PFC, and their
connectivity is due to animal studies. Tracing studies from non-human primate brains
demonstrated that the majority of the efferent fibers from the amygdala project to the
medial portion of the PFC, including the ventromedial (vmPFC) and dorsomedial prefrontal
cortex (dmPFC), the neighboring anterior cingulate cortex (ACC), and the orbitofrontal
cortex (OFC) [23,33,34]. Likewise, afferent projections from the PFC to the amygdala
mostly originate from the vmPFC, dmPFC, and OFC [23,34,35]. This interconnectivity
is what allows PFC neurons to control and regulate amygdala activity, and such cellular
mechanisms have been identified from animal models of fear [36,37].
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2.2. Corticolimbic Circuit and Anxiety

Human fMRI studies of normative and pathological anxiety have adopted this frame-
work and hypothesized that greater anxiety would correspond to a hyperactive amygdala
due to a hypoactive PFC [11]. Many anxiety disorder studies have found support for
this prediction, particularly in the form of exaggerated amygdala BOLD signals in pa-
tient groups [38,39]. Reduced PFC and ACC BOLD signals as a function of normative
anxiety [40] and PTSD diagnoses [41] were observed. Other fMRI studies examined the
functional connectivity patterns of the corticolimbic circuit time series data and found
a generally decreased coupling between the amygdala and PFC/ACC as a function of
anxiety [42,43]. Overall, consistent with the functional neuroimaging literature of emotion
regulation, anxiety was viewed as a condition where a failure to recruit PFC/ACC leads to
a hyperactive amygdala—in other words, an imbalance of the corticolimbic circuit [13].

3. Altered BOLD Responsivity in GAD

Here, we summarize the findings from task-based fMRI studies of GAD that have
been published until 2020. Literature search was conducted using the PubMed database,
PsycINFO, and Google Scholar for papers reporting fMRI BOLD differences between
generalized anxiety disorder patients and healthy controls, using the following keywords
“GAD” AND “fMRI”. Then, we manually identified studies employing task-based fMRI
that reported task-evoked activations using stereotaxic coordinates in standard space (MNI
or Talairach space) and removed any duplicates. After restricting the written language to
English, a total of 45 studies were included. While these studies used a variety of tasks,
the majority included an emotional component (e.g., facial expressions, affective images,
emotionally charged videos, anxiety-inducing words, emotional Stroop task, and fear
conditioning/extinction). Results from the literature are organized by neuroanatomical
regions, focusing on the components of the corticolimbic circuit.

3.1. Amygdala

Many fMRI studies employed tasks with an emotional component (e.g., facial expres-
sions, aversive images, and emotionally-charged videos) that aimed to target the amygdala.
These studies mostly relied on targeted ROI analyses of the amygdala, based on a priori
hypothesis that GAD patients would show an exaggerated amygdala response to emotional
stimuli—particularly those associated with negative or aversive effects. For example, in an
emotion regulation paradigm, GAD patients, compared to healthy controls, showed greater
amygdala reactivity when instructed to view negative emotional images [44]. In response
to negative vs. neutral words in an emotional Stroop task, GAD patients showed higher
amygdala activity than healthy controls [45]. Generating worry topics also elicited greater
amygdala activity in older (>60 years of age) GAD patients [46]. During script-driven im-
agery, GAD patients exhibited increased amygdala activity in response to disorder-related
scripts compared to healthy volunteers [47]. GAD patients showed exaggerated dorsal
amygdala reactivity to cues that predict subsequent pictures, regardless of whether their
contents were aversive or neutral [48]. However, a few other studies reported no such
amygdala effects, or even attenuated amygdala activity in GAD patients [49–51].

The most popular type of emotional stimuli used to elicit amygdala reactivity in fMRI
investigations of GAD was facial expressions. While task heterogeneity was evident across
many studies (e.g., differences in the behavioral task, stimulus presentation, and emotional
category used), the general pattern of findings pointed towards exaggerated amygdala
BOLD response in GAD. For example, children diagnosed with GAD showed increased
amygdala activity to fearful vs. happy faces [52] and to angry vs. neutral faces [53]
compared to their healthy counterparts. Consistent with these findings from pediatric
GAD patients, adult GAD patients also exhibited elevated amygdala activity in response
to threat-related (fearful and angry) vs. non-threatening (happy) faces [54]. Interestingly,
a subsequent study by the same group demonstrated that, when fearful and angry face
conditions were separated, increased amygdala BOLD response in GAD was only observed
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for the fearful vs. happy face contrast [55]. In affective neuroscience research, due to the
differences in the facial features and the emotional signals embedded within them, fearful
faces are used to measure an individual’s sensitivity to implicit environmental threat,
whereas angry faces are used to index sensitivity to explicit interpersonal threat [56]. Here,
of particular relevance to GAD symptomatology is that fearful faces are characterized by
its inherent ambiguity with regard to the source of the threat—when we see another person
expressing fear, we know about the presence of threat, but the source of that threat remains
unclear [57]. This uncertainty may, in part, account for the observed exaggerated amygdala
BOLD response to fearful faces that GAD patients exhibit. Finally, we note that one study
reported increased amygdala activity to neutral faces in GAD patients [58]. However, one
earlier study failed to observe exaggerated amygdala activity to fearful vs. neutral faces
in GAD patients. In fact, a blunted amygdala response was found, as healthy volunteers
showed greater amygdala activity to this contrast [59].

To summarize, task-based fMRI studies of GAD that employed an emotional task
often set out to target the amygdala, on the premise of its hyper-responsivity to negative
valence and/or threat-related stimuli. While there were a number of studies showing
mixed findings, this prediction was supported overall.

3.2. Anterior Cingulate Cortex

Similar to studies targeting the amygdala, many fMRI experiments employed tasks
with an emotional component that included the presentation of facial expressions, negative
and positive images, worry-inducing sentences and items, and fear conditioning paradigm.
Based on the known regulatory role of the ACC on the amygdala during affective process-
ing [60], especially when cognitive control is involved [61], these studies sought out to
test the hypothesis that GAD patients would display reduced ACC response to emotional
(often threat-related) stimuli. For example, while viewing emotional faces, GAD patients,
compared to healthy controls, showed diminished ACC reactivity to fearful vs. neutral
faces [62,63] and happy vs. neutral faces [63]. In a study utilizing an emotion regulation
paradigm, GAD patients showed dampened dorsal ACC responses when instructed to
maintain their emotional responses to negative images [64]. Another emotion regulation
study reported that GAD patients exhibited lower levels of dorsal ACC activity when
instructed to downregulate their emotions to negative pictures [49]. In the same study,
GAD patients showed decreased rostral ACC reactivity in the incongruent conditions
of an emotional Stroop task [49]. Consistent with these findings, in a fear conditioning
paradigm, GAD patients displayed lesser ACC activity to safety signals vs. threat signals
compared to healthy controls [65]. It is worth noting, however, that there were a couple of
studies reporting an opposite pattern—that is, exaggerated ACC reactivity in GAD patients
compared to healthy controls [52,54]. Once again, these inconsistencies can be attributed to
a wide range of factors, including task heterogeneity, age differences (adult vs. adolescent
GAD), and small sample sizes.

Of note, a few studies utilizing worry-generating situations consistently showed
enhanced ACC reactivity in GAD patients. For example, while performing a worry in-
duction task with sentences and faces, GAD patients exhibited increased ACC reactivity
to post-worry states compared to healthy controls [66]. In a worry regulation task with
scripts, worry induction state elicited greater rostral ACC reactivity in geriatric GAD pa-
tients [67]. These findings suggest a link between abnormally increased ACC responsivity
and pathological hypervigilance to worry-inducing situations in GAD patients. Greater
ACC recruitment in GAD may reflect automatic emotion regulation [67] and introspective
rumination [66] to overwhelming worry, as worry-inducing situations are more salient to
GAD patients than to healthy individuals [46]. This interpretation aligns with cognitive
neuroscience research that considers the ACC as a core component of a brain network for
salience processing [68]. In addition, while listing worry topic items vs. neutral items, geri-
atric GAD patients showed exaggerated response in one area of the ACC (peak voxel: MNI
14, 34, 16) and dampened response in a more dorsal portion of the ACC (peak voxel: MNI
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8, 12, 26), suggesting that subregions within the ACC may be affected differently by GAD
pathophysiology [46]. Overall, findings with regards to ACC appears to largely depend on
the type of task used; those that involve worry induction are consistently reporting greater
ACC reactivity in GAD, while most other tasks (e.g., facial expressions, emotional images,
fear conditioning) show decreased ACC reactivity in GAD.

3.3. Prefrontal Cortex

While PFC is generally understood to provide top-down, regulatory inputs to subcor-
tical areas (e.g., amygdala) during affective processing [32], its major subregions, including
vmPFC, vlPFC, dmPFC, and dlPFC, are suggested to play different functional roles as a
component of a corticolimbic circuit [13]. For example, vmPFC regulates amygdala activity
during fear conditioning [24], whereas vlPFC, dmPFC, and dlPFC are involved in the
top-down control of the amygdala during the cognitive control of emotion [30]. It follows
then that different PFC subregions are probed across fMRI studies of GAD, depending on
the characteristics of the task.

During fear conditioning, converging evidence was found for reduced vmPFC re-
activity in response to safety (or most dissimilar to threat) vs. threat signals in GAD
patients [65,69,70]. In one such study, GAD patients also showed simultaneous increases
in dlPFC activation in response to safety vs. threat signals [65]. These findings support
the prediction that impaired vmPFC function in GAD is associated with the overgeneral-
ization of fear. In addition, when listing or imagining items after a narrative instruction,
GAD patients showed reduced vmPFC responses to worry/disorder-related vs. neutral
stimuli [46,47] while displaying greater vlPFC and dmPFC responses [47] compared to
healthy individuals. In a non-emotional memory task, GAD patients showed reduced
vmPFC reactivity while suppressing the memory of paired words than during retrieval
conditioning [71]. Collectively, these findings offer a link between abnormally decreased
vmPFC responsivity and GAD pathophysiology.

During an emotion regulation paradigm, GAD patients showed diminished dmPFC
and dlPFC activity during the cognitive reappraisal of negative emotions, as well as reduced
vlPFC reactivity when maintaining emotional responses [64]. Similarly, in other fMRI
studies utilizing cognitive control tasks (e.g., emotional Stroop task, working memory task)
in conjunction with emotional stimuli (e.g., affective words, anxiety-inducing pictures),
GAD patients showed decreased dmPFC [72] and dlPFC [45,73–75] responses to emotional
conflict. These findings are consistent with a meta-analysis of functional neuroimaging
studies that focused on tasks involving cognitive control of emotion [30]. Furthermore,
GAD patients exhibited decreased coupling with negative valence and high arousal in
dmPFC and dlPFC when watching a 42 min video (an episode of Lost) with affective
content [50]. When contemplating the likelihood of experiencing future events, GAD
patients showed decreased activity in the rostral mPFC, which is proximal to dmPFC, in
response to high- vs. low-impact events [76]. Once again, a consistent picture was painted
with regards to the functional abnormalities of dmPFC and dlPFC, such that their decreased
responsivity was associated with GAD pathophysiology.

In contrast to the aforementioned findings that suggest an overall decrease in the
degree of regulatory PFC signals in GAD, some studies have reported that GAD patients
exhibited elevated PFC region responses to threat-related stimuli. Compared to healthy
individuals, both adult and pediatric GAD patients showed increased PFC responses (e.g.,
dlPFC, vlPFC, vPFC, and mPFC) to negative emotional stimuli (e.g., anxiety-inducing
words, anxiety-inducing pictures, unpleasant pictures, fearful faces, and angry faces) in
various task situations [52,77–81]. Taken together, these findings further highlight the
importance of task heterogeneity in fMRI studies when considering functional abnor-
malities of the PFC in GAD. Studies demonstrating either exaggerated or blunted PFC
responsivity in GAD are not at odds with one another; rather, they are readily explained by
the differences within the experimental paradigm employed for each fMRI task. Overall,
tasks tapping into the overgeneralization of fear consistently produce reduced vmPFC
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activity, while those requiring cognitive control of emotion are consistently associated with
decreased dmPFC and dlPFC activity. Other tasks that involve viewing or responding to
negative emotional stimuli may elicit exaggerated PFC responses in GAD.

3.4. Other Brain Regions

Outside of the brain regions typically considered to be components of a corticolimbic
circuit for affective processing, functional abnormalities of the insula and the hippocampus
are often reported in GAD (see [4] for meta-analyses). GAD patients showed diminished
insula reactivity when they were asked to cognitively reappraise [44] or maintain [64]
negative emotions during an emotion regulation paradigm. In a cognitive control task
in which participants contemplated likelihoods of future events that may occur, GAD
patients exhibited weaker insula reactivity to high-impact vs. low-impact situations [76].
Meanwhile, in a task that requires the subjects to count their own heartbeat and auditory
tone, GAD patients displayed greater insula reactivity to their heartbeat vs. pure tone [82].
The elevated response of the insula to the sound of one’s own heartbeat implies a high level
of interoceptive awareness [83]. A few studies using emotionally charged stimuli reported
exaggerated insula reactivity in both adult and geriatric GAD patients. For example, in
response to emotionally negative stimuli (e.g., unpleasant images, angry and fearful faces,
and worry topic items), GAD patients showed increased insula reactivity compared to
healthy controls [46,54,77]. In addition, during a reinforcement learning task, exaggerated
insula activity was found in response to both gain and loss situations in GAD patients [84].
In an emotion detection task, however, GAD patients exhibited decreased insula response
to both fearful and happy faces vs. neutral faces [62].

In studies utilizing fear conditioning, GAD patients exhibited diminished hippocam-
pal reactivity to threat signals compared to healthy controls [65,85]. The impaired re-
sponsivity of the hippocampus in GAD patients, in conjunction with the vmPFC, may
explain their difficulty in discriminating safety signals from threat signals, as well as over-
all vulnerability to threat-related stimuli. In addition, a few studies using emotionally
charged stimuli showed decreased hippocampus reactivity in GAD patients. For example,
in response to anxiety-inducing words during an explicit memory task, GAD patients
showed dampened hippocampal activity compared to their healthy counterparts [80,81].
Processing happy and fearful faces (vs. neutral faces) also elicited weaker hippocampal
reactivity in GAD patients [62]. In contrast, while performing memory tasks, GAD patients
displayed exaggerated left hippocampal response to negative image distractors compared
to healthy controls [74,75]. It is worth mentioning that the opposite activation patterns of
the hippocampus appeared across a series of studies conducted by the same research group,
utilizing a similar experimental paradigm with some notable differences. A likely expla-
nation for the seemingly opposite effect is that, when GAD patients were presented with
anxiety-inducing stimuli that served as a distractor to the main task, their hippocampal
activity was increased; when asked to explicitly pay attention to anxiety-inducing stimuli,
their hippocampal activity was decreased. These results again illustrate the importance of
considering task goals when interpreting the findings from fMRI research.

4. Factors Contributing to the Mixed Findings in Task-Based fMRI Studies of GAD

Overall, task-based fMRI studies of GAD showed converging evidence for exaggerated
amygdala responsivity and reduced PFC reactivity, aligning with the popular framework
represented by the corticolimbic circuit, but they also displayed some mixed findings
(Figure 1). Factors that may contribute to this observation include (1) the heterogeneous
nature of the tasks used in fMRI research, (2) limited sample size at an individual study
level, and (3) the reliability of task-evoked amygdala BOLD signals. Among these issues,
task heterogeneity is not a concern on the researcher’s part. fMRI tasks can, and should be,
tailored to meet the specific goals of each individual study. Rather, readers would need to
exercise caution when drawing conclusions, as the interpretation of data must be carefully
done within the boundaries of the study context. That being said, for future investigations,
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it may be worth considering the active utilization of tasks that focuses on uncertainty, as
GAD is hypothesized to be sensitive to uncertain information. As an example, separating
the presentation of fearful (uncertain threat) vs. angry (certain threat) faces during an fMRI
task would likely yield more promising results with increased specificity and precision [55].
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(GAD), focusing on blood oxygen level-dependent (BOLD) signal changes within the corticolimbic
circuit and other brain regions. Overall, the results were largely dependent upon the task used to
elicit regional brain activity. ACC: anterior cingulate cortex; AMY: amygdala; dmPFC: dorsomedial
prefrontal cortex; HIP: hippocampus; INS: insula; vmPFC: ventromedial prefrontal cortex.

Limited sample size is, potentially, a more serious issue that needs to be addressed
by researchers. Currently, the average sample size of the studies included in this review
is approximately 20 subjects for both GAD and healthy control groups, and the study
with the greatest number of GAD patients had 46, which is generally in line with the
clinical fMRI literature [8]. This is a suboptimal number for fMRI research, given that
clinical studies inherently deal with between-subject variability [86]. Results from under-
powered studies would likely be unreliable and could negatively impact the replicability
of the findings [87,88], potentially contributing to the mixed findings in the literature.
Of course, practical issues such as limited resources prevent individual research groups
and labs from performing large-scale data collection and analysis. As such, perhaps a
multisite collaborative effort such as the Enhancing NeuroImaging Genetics through Meta-
Analysis (ENIGMA) consortium [5] may be a useful means to counter the drawbacks
of underpowered individual studies, as well as gain a clearer picture of abnormal brain
functional responsivity patterns in GAD. For such efforts to achieve greater heights, the
development of specific tasks and experimental paradigms that are tailored to probe GAD
psychopathology would be useful.

Lastly, it has been recently suggested that BOLD responses from emotional tasks,
especially from limbic regions, have poor psychometric properties (e.g., test-retest reli-
ability) [7,8]. While the current review found generally consistent findings concerning
the amygdala, this warrants attention for future task-based fMRI investigations, as the
issue of reliability becomes exacerbated by small sample sizes [88]. Possible approaches
to circumvent this issue include ensuring external factors that affect BOLD signals are
accounted for as much as possible as well as analyzing multivariate activity patterns in
addition to traditional regional activity changes [89].



Int. J. Mol. Sci. 2021, 22, 3630 8 of 11

5. Conclusions

In summary, we found that task-based fMRI studies of GAD have frequently targeted
three brain regions that are components of the corticolimbic circuit: the amygdala, ante-
rior cingulate cortex, and prefrontal cortex. The amygdala showed overall hyperactivity
tendency to negative emotional stimuli in GAD. Increased activation in the ACC has
been observed consistently in response to worry induction, while the opposite pattern
was found in most other task paradigms (e.g., facial expressions, emotional images, and
fear conditioning). In GAD, negative emotional stimuli elicited greater PFC reactivity in
general while fear overgeneralization tasks reported dampened responses in the vmPFC
specifically. In particular, emotion regulation tasks produced reduced dmPFC and dlPFC
activity in GAD patients. In other brain regions, the insula showed exaggerated responses
to negative emotional stimuli and lesser reactivity associated with emotion regulation
in GAD. In addition, GAD patients exhibited diminished hippocampal activity to threat
signals and the opposite reactivity effect was found in memory tasks. Taken together,
the current GAD literature using task-based fMRI shows generally converging results,
along with some mixed findings. The latter could be explained by a combination of task
heterogeneity, limited sample size, and the suboptimal reliability of some task-evoked
BOLD signals. Overcoming these potential problems in task-based fMRI research would
further our understanding of the pathophysiology of GAD, which, in turn, can contribute
to the development of a promising biomarker.
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