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Although therapeutic options for patients with advanced renal cell carci-

noma (RCC) have increased in the past decade, no biomarkers are yet

available for patient stratification or evaluation of therapy resistance.

Given the dynamic and heterogeneous nature of clear cell RCC (ccRCC),

tumor biopsies provide limited clinical utility, but liquid biopsies could

overcome these limitations. Prior liquid biopsy approaches have lacked

clinically relevant detection rates for patients with ccRCC. This study

employed ccRCC-specific markers, CAIX and CAXII, to identify circulat-

ing tumor cells (CTC) from patients with metastatic ccRCC. Distinct sub-

types of ccRCC CTCs were evaluated for PD-L1 and HLA-I expression

and correlated with patient response to therapy. CTC enumeration and

expression of PD-L1 and HLA-I correlated with disease progression and

treatment response, respectively. Longitudinal evaluation of a subset of

patients demonstrated potential for CTC enumeration to serve as a phar-

macodynamic biomarker. Further evaluation of phenotypic heterogeneity

among CTCs is needed to better understand the clinical utility of this new

biomarker.

1. Introduction

Renal cell carcinoma (RCC) is one of the top ten

causes of cancer death in the United States [1].

Approximately 25% of patients present with meta-

static disease, and an additional 20-30% of patients

with localized cancer will develop metastatic disease

despite curative intent radical nephrectomy [2]. The
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most common histologic subtype is clear cell RCC

(ccRCC), representing approximately 85% of patients

diagnosed with RCC [3]. Currently, the standard of

care treatment approaches for most ccRCC patients

include either a dual regimen of immune checkpoint

inhibitors (ICIs) (ipilimumab/nivolumab) or an ICI

combined with tyrosine kinase inhibitors (TKIs) tar-

geting the Vascular Endothelial Growth Factor Recep-

tor (VEGF-R) (e.g., Pembrolizumab/Axitinib) [4].

Unfortunately, there are no predictive biomarkers in

ccRCC to guide treatment selection of these different

therapeutic options nor to identify early signs of treat-

ment resistance.

Programmed death ligand (PD-L1) expression in a

tumor biopsy from a single lesion has shown predictive

value for ICIs in some solid tumors such as lung can-

cer, but not ccRCC [5-9]. This may be due to the high

levels of spatial tumoral heterogeneity across the pri-

mary tumor and metastatic lesions that would not be

captured by analysis of a single tumor biopsy [5-7,10].

Furthermore, effective PD-L1 blockade relies on func-

tional antigen presentation on the tumor cell surface,

where ~ 40% of patients with ccRCC have downregu-

lated expression of the required human leukocyte anti-

gen class I (HLA-I) [9,11]. HLA-I expression levels

have been linked to overall prognosis in ccRCC, as

well as specific response rates to TKIs, providing a

rationale for evaluating both PD-L1 and HLA-I in

correlation with response to VEGF-R TKIs and ICIs

[8,12]. Evaluating these biomarkers on circulating

tumor cells (CTCs) could better account for intra- and

intertumoral heterogeneity, leading to the development

of biomarkers with predictive utility for patients with

ccRCC.

Previous approaches to evaluate CTCs in ccRCC

have shown limited clinical value due to either low

detection rate or high false positives. Methods using

standard antibodies for CTC capture and identifica-

tion (i.e., epithelial cell adhesion molecule (EpCAM)

and cytokeratin (CK)), which can be downregulated

in ccRCC, only identified CTCs in 16-25% of

patients and with an average of 1 CTC per 7.5mL of

blood [13-18]. Other attempts to use nonstandard

capture antibodies have encountered lower specificity

due to non-neoplastic cells in the blood (e.g., neu-

trophil and endothelial cells) being falsely identified

as CTCs [19-26].

We hypothesize that the poor detection rate of

CTCs in ccRCC is due to differential expression of the

classic markers used for CTC identification (i.e.,

EpCAM and CK) in traditional CTC assays. Prior

studies have found that carbonic anhydrase (CA)

genes, such as CAIX and CAXII, are expressed in

nearly all ccRCC biopsies, potentially due to hypoxia

and VEGF dependence in this disease [3,27]. CAIX is

a known diagnostic marker used for clinical pathologic

analysis to diagnose renal cell carcinoma [28-30], and

others have shown elevated CAXII expression in renal

cells [31-34]. Evaluation of these renal-specific markers

identified expression in ccRCC CTCs using multicolor

flow cytometry. A microfluidic technology known as

exclusion-based sample preparation (ESP) demonstrat-

ing high capture efficiency of low-affinity targets was

utilized to capture ccRCC CTCs with both CAIX and

EpCAM [35]. High specificity was achieved by adopt-

ing a rigorous white blood cell (WBC) and endothelial

cell exclusion panel, and with positive CTC identifica-

tion that differentiated between CTCs expressing

CAXII as opposed to CK [20]. CTC number and PD-

L1/HLA-I expression was associated with disease

response determined by radiographic imaging. CTC

heterogeneity was identified in a subset of patients,

highlighting the importance of evaluating phenotypic

signatures in liquid biopsies for ccRCC. The results

from this initial cohort support the integration of these

biomarkers in prospective clinical trials.

2. Materials and methods

2.1. Cell culture

RCC cell lines were maintained at 37 °C and 5% CO2.

SK-RC52 (RRID:CVCL_6198) and 786-O (RRID:

CVCL_1051) cell lines were cultured in Corning Cell-

gro RPMI 1640 Medium (Corning, 10-040-CV, Corn-

ing, NY, USA) with 10% Fetal Bovine Serum (FBS)

(Life Technologies, 10437-028, Carlsbad, CA, USA),

2% penicillin-streptomycin (Hyclone, SV30010, Logan,

UT, USA), 1% sodium pyruvate (Corning, 25-000-CI),

and 0.1% beta-mercaptoethanol. CAKI-1 (RRID:

CVCL_0234) and CAKI-2 (RRID:CVCL_0235) were

purchased from ATCC, and cell lines were cultured in

McCoy’s 5A Medium (Modified) media (Hyclone,

SH3020001) with 10% FBS and 2% penicillin-strepto-

mycin. All cell lines were authenticated by short tan-

dem repeat profiling in October of 2018 by UW-

Madison TRIP laboratory.

2.2. Patient samples

Fifty eight peripheral blood samples from 29 patients

with ccRCC were processed under an IRB approved

protocol from either Dana-Farber Cancer Institute

(2017-1567) (seven samples from seven patients) or the

University of Wisconsin-Madison Carbone Cancer
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Center (2014-1214) (51 samples from 22 patients)

(Table 1). All patients provided written consent prior

to enrollment, and study methodologies conformed to

the standards set by the Declaration of Helsinki.

Detailed patient characteristics are provided in supple-

mental materials (Table S1), including treating physi-

cian interpretation of radiographic assessment of

disease response within closest proximity to the blood

draw (average 3.6 weeks, range 0–12 weeks). Periph-

eral blood mononuclear cells (PBMCs) were isolated

from whole blood using a Ficoll gradient and fixed for

15 min as described previously [36]. PBMCs were fixed

within 48 h from the time of blood collection.

2.3. Flow cytometry

PBMC protein expression profiling was performed by

flow cytometry on an LSR Fortessa (BD Biosciences,

San Jose, CA, USA) and analyzed with FLOWJO soft-

ware v9.9 (Treestar, OR) courtesy of the University of

Wisconsin Flow Core facility. Samples were stained for

extracellular markers CAIX (R&D systems, AF2188,

Minneapolis, MN, USA, conjugated to PE-Cy7 with

abcam kit ab102903), CAXII (FITC, Cedarlane Labs,

10617-MM07-F, Burlington, NC, USA), EpCAM (PE,

Abcam, ab112068, Cambridge, MA, USA), CD11b

(647, BioLegend, 101218, San Diego, CA, USA), CD14

(APC, BioLegend, 301807), CD34 (647, BioLegend,

343508), CD45 (647, BioLegend, 304018), CD235a

(APC, BioLegend, 349113), and a Live/Dead fixable

viability dye (violet 510, Tonbo Biosciences, 13-0870-

T100, San Diego, CA, USA) prior to fixation and per-

meabilization with BD Cytofix/Cytoperm (BD,

554723). Following fixation and permeabilization, cells

were stained for pan-cytokeratin (C-11, BioLegend,

628602, conjugated to A790 (Life Tech, A20189)).

Putative CTC populations were defined by positive

expression of either CAIX, CAXII, CK, or EpCAM

and negative for the expression of normal cell markers

(described as exclusion markers) CD11b, CD14, CD34,

CD45, or CD235a (Fig. S1). Exclusion markers identify

myeloid cells (CD11b and CD14), immature

hematopoietic and endothelial cells (CD34), mature

hematopoietic (CD45), and immature red blood cells

and plasma B cells (CD235a). Euler diagrams were

used to convey the complex relationships between the

different CTC biomarkers: where circles of different

sizes represent the sizes of each subpopulation, and the

degree of overlap between different circles represents

the frequency of cells expressing multiple biomarkers.

2.4. CTC capture

ESP technology was used to isolate CTCs from patient

samples. ESP enables multiple purification processes in

sequence (e.g., cell capture, extracellular staining) with

high recovery and low cell loss [35]. Analytes were

bound to antibody-functionalized paramagnetic parti-

cles (PMPs) and magnetically drawn across phase

boundaries (aqueous/oil interface) using an external

magnetic force to isolate the PMP-bound analyte from

the sample. Antibody concentration was tested on live

and fixed RCC cell lines to optimize capture efficiency

using the ExtractMAX, an automated ESP platform

[37].

Patient CTCs were extracted using the VERSA (Ver-

satile Exclusion-based Rare Sample Analysis) platform,

Table 1. Patient Characteristics Summary of clinical characteristics

for the cohort of patients evaluated in association with these data

sets (n = 29). Patients 21–26 are not included in summary

statistics for ‘Therapy at Time of Blood Draw’; see Figure 4 for

further detail. Additional details for each individual are provided in

the supplemental materials

Patients (n = 29)

Age 61 (44-79)

Gender

Male 62% (18)

Female 38% (11)

Histology

Clear Cell 100% (29)

Rhabdoid Features 17% (5)

Sarcomatoid Features 7% (2)

Fuhrman grade

1 0% (0)

2 38% (11)

3 21% (6)

4 24% (7)

NA 17% (5)

Prior nephrectomy 52% (15)

Lines of prior therapy

0 41% (12)

1 17% (5)

2 17% (5)

3 14% (4)

≥4 10% (3)

Metastatic sites at time of blood draw

Lung 66% (19)

Liver 34% (10)

Lymph Node 31% (9)

Adrenal 31% (9)

Bone 21% (6)

CNS 17% (5)

Other 48% (14)

Therapy at time of blood draw

TKI 62% (18)

Immunotherapy 10% (3)

Combination 3% (1)

None 7% (2)
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a manual ESP technology [36]. This ESP technology

captures low-affinity analytes with greater efficiency

than tube-based methods, but to further maximize

yield, cells were bound to antibodies to CAIX (R&D

Systems, BAF2188) and EpCAM (R&D Systems,

AF960) before being bound to large PMPs, SeraMag

Speedbeads (GE Life Sciences, 21152104010150, Bos-

ton, MA, USA), to minimize steric hindrance [38].

CTCs were captured with both CAIX and EpCAM to

ensure retention of cells traditionally considered CTCs,

but to also target the large frequency of cells observed

to express CAIX in the flow cytometry experiments

(see Fig. S2 for cell line confirmation of the functional-

ity of this dual antibody approach).

2.5. CTC staining and fluorescence microscopy

Captured cells were first stained with Hoechst, antibod-

ies against CAXII (Cedarlane Labs, 10617-MM07-F),

CD34 (Biolegend, 343505), CD45 (Biolegend, 304008),

CD66b (Biolegend, 305106), and either PD-L1 (Abcam,

ab205921) or HLA-I (Biolegend, 311416). A donkey

anti-rabbit IgG (Biolegend 406414) secondary stain

was used with the PD-L1 antibody prior to intracellu-

lar staining. Following extracellular staining, cells were

permeabilized with BD Perm/Wash buffer (BD Bio-

sciences, 51-2091KZ) and stained with an Alexa Fluor

790 conjugated pan-CK (C-11, Biolegend, 628602).

The CTCs were identified after isolation using fluo-

rescent antibodies against both CK and CAXII, which

were maintained on separate fluorescent channels to

evaluate the heterogeneity of different CTC subpopu-

lations (see Table S3 for an overview of which anti-

bodies were used at which steps in the methods). The

combination of both CAIX at the capture step, with

CAXII at the identification step maximizes the speci-

ficity of CTC identification using the alternative mark-

ers, ensuring the evaluation of a population with a

truly renal cancer origin.

After staining, the samples were washed three times

with phosphate buffered saline (PBS), and then imaged

with a 10X objective using a Nikon Eclipse Ti-e fluo-

rescent microscope (Nikon, Minato City, Japan) with

NIS-Elements AR 4.51.01 software (Nikon). Samples

were transferred to a glass slide for high resolution

imaging using a 40X apo objective. Imaging of isolated

CTCs occurred within 24 h of fixation.

2.6. Image analysis

Patient CTC images were analyzed using NIS-Ele-

ments AR Analysis 4.51.01 (Nikon). Using an auto-

mated sequence of image analysis algorithms,

background fluorescence was rolling ball subtracted

prior to setting a binary threshold defining a cell’s

boundary. Thresholds were set for positive expression

of CAXII, cytokeratin, exclusion (CD34, CD45, and

CD66b), PD-L1, and HLA-I using the principles of

clustering as in flow cytometry [20,39]. CTCs were

defined as a cell with an intact nucleus, exclusion nega-

tive, and CAXII or CK positive. Captured cells that

were negative for exclusion markers and also negative

for CAXII and CK were not counted as CTCs. Each

putative CTC underwent rapid manual review to con-

firm the absence of potentially interfering image arti-

facts. Analysts were blinded to patient clinical data

until all CTC analysis was finalized.

PD-L1 and HLA-I expression was assessed on CTCs

to evaluate the feasibility and sensitivity of the assay

to detect differences in expression among patients.

Each individual CTC was quantified for the expression

levels of both PD-L1 and HLA-I after subtracting the

average background fluorescence to account for vari-

ability in washing step efficiency. These single-cell

results were then analyzed to generate summary statis-

tics conveying both the percentage of cells with posi-

tive expression (% positive) as well as the average

expression of each biomarker in each CTC subpopula-

tion identified from each patient sample. Positive

expression was defined as expression above a set cutoff

based on population clustering, similar to flow cytome-

try [20,39].

2.7. Statistical analysis

Data were compiled in GRAPHPAD PRISM 7.01 (San

Diego, CA, USA) for statistical comparisons. One-way

ANOVAs with multiple comparisons were performed

across the different conditions for the cell line capture

optimization. A two-tailed t-test assuming unequal

variance was performed on total enumeration between

patients who were progressing on their current therapy

and patients who were stable or responding on their

current therapy, with P < 0.05 considered statistically

significant. Receiver operating characteristic (ROC)

curves were performed in GRAPHPAD PRISM, setting

responding patient samples as the control group and

progressing patient samples as the patient group and

evaluating the relationship with a confidence level of

95%. Patient samples were categorized as responding

or progressing based on the treating physician’s inter-

pretation of radiographic assessment. Optimal diagnos-

tic cutoffs were determined based on the cutoff

associated with the highest likelihood ratio value. A

ROC curve with a P-value of < 0.05 was considered

a statistically significant association with disease
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response or progression compared to the reference

curve of a completely random classifier. Area under

the curve (AUC) was calculated from ROC curves

within Prism.

3. Results

3.1. Heterogeneity of ccRCC markers on cells in

circulation

Potential markers for CTC identification in ccRCC

were identified by evaluating blood samples collected

from six patients with metastatic ccRCC using multi-

color flow cytometry (Table S2). Cellular profiling of

samples from three representative patients (Fig. 1)

demonstrates the extensive heterogeneity of CTC

markers: where a large frequency of exclusion channel

negative cells (CD11b�, CD14�, CD34�, CD45�,

CD235a�) did not simultaneously express all tumor-

specific markers (CK, EpCAM, CAIX, and CAXII).

CTC subpopulations varied in the degree of co-expres-

sion of tumor-specific markers between different

patients as shown by Euler diagrams. Cells positive for

exclusion markers represent potential confounding

populations and were excluded from this phenotypic

analysis. CK+ cells were only detected in 4 out of 6

patients (average frequency of 6% of the exclusion

cells; range 0.1-23.4%) and CK� cells were detected in

all 6 patients (average frequency of 96%; range 76.6-

100.0) (Table S4). CK+/EpCAM+ cells were detected

in 3 patients (average rate of 14%; range 6.3–27.1%),

whereas CK�/EpCAM+ cells were detected in 4

patients (average rate of 1%; range 0.2–2.3%).

CAIX and CAXII were detected in samples from all

6 patients within both CK+ and CK� cells. In addi-

tion to being expressed by CTCs from all samples,

CAIX and CAXII were expressed on a higher percent-

age of cells on average compared to EpCAM. CAIX

was expressed with an average frequency of 75%

within CK+ and 38% within CK� cells. CAXII was

expressed with an average frequency of 72% within

CK+ and 7% within CK� cells. There was one CK+/
EpCAM+ cell population in a single patient that did

not co-express CAIX and CAXII, which suggests that

CK and EpCAM retain some limited utility to identify

CTC subtypes in a diverse patient population.

3.2. ccRCC CTC enumeration correlates with

clinical progression

The flow cytometry experiments demonstrated that

the CA antigens were both co-expressed and indepen-

dently expressed by different populations of cells.

CK-CK+ EpCAM+CAIX+ CAXII+

100%

63%

26% 11%

76.6%

55%21%

4%

2%

6%

6%

96%

1%

2%

1%
6%

99.9%

10%60%

69%

22% 9%

15%

10%

5%

A B C

CK- CK+ CK- CK+ CK-

Fig. 1. Heterogeneity of RCC biomarkers on cells in circulation. Flow cytometric evaluation of the frequency of expression of different

biomarkers on CTCs from n = 3 different patients (A, B, or C). The first row of pie graphs represents the distribution of CK-positive CTCs

(gray) vs. CK-negative / exclusion channel negative cells (purple). The second row of Euler diagrams portrays the frequency of expression of

other markers of renal cancer origin (CAIX, CAXII, and EpCAM) within the CK-positive vs. CK-negative / exclusion negative cell fractions.

Overlapping circles indicate the co-expression of different biomarkers on the same cells. Subpopulation frequencies are rounded to the

nearest whole percent, with percentages < 0.5% excluded. Exact percentages are provided in Supplementary Table 2.
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However, flow cytometry does not enable manual

review of cell staining which precludes the ability to

remove any potentially interfering image artifacts,

which is particularly important to improve specificity

of rare cell analytics. Both EpCAM and CAIX were

used to improve the sensitivity of CTC capture using

ESP technology, then combined with fluorescence

microscopy for CK and CAXII protein staining

(Fig. 2A). Solid tumor biopsy tissue from 8 of the

patients in this study (Patient ID 9, 13, 16, 18, 22, 24,

25, and 26) were stained for CAIX, and all 8 samples

showed positive expression of CAIX, rationalizing this

approach to capturing CTCs with the CAIX anti-

body. CTCs were detected in 100% of samples evalu-

ated from patients with metastatic ccRCC but not in

the two samples from healthy donors (Fig. 2C).

Patient samples were categorized as progressing or

responding based on the treating physician’s interpre-

tation of radiographic scans (Table 1). Samples drawn

near the time of radiographic progression had an

average of 19.8 CTCs�mL�1 (range 0.5–163.1), which

was significantly higher than in samples from patients

responding to treatment who had an average of 2.3

CTCs�mL�1 (range 0.1–6.5, P < 0.05). This data set

was further evaluated with a ROC curve to identify

the cutoff that maximizes specificity without sacri-

ficing sensitivity (Fig. 2C). The optimal cutoff for dif-

ferentiating between progressing and responding

samples was 4.8 total CTCs�mL�1, which provided a

sensitivity of 55% and a specificity of 89% with a

likelihood ratio of 4.9 and a P-value less than 0.05

suggesting a statistically significant association with

disease progression.

We hypothesized that the composition of different

CTC subpopulations may reflect intralesional tumor

heterogeneity and evaluated their independent associa-

tion with clinical outcomes. Specifically, CAXII+
CTCs lacking expression of cytokeratins may identify

a less differentiated and more aggressive phenotype,

and as such, CTCs were divided into those with

CAXII expression only [CAXII single positives

(CAXII S+)] vs. those expressing CK [either CK sin-

gle-positive (CK S+) or CK/CAXII double-positive

(DP)]. Heterogeneity in the frequency of CK and

CAXII subpopulations was observed between different

patients (Fig. 2D). ROC curve evaluations of two

groups of CTCs (CAXII S+ vs. CK+ (either CK S+ or

DP)) revealed that the number of CK+ CTCs (2.6/mL

optimal cutoff) significantly correlated with radio-

graphic progression (P < 0.05), whereas the number of

CAXII S+ CTCs did not (P > 0.05) (Fig. 2E and F),

demonstrating the value of considering CTC hetero-

geneity in ccRCC CTC diagnostics.

3.3. Evaluation of immune evasion markers on

CTCs in ccRCC

PD-L1 and HLA-I expression was assessed on CTCs

as potential pharmacodynamic biomarkers of ICIs and

TKIs that may also reflect phenotypic heterogeneity in

ccRCC. Expression of these biomarkers revealed

heterogeneous expression of PD-L1 and HLA-I at

both the single-cell level as well as between different

CTC subpopulations (Fig. 3A and B). CTCs from a

representative sample showed a broad range of expres-

sion for HLA-I, with 65% of the CTCs having positive

expression (Fig. 3B). However, evaluating each CTC

subpopulation revealed different expression patterns.

CK S+ (gray) CTCs had, in general, higher expression

of HLA-I with 84% having positive expression. Dou-

ble+ (blue) CTCs segregated into two populations, one

positive and one negative, that resulted in an average

expression that was similar to that of all CTCs, but a

%positive value of only 50%. Finally, the CAXII S+
(green) CTCs had substantially lower expression with

only 33% of these CTCs having positive expression.

This patient (Pt 14) demonstrates how these heteroge-

neous CTC subpopulations can provide unique infor-

mation that is lost if not evaluated independently.

Heterogeneous expression of PD-L1 and HLA-I was

observed across the 20-patient cohort (Fig. 3C), where

samples from many patients had heterogeneous expres-

sion of these biomarkers between the different CTC

subpopulations.

Consistent with the hypothesis that CAXII+ CTCs

lacking expression of CK may identify a less differenti-

ated and more aggressive phenotype, the expression of

PD-L1 and HLA-I in CTC subpopulations differen-

tially correlated with treatment response. Samples were

categorized by disease response, either responding or

progressing, and on either ICI or VEGF-R TKI, then

ROC curve evaluated for the average CTC expression

of either PD-L1 or HLA-I (Fig. 4). From 52 blood

samples evaluated from a total of 26 patients, 20 sam-

ples were collected from patients on ICIs (8 respond-

ing; 12 progressing); 22 samples were collected from

patients on VEGF-R TKIs (13 responding; 9 progress-

ing); and 10 samples were excluded from this analysis

because they were not collected from patients who had

been on any therapy for at least 3 weeks. Of the sam-

ples that were collected from patients during treat-

ment, response to ICI therapy was only significantly

correlated with expression of PD-L1 on CAXII S+
CTCs and not on CK+ CTCs (AUCs of 0.77 vs. 0.52).

Patient response to VEGF-R TKIs correlated only

with HLA-I on CAXII S+ CTCs and not on CK+
CTCs (AUCs of 0.83 vs. 0.65). These data represent a
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small initial cohort of patients (42 total samples from

24 unique patients) but highlights the potential differ-

ences in clinical relevance of the different subpopula-

tions of CTCs.

3.4. Longitudinal evaluation of CTC

subpopulations to identify potential

pharmacodynamic biomarkers

The accessibility of CTCs through a blood draw pre-

sents new opportunities to develop and evaluate phar-

macodynamic biomarkers of disease response as well

as emerging signs of resistance. Four patients donated

multiple blood samples longitudinally during their

treatment course for evaluation of CTCs (Fig. 5).

Patient 21 was receiving nivolumab for nearly two

months prior to their first CTC collection (indicated as

week 0 on the graph). CT scans at the week 8 blood

draw showed radiographic progression with increased

size of a known endovascular metastasis and a new

pulmonary metastasis. CAXII S+ (green) and CK+
(blue) CTCs increased after the initial blood draw cor-

relating with radiographic progression at week 8.

Nivolumab was subsequently discontinued and the

patient was started on cabozantinib. Both CTC

subpopulations decreased after starting cabozantinib,

correlating again with radiographic response to

cabozantinib at week 19, demonstrating enumeration

could potentially be used to track disease status and

serve as an early indicator of disease progression or

response to treatment.

Patient 22 was on cabozantinib but treatment was

held due to treatment related side effects prior to the

first CTC sample collection (labeled as week 0 in

Fig. 5). High numbers of both CTC subpopulations

were observed in the first CTC sample correlating with

radiographic progression (based on CT scans at week

5). Once the patient resumed cabozantinib, there was a

rapid decline in both CTC subpopulations that corre-

sponded with clinical symptom improvement (pain and

fatigue). Twenty weeks after restarting therapy with

cabozantinib (week 25), radiographic imaging demon-

strated evidence of a mixed response with reduction of

the primary renal mass, but growth in a pre-existing

peritoneal nodule which corresponded to slight rises in

both CTC subpopulations.

Prior to his first CTC sample collection, patient 23

initially presented with primary ccRCC with a single

brain metastasis that was surgically resected, with

pathologic confirmation of central nervous system
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metastasis of ccRCC. He recovered from surgery and

completed postoperative radiation to the surgical

resection bed. He was considered for cytoreductive

nephrectomy as his large renal mass was his main

tumor. Unfortunately, he had rapid disease progres-

sion with an increase in the size of his primary renal

mass, new lung metastases, as well as development of

multiple new brain metastases. He underwent radio-

surgery to his multiple brain metastases and was

started on ipilimumab and nivolumab (Ipi/Nivo). His

first CTC sample was collected before starting Ipi/

Nivo treatment and demonstrated elevated levels of

both CTC subpopulations. Only one week after the

first infusion of Ipi/Nivo, he developed new onset neu-

rologic symptoms and was found to have new brain

metastases and an intramedullary spinal cord drop

metastasis. He was treated with whole brain radiation

and radiation to the spine, and Ipi/Nivo was held

while he received radiation therapy and systemic ster-

oids. Shortly after completion of radiation therapy,

Ipi/Nivo was resumed and imaging performed at week

5 demonstrated radiographic response and correspond-

ing reduction in CTC number. At week 11, there was

a dramatic expansion of CAXII S+ CTCs (from 0.07

to 106.4 CTCs�mL�1), along with a smaller rise in

CK+ CTCs (from 0.4 to 5.6 CTCs�mL�1), which

reached above the 2.6 CK+ CTCs�mL�1 cutoff. Fur-

ther treatment with ICI was associated with radio-

graphic evidence of response with decrease in the size

and enhancement of the primary renal mass and subse-

quent decline in both CTC subpopulations (week 24).

There was a flare of CAXII S+ CTCs that occurred at

week 20, shortly after transitioning to single agent

nivolumab that was not associated with radiographic

progression. At week 32, an increase in size and

enhancement of the renal mass was noted while he was

on single agent nivolumab. This was associated with a

significant increase in the total number of both CTC

subpopulations.

Patient 24 was treated with nivolumab for

22 months before his first CTC evaluation. At the time

of his first CTC collection, his scans showed increase

in the size of an interpolar renal mass and a pancreatic

lesion (oligo-progression), leading to microwave abla-

tion of the renal mass at the scan #2 time point (this

scan is without contrast and the patient is lying on
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their side unlike the other two scans). Both CTC sub-

populations increased slightly by week 8, also corre-

sponding to slight increase in the size of a different

interpolar renal mass (<20% growth, scan images not

shown on figure) at week 12. After the microwave

ablation, there was a marked increase in CAXII S+
CTCs (from 1.3 to 12.3 CTCs�mL�1), but CK+ CTCs

decreased, suggesting distinct changes in CTC subpop-

ulations can occur immediately following ablative vs

systemic therapies. Scan #3 shows the tumor area is

similar in size to the first scan, but the decreased con-

trast uptake shows the remaining mass is mainly fibro-

tic scar tissue, indicating the ablation was successful.

Longitudinal data from an additional two patients are

included in Fig. S3.

4. Discussion

Molecular heterogeneity is a hallmark feature of

ccRCC, and it has been reported in primary renal

masses as well as different metastatic lesions [10]. Sin-

gle diagnostic biopsies of metastatic foci are not cap-

able of evaluating the intra- and intertumoral

heterogeneity, which is present in ccRCC [40-42] and

may explain the lack of success in the development of

predictive biomarkers for new therapies. CTCs could

offer a unique assessment of heterogeneous cancer

clones since they are shed from diverse primary and

metastatic tumor sites. Using flow cytometry, we iden-

tified expression of renal-specific markers on ccRCC

CTCs and utilized a highly sensitive CTC microfluidic

platform to confirm the presence of different subsets

of CTCs that express different combinations of CK,

EpCAM, CAIX, and/or CAXII. These findings likely

explain the limited success of prior CTC assays in

ccRCC that utilized CK and EpCAM or a limited

assessment of normal cells leading to false-positive

results. This assay, to the best of our knowledge, is the

first to evaluate CTC phenotypic heterogeneity that

may reflect intratumoral heterogeneity in ccRCC.

CK expression in ccRCC tumors has traditionally

been considered to have limited diagnostic utility

which is reflected in the low frequency of CTCs

detected using traditional methods [15,17,18,43]. How-

ever, our dataset suggests that CK+ CTCs are fre-

quently detected, and their number correlates with

disease progression likely due to the use of a kidney

cancer-specific capture antibody, CAIX. Enumeration

of CK+ CTCs significantly correlated with disease

progression in this pilot study; however, the number

of CTCs that express only CAXII did not. It is

unknown if these different subpopulations of CTCs

may represent different aspects of tumor biology such

as a mesenchymal transition with decreased expression

of CK. One hypothesis is that CK+ CTCs may repre-

sent clones which are passively shed from growing

tumors, but not responding tumors. CAXII S+ CTCs,

however, may be less differentiated and more aggres-

sive, and enter the circulation from active intravasa-

tion and have greater metastatic potential. Others

have shown that CAXII+ cells are more invasive and

aggressive in-vitro [44,45]. If CAXII S+ CTCs repre-

sent a more invasive/aggressive subset, their average

PD-L1 and HLA-I expression may also be more criti-

cal to predicting treatment response. In this report,

PD-L1 expression on CAXII S+ CTC, but not CK+
CTCs, was significantly correlated with disease

response to ICIs. Similarly, HLA-I expression was

only significantly correlated with TKI response in

CAXII S+ CTCs as opposed to CK+ CTCs. Future

studies of the genomic, epigenomic, and transcrip-

tional signatures of these CTC subpopulations will

help elucidate biological properties of these subpopu-

lations.

We did not evaluate the degree of co-expression of

PD-L1 and HLA-I on the same CTCs, nor the con-

cordance between CTC and solid biopsy expression

here. Others have shown that lower expression of

HLA-I on patient biopsy associates with lower

response rates to TKIs, which is consistent with our

findings [9]. Future studies to evaluate concordance in

expression of HLA-I and PD-L1 between solid and

liquid biopsies may help to clarify the role these

molecules may play in the metastatic process as well

as potential utility as predictive biomarkers in ccRCC.

Assessing PD-L1 and HLA-I co-expression on the

same cell could further enhance our biological under-

standing and diagnostic capabilities. This may be even

more important with the recent FDA approval of axi-

tinib/pembrolizumab and the lack of available

biomarkers to aid clinicians in deciding between this

first-line combination therapy and ipilimumab/nivolu-

mab. CTC evaluation could provide an added benefit

over standard radiographic imaging of accelerating

the switch to alternate, potentially more effective ther-

apies. This initial evaluation of PD-L1 and HLA-I on

different subpopulations of CTCs in ccRCC shows

promising correlations with disease response to both

ICIs and VEGF-R TKIs and warrants more in-depth

investigation.

Longitudinal evaluation of CTCs in patients over

the course of therapy demonstrates the pharmacody-

namic potential of these CTC analytics. Fluctuations

in CK+ CTC number seemed to correlate with radio-

graphic evidence of tumor growth, with smaller

changes in tumor growth being mirrored with more
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subtle changes in CK+ CTC number. CAXII S+ CTCs

increased in number after radiation, potentially indi-

cating rapid shedding of necrotic tumor cells into cir-

culation that may further reflect the benefit of these

interventions. The differential kinetics of these CTC

subpopulations further supports the value in evaluat-

ing CTC heterogeneity in the development of highly

informative diagnostic tools.

Fully understanding the biologic relevance and clini-

cal utility of these different read-outs of CTC evalua-

tion will require prospective clinical trials. Clinical

correlations from this patient population are limited

due to the variability in therapeutic regimen, nonstan-

dard assessment of disease status, lack of long-term

follow-up, and variable intervals between scans and

CTC evaluation. Obtaining multiple samples at base-

line and prespecified time points throughout the treat-

ment would provide more uniform data to assess CTC

changes based on response to treatment. Prospective

response evaluation based on imaging (e.g., Response

Evaluation Criteria in Solid Tumors (RECIST) crite-

ria) and/or other clinical and laboratory criteria would

provide a more standardized disease status assessment

to be correlated with CTC findings. Toward this end,

this CTC assay is currently being tested in a multisite

phase II clinical trial evaluating a response-based

approach to treatment with nivolumab and ipilimumab

in patients with advanced ccRCC (NCT03203473) [46].

Further, clinical validation in an independent cohort

will be required to confirm the results from the initial

prospective patient cohort. Other prospective trials

have incorporated these CTC biomarkers including the

RadiCaL trial (NCT04071223) of Radium-223 com-

bined with cabozantinib. Additionally, ongoing efforts

are directed at further automation of the method to

ensure reproducibility across different laboratories.

5. Conclusions

In conclusion, these findings support further evalua-

tion of this novel approach to CTC characterization,

which could prove to have prognostic, predictive, and

pharmacodynamic utility to advance precision medi-

cine approaches to improve outcomes in patients with

advanced ccRCC. We describe the use of novel

microfluidic technology, combined with EpCAM and

renal-specific CAIX antibody for high sensitivity CTC

capture. High specificity is achieved with a rigorous

exclusion antibody panel, and the identification of

CTCs with CAXII and CK. Initial clinical results eval-

uating expression of both PD-L1 and HLA-I on

ccRCC CTCs found higher expression associated with

treatment response. These assays are now being

deployed in prospective clinical trials to evaluate as

potential predictive or pharmacodynamic biomarkers.
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