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Backgrounds: Nowadays, risks of Cognitive Impairment (CI) [highly suspected

Alzheimer’s disease (AD) in this study] threaten the quality of life for more older

adults as the population ages. The emergence of Transcranial Magnetic Stimulation-

Electroencephalogram (TMS-EEG) enables noninvasive neurophysiological investi-gation

of the human cortex, which might be potentially used for CI detection.

Objectives: The aim of this study is to explore whether the spatiotemporal features of

TMS Evoked Potentials (TEPs) could classify CI from healthy controls (HC).

Methods: Twenty-one patients with CI and 22 HC underwent a single-pulse TMS-

EEG stimulus in which the pulses were delivered to the left dorsolateral prefrontal cortex

(left DLPFC). After preprocessing, seven regions of interest (ROIs) and two most reliable

TEPs’ components: N100 and P200 were selected. Next, seven simple and interpretable

linear features of TEPs were extracted for each region, three common machine learning

algorithms including Support Vector Machine (SVM), Random Forest (RF), and K-Nearest

Neighbor (KNN) were used to detect CI. Meanwhile, data augmentation and voting

strategy were used for a more robust model. Finally, the performance differences of

features in classifiers and their contributions were investigated.

Results: 1. In the time domain, the features of N100 had the best performance

in the SVM classifier, with an accuracy of 88.37%. 2. In the aspect of spatiality, the

features of the right frontal region and left parietal region had the best performance

in the SVM classifier, with an accuracy of 83.72%. 3. The Local Mean Field Power

(LMFP), Average Value (AVG), Latency and Amplitude contributed most in classification.
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Conclusions: The TEPs induced by TMS over the left DLPFC has significant

differences spatially and temporally between CI and HC. Machine learning based on

the spatiotemporal features of TEPs have the ability to separate the CI and HC which

suggest that TEPs has potential as non-invasive biomarkers for CI diagnosis.

Keywords: spatiotemporal features, machine learning, cognitive impairment, TEP, TMS-EEG

1. INTRODUCTION

Cognitive impairment (CI) refers to a cognitive function decline
beyond typical aging, which is increasingly prevalent in the
elderly and loom as a public health issue (Montine et al., 2021).

Clinically,Montreal Cognitive Assessment (MoCA) andMini-
Mental State Examination (MMSE) are commonly used for
routine cognitive screening. MoCA is more sensitive thanMMSE
in detecting mild cognitive impairment (MCI) (Ciesielska et al.,
2016). For Alzheimer’s disease (AD) diagnosis, there are two
main types of biomarkers: biophysiological biomarkers such
as β amyloid in cerebrospinal fluid (CSF)/plasma/serum and
brain imaging markers (Frisoni et al., 2017; Ng et al., 2019;
Cullen et al., 2021). For example, Aβ42/Aβ40 ratio in CSF and
blood (Buchhave et al., 2012; Hansson et al., 2018), Positron
Emission Tomography (PET) of beta-amyloid and tau proteins
(Leuzy et al., 2019; Rabinovici et al., 2019). However, the
invasiveness of the collection of body fluids and high cost of
PET limit their large-scale use. In recent years, some articles
have reported that combining different neuroimaging modalities
together can effectively detect CI. For example, combining
functional MRI (fMRI) and Diffusion Tracking Imaging (DTI)
can reflect functional connectivity changes in neuronal networks
between CI and Healthy Controls (HC) (Ye and Bai, 2018).
Multimodal fusion combines the advantages of each modality,
but it is undeniable that complex data fusion algorithms impose
huge challenges for clinical application.

Due to the above problems, some researchers have turned
their attention to find a quick, noninvasive, and inexpensive
method to detect CI, especially for mild and moderate patients
without obvious behavioral symptoms. As a non-invasive, high
time resolution method, the electroencephalogram (EEG) has
been widely used in clinical examinations. In recent decades,
the abnormalities in the resting state EEG of patients with CI
have been discovered, such as a shift of the power spectrum to
lower frequencies, a decrease in the coherence of fast rhythms, a
decreased complexity of EEG patterns (Jeong, 2004).

With the development of non-invasive neuromodulation
technology, the combination of Transcranial Magnetic
Stimulation and Electroencephalogram (TMS-EEG) allows
external input to specific cortical areas of subjects in a controlled
and quantitative way for direct functional assessment (Hallett,
2007; Kimiskidis, 2016; Cao et al., 2021). When TMS pulses
are applied to the cortex, trans-synaptic activation of local and
distal cortical networks is obtained (Tremblay et al., 2019). The
sum of synaptic potentials can be recorded simultaneously by
high time resolution, multichannel scalp EEG. There are a series
of positive and negative deflections after TMS, known as TMS

Evoked Potentials (TEPs). The TEPs last 300 ms or more and
can be recorded by either local or distal electrodes (Komssi
et al., 2002), reflecting the spread of activation over cortical
regions that are functionally connected and indicating the state
of the brain further (Nikulin et al., 2003). Compared with
resting-state EEG, TMS-EEG provides controlled stimulation
without the involvement of the participation, which is more
stable and objective.

At present, some researchers have used TMS-EEG to assess
patients with CI. For example, the prefrontal TMS-evoked
activity was able to track disease progression in Alzheimer’s
Disease (AD) and the P30 amplitude was predictive of the MMSE
score in patients with AD (Bagattini et al., 2019). The Motor-
Evoked Potentials (MEPs) produced by paired pulses on the
primary cortex can be used as indicators in the classification of
different subtypes of MCI (Benussi et al., 2021).

In this study, we hypothesized that TEPs resulting from
stimulation of the left DLPFC may be associated with the
cognitive status, thus, the features of TEPs could further
differentiate CI and HC. On the premise of preserving time
and space features simultaneously, we extracted some concise,
interpretable linear features of TEPs in seven regions of interest
(ROIs). We aimed to classify CI and HC automatically through
machine learning based on the spatiotemporal features of TEPs
and find potential biomarkers for clinical diagnosis.

2. MATERIALS AND METHODS

The framework is shown in Figure 1. We removed artifacts
of TMS-EEG at first. Then, we divided all the trials of each
participant into three segments to the augment dataset. In order
to preserve the features of time and space simultaneously, we
focused on the TEP’s N100 and P200 components in seven ROIs.
Next, we explored some concise, interpretable linear features
of these two components including Local Mean Field Power
(LMFP), Latency, Amplitude, Standard Deviation, Average Value
(AVG), Area Under the Curve (AUC), and Range. Finally, we
used three common machine learning algorithms: K-Nearest
Neighbor (KNN), Support Vector Machine (SVM), and Random
Forest (RF) to obtain the label of each segment, and voted to
get participant’s final prediction result (Cover and Hart, 1967;
Vapnik, 1999; Liaw and Wiener, 2002).

2.1. TMS-EEG Data Acquisition
2.1.1. Study Participants
All participants in this study were recruited from the Department
of Neurology in Shenzhen People’s Hospital (The First Affiliated
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FIGURE 1 | The framework of CI detection based on TEPs. First, the N100 and P200 components of TEPs were selected after removing artifacts. Then, all trials were

divided into three segments. Subsequently, seven features were extracted from different segments and regions of interest (ROIs) respectively. Finally, machine learning

was used to classify features, and voted on each segment to get the predicted result.

Hospital, Southern University of Science and Technology).This
study was approved by the Institutional Review Board of
Shenzhen People’s Hospital. All participants provided written
informed consent.

A total of 43 subjects participated in this study, including
21 patients with CI and 22 HC. The inclusion criteria of
CI group were: (a) Clinicians highly suspect the subject has
AD based on the clinical diagnostic criteria (National Institute
of Neurological and Communicative Disorders and stroke
and the AD and Related Disorders Association (NINCDS-
ADRDA), the Diagnostic and Statistical Manual of Mental
Disorders-V (DSM-V) criteria); (b) Mild and moderate CI
diagnosed (10<MoCA<26) (Nasreddine et al., 2005); (c) aged
50–75 years old. The exclusion criteria were: (a) blood
vessels and other types of dementia; (b) severe CI (MoCA
<10); (c) a history of other psychiatric or other neurological
disorders, such as schizophrenia, Parkinson’s disease, and
multiple sclerosis; (d) any contraindication for TMS, such
as a metallic implanted device in or near the head and
aneurysms.

All of the subjects in the control group met the following
criteria: (a) aged 50–75 years old; (b) never complained of
cognition or memory problems; (c) no history of any psychiatric
or neurological disorders, brain injury, cranial neurosurgery,
alcohol or drug abuse, or any severe chronic systemic illness; (d)
no contraindication for TMS.

There was no significant difference in age between the two
groups (p = 0.406). Demographic information was summarized
in Table 1.

2.1.2. TMS-EEG Recordings
The dorsolateral prefrontal cortex (DLPFC) is a key node of
various cognitive functions such as memory, attention, and
execution (Carlén, 2017). As we aimed to research cognition
related function, the left DLPFC is also a recommended target

TABLE 1 | Demographic subjects.

CI HC

Subject(s) 21 22

Age (mean ± SD) 61.86 ± 4.77 60.77 ± 3.65

Sex (male/female) 9:12 10:12

MoCA (mean ± SD) 20.33 ± 4.44 /

for TMS treatment (Ahmed et al., 2012). Therefore, we chose left
DLPFC to be the target of stimulation in this study.

All of the subjects in this study underwent a TMS-EEG
protocol. A total of 100 single-pulse TMS pulses were delivered
using the MagPro X100 with MagOption(MagVenture,
Copenhagen, Denmark). The coil (figure-8 coil, Coil
B65; external wing diameter, 90 mm) was placed over F3
(International 10/20 EEG system) to target the left DLPFC. The
Inter-Stimulus Interval (ISI) was 3s jittered, and the stimulation
intensity was 120% Resting Motor Threshold (RMT). The RMT
is determined as the minimum stimulus intensity that produces
a MEP exceeding 50 µV in a minimum of five out of ten trials in
the relaxed right abductor pollicis brevis.

While receiving TMS, EEG signals of subjects were collected
by BrainAmp DC amplifier (Brain Products, Munich, Germany)
with a 64-channel EEG system. Participants were asked to remain
still and relaxed during the EEG recording. The sampling rate was
maintained at 5 kHz, and electrode impedances were maintained
below 5 k� by applying the conductive gel. FCz was used
as the reference while AFz was the ground during the EEG
recording. All recordings took place in a temperature-controlled
and electrically shielded room. Participants were asked to listen
to white noise through earphones in order to mask the loud click
accompanied by TMS coil discharge. A foam layer was placed
under the coil to inhibit bone conduction and scalp sensation
caused by the vibration of the coil (Rogasch et al., 2014).
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2.2. TMS-EEG Data Preprocessing
2.2.1. Remove Artifacts
The TMS-EEG data in this study were preprocessed offline with
TMS-EEG Signal Analyser (TESA) toolbox (Rogasch et al., 2017).
TESA is an open source extension for EEGLAB (Delorme and
Makeig, 2004), which is used for cleaning and analyzing TMS-
EEG data. Both EEGLAB and TESA ran in Matlab (R2020b).

The data were divided into two-second epochs (−1,000 to
1,000 ms, the time of stimulation was marked as 0 s) and then
baseline corrected (−500 to −50 ms). In order to remove the
huge electromagnetic artifacts associated with TMS, the large
amplitude TMS pulse artifact was removed between −5 and 15
ms and cubic interpolation was used to replace the removed
data. For more efficient computing, the sampling rate of data
was reduced from 5 to 1 kHz. Epochs and channels contaminated
seriously were removed during visual inspection.

The first round of Independent Component Analysis (ICA)
was performed to remove large value artifacts including TMS-
evoked muscle artifacts and decay artifacts. Subsequently, the
data were band-pass (1–80 Hz) and band-stop (48–52 Hz)
filtered. It was followed by the second round of ICA to remove
other relatively small value artifacts including auditory artifacts,
blinks, eye movement, persistent scalp muscle activity, and
electrode noise. Finally, the missing channels removed in the
preprocessing were interpolated using spherical interpolation
and all channels were re-referenced to the common average
(Rogasch et al., 2014).

2.2.2. Time-Locked Averaging and GMFP
After data preprocessing, we got clean TMS-EEG trials (1s
before stimulation, 1s after stimulation). TEPs were computed
by averaging selected artifact-free single trial. The grand average
TEPs of the two groups were shown in Figures 2A,B.

TMS Evoked Potentials can be recorded from the local
electrode to the stimulation site, also from the electrode located in
the distant cortical region. TheGlobalMean Field Power (GMFP)
is usually calculated as a measure of global cortical excitability if
ROIs are not specified. GMFP is the standard deviation (SD) of
all channels at a given sampling point (Esser et al., 2006). The
calculation formula was shown in Equation (1). The GMFP curve
was shown in Figure 2C, which also indicated that the two groups
may have differences in the two time windows of N100 and P200
(gray areas).

GMFP(i) =

√

∑K
j=1

(

Vj(i)− Vmean
)2

K
(1)

where K is the number of all channels (K = 62 in this study), Vj(i)
is defined as the voltage measured with channel j at sampling
point i, and Vmean represents the average of the voltages across
all channels.

2.2.3. Data Augmentation and Gaussian Smoothing
In order to improve the stability of subsequent machine learning,
data augmentation technique was applied. We divided all the
trials (the trials remaining after artifacts removing) of each
subject into three segments (1–30, 31–60, and 61-end), and then

averaged the trials in each segment, which meant that each
subject had three segments available for training.

The TEPs obtained by a smaller number of trials are not as
smooth as all the trials. In order to make the subsequent feature
extraction more reliable, especially the Latency and Amplitude,
we used Gaussian window method (the length of Gaussian
window is set to 20) to smooth the data after averaging (Gwosdek
et al., 2011).

2.2.4. TEPs’ Time Windows and ROIs Selection
We found four typical characteristic peaks in Figures 2A,Bwhich
were consistent with previous research (N40, P60, N100, and
P200) (Rosanova et al., 2012; Rogasch et al., 2015). In these
typical peaks, N100 and P200 are widely regarded as the twomost
reliable and reproducible peaks (Kerwin et al., 2018). Considering
individual variation led to the advancement or delay of the
latency of characteristic peaks, we chose two relatively wide time
windows (100–160 ms, 180–280 ms) to include peaks in the
window to the full extent.

For the spatial features of TEPs, we selected 7 ROIs
according to previous research (Kerwin et al., 2018). The
seven ROIs are left Frontal (Fl, F1/F3/FC3/FC5), right Frontal
(Fr, F2/F4/FC4/FC6), Central (C, Cz/C1/C2), Centroparietal
(Cp, CPz/CP1/CP2/Pz/P1/P2), left Parietal (Pl, CP3/CP5
/P3/P5), right Parietal (Pr, CP4/CP6/P4/P6), and Occipital (O,
Oz/O1/O2), as shown in Figure 2D.

2.3. Temporal-Spatial Features Extract
The average TEPs recorded by all channels in each ROI was
calculated as the TEP of this ROI, as shown in Equation (2).

X(i) =
1

k

k
∑

j=1

Vj(i) (2)

where X(i) is TEP in the selected ROI, k is the number of channels
in this ROI, Vj(i) is defined as the voltage measured with channel
j at the sampling point i.

In order to describe the details of the two peaks (N100 and
P200) as much as possible, we calculated a series of linear features
in the selected time windows and regions. The features we
extracted were introduced below:

• Latency and Amplitude. The Latency and Amplitude are the
most common approaches for quantifying TEP (Tremblay
et al., 2019). That is, the time and amplitude of the largest peak
(negative or positive).

• Local Mean Field Power. The LMFP refers to SD across
specific channels in the selected ROI (i.e., electrodes of interest,
EOI). We calculated at every sampling point in the given
time window and then averaged them. The LMFP reflects the
dispersion degree of the signals recorded by the electrodes
in this region indicating local excitability changes (Pellicciari
et al., 2013), as shown in Equation (3).

fLMFP =
1

N

N
∑

i=1

√

6k
j=1

(

Vj(i)− Vmean
)2

k
(3)

Frontiers in Aging Neuroscience | www.frontiersin.org 4 December 2021 | Volume 13 | Article 804384

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Zhang et al. Classify Cognitive Impairment Using TEPs

FIGURE 2 | TMS Evoked Potentials (TEPs) components and ROIs selection. The grand average butterfly plot of all channels’ TEPs of (A) HC group and (B) CI group.

The electorde (F3) under the TMS coil is indicated in red. (C) The GMFP of two groups, the gray areas indicate two time windows of N100 (100–160 ms) and P200

(180–280 ms). (D) Schematic diagram of seven ROIs.

where N is the number of all sampling points in the time
window.

• Standard Deviation (STD). The STD is the standard deviation
of the signal value in the selected time window, reflecting the
degree of dispersion of the signal, as shown in Equation (4).
This is an important time domain feature in EEG also called
activity. The activity is quantified by means of the amplitude
variance (Hjorth, 1970).

fSTD =

√

√

√

√

√

1

N

N
∑

i=1

(

X(i)−
1

N

N
∑

i=1

X(i)

)2

(4)

• Area Under Curve (AUC). The AUC is the area of the envelope
between the signal and the time axis. The upper part of
the time axis is positive and the lower part is negative. We
used numerical integration to calculate the area, as shown
in Equation (5). AUC was also called cortical-evoked activity

(CEA) in previous research (Rajji et al., 2013).

fAUC =
1

2f

N−1
∑

i=1

(

X(i)+ X(i+ 1)
)

(5)

where f is the sampling rate.
• Average Value. The AVG is the average signal value in the

selected time window.
• Range. The Range is the difference between the maximum

value and the minimum value of the signal in the selected time
window, reflecting the fluctuation degree of the signal.

2.4. Machine Learning
In each ROI, we extracted 7 features of N100 and P200
respectively. Finally, 98 (2 time windows∗7 ROIs∗7 features)
features were obtained in each segment of each subject.

Due to the possible correlation of different features, the t-
Distributed Stochastic Neighbor Embedding (t-SNE) (van der
Maaten and Hinton, 2008) was used to reduce the dimension.
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After features’ dimension reduction, the feature array was
normalized to [−1, 1].

In this study, three machine learning algorithms were used.
SVM was implemented in the LIBSVM toolbox (Chang and Lin,
2011) with default parameters (linear kernal). Other classifiers
[RF(ntree = 7) and KNN(k = 5)] were also implemented in
Matlab.

Since the features were divided into three segments, three
labels that had the sameweight were obtained for each participant
after the classifier’s prediction. We used the voting strategy to
fusion three labels. Themost pointed category was considered the
final label of the subject.

In order to evaluate the performance of the classifiers and to
simulate the reality of real CI recognition as much as possible,
we adopted a leave-one-out cross-validation (LOOCV) strategy,
keeping the minimum subject subset containing all the segment
of a subject as the test set and employing all the others for
training.

It is necessary to evaluate the classification effect of the
model using appropriate indicators. For the binary classification
problem, the test set can be divided into: True Positive (TP), False
Positive (FP), False Negative (FN), and True Negative (TN). In
this study, the subjects with CI were defined as positive samples,
HC were defined as negative samples. The several evaluation
indicators we used in this section are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Sensitivity =
TP

TP + FN
(7)

Specificity =
TN

TN + FP
(8)

F1-score =
2TP

2TP + FP + FN
(9)

2.5. Statistics
2.5.1. Cluster-Based Permutation Test
Electroencephalogram data has both time and space structure
(sampled in multiple channels and multiple time points).
Therefore, the difference between CI and HC was the evaluation
of a very large number of channel-time pairs, which was a
multiple comparisons problem (MCP). For TEPs, we used
cluster-based permutation statistics at the whole scalp level
to take into account any combination of space and time,
while controlling the MCP (Maris and Oostenveld, 2007).
We performed an independent t-test for the two groups in
the selected time windows (100–160 ms, 180–280 ms). If the
test statistic value observed in at least two adjacent channels
was lower than the threshold value of 0.05, then this value
was considered in the cluster arrangement. We performed
5,000 iterations of trial randomization to generate permutation
distributions and controlled multiple comparisons across spaces
(P <0.025, two-tailed test).

TABLE 2 | Classification results by all classifiers in different components.

Component Classifier Accuracy Sensitivity Specificity F1-score

N100

KNN 0.8140 0.7619 0.8636 0.8000

SVM 0.8837 0.8095 0.9545 0.8718

RF 0.7674 0.7619 0.7727 0.7619

P200

KNN 0.7442 0.7143 0.7727 0.7317

SVM 0.7907 0.7619 0.8182 0.7805

RF 0.7442 0.6667 0.8182 0.7179

All components

KNN 0.7907 0.7143 0.8636 0.7692

SVM 0.8372 0.7619 0.9091 0.8205

RF 0.7907 0.7619 0.8182 0.7805

The bold values indicate the optimal result under the same index, the same as follow.

3. RESULTS

3.1. Classification Results Based on
Different Time Windows
According to the section 2.2.4, we extracted features in different
components of TEPs (N100 and P200). Then, we explored the
performance of the classifiers by using different components’
features. To reduce the dimension of the features matrix, we used
t-SNE to reduce the dimension of data.

Table 2 showed the classification results. All components
mean merging the features of N100 and P200 components. The
best classification performance was achieved by using the features
of N100. The highest accuracy of 88.37% was achieved by SVM,
with a specificity of 95.45%, the sensitivity of 80.95%, and the
F1-score of 87.18%. The features of all components reached
slightly weaker but still reasonable classification performance.
The classification results of P200were not satisfactory, the highest
accuracy was 79.07%, and other classifiers had even worse results.
The sensitivity, specificity, and F1-score were also lower than the
N100 in different classifiers.

3.2. Classification Results Based on
Different ROIs
Regions of interest were divided according to the section 2.2.4
and we extracted features from each ROI to explore which ROIs
are more sensitive to CI. Since there were only 14 features (2
time windows∗7 features) in each ROI, the features were directly
put into the classifier after normalization without dimensionality
reduction.

Table 3 showed the classification results. It could be concluded
that different brain regions had great influence on the
classification results, and the Fr and Pl region showed the best
performance, which achieved 83.72% by SVM. Moreover, when
RF was used, the features of Fr were sensitive to the distinction
of positive samples, which meant that the patients with CI
could be well recognized and the probability of the patients
with CI being diagnosed as normal was reduced. The features
of the Fl region showed slightly weaker but still reasonable
classification performances. The features of the C region can
distinguish negative samples well, but it was not good enough
to distinguish patients with CI. The features of the Cp region, O
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region, and Pr region were basically unable to complete the task
of distinguishing normal people from patients with CI.

3.3. Statistical Results
We first performed a cluster-based permutation test on the TEPs
of the two groups. The results of statistical analysis were shown
in Figure 3. The topographic map was generated with Yang’s
topoplot_bcl function based on EEGLAB’s topoplot function (Li
et al., 2018). The asterisk indicates that the p-value is less than
0.01. In the N100 time window (100–160 ms), right frontal
region, left parietal region, and occipital region were significantly

TABLE 3 | Classification results by all classifiers in different regions.

Region Classifier Accuracy Sensitivity Specificity F1-score

C

KNN 0.7209 0.5714 0.8636 0.6667

SVM 0.7209 0.6190 0.8182 0.6842

RF 0.7674 0.7143 0.8182 0.7500

Cp

KNN 0.6977 0.5714 0.8182 0.6486

SVM 0.5814 0.4762 0.6818 0.5263

RF 0.7674 0.7619 0.7727 0.7619

Fl

KNN 0.7674 0.6667 0.8636 0.7368

SVM 0.7674 0.6667 0.8636 0.7368

RF 0.8140 0.8095 0.8182 0.8095

Fr

KNN 0.8140 0.6667 0.9545 0.7778

SVM 0.8372 0.7143 0.9545 0.8108

RF 0.8140 0.8095 0.8182 0.8095

O

KNN 0.6744 0.6190 0.7273 0.6500

SVM 0.7209 0.6667 0.7727 0.7000

RF 0.7442 0.8095 0.6818 0.7556

Pl

KNN 0.8372 0.7143 0.9545 0.8108

SVM 0.8372 0.7143 0.9545 0.8108

RF 0.7674 0.7143 0.8182 0.7500

Pr

KNN 0.5814 0.3810 0.7727 0.4706

SVM 0.5349 0.3810 0.6818 0.4444

RF 0.7209 0.6667 0.7727 0.7000

The bold values indicate the optimal result under the same index, the same as follow.

different between the two groups (p < 0.01). In the P200 time
window (180–280 ms), bilateral frontal region, bilateral parietal
region, and occipital region were significantly different between
the two groups (p < 0.01).

Furthermore, we used the violin plot to describe the
distribution of 14 features of the right frontal region, as shown
in Figure 4. We also performed t-test on the features in Figure 4,
the results were shown in the Table 4. All the features of N100 in
the right frontal region were significantly different between the
two groups (p <0.01). There was no difference in the latency of
P200 in the right frontal region between the two groups. Thismay
explain why the features of N100 performed better than P200 on
classification, and even better than using them simultaneously.

Then, we used the t-SNE to reduce the dimension of the
best performing N100 features to 3, and then draw them in
three-dimensional space. The result was shown in Figure 5A, red
represented CI, and blue represented HC. It revealed that the
points in CI were more dispersed than normal.

Finally, for the 7 features of N100 in the right frontal region,
we used XGBoost to evaluate the importance of features (Chen
and Guestrin, 2016). The feature importance ranking was listed
in Figure 5B. The LMFP, AVG, Latency, and Amplitude were
the most important, which exactly were consistent with the
most widely used features to measure TEPs in previous studies
(Tremblay et al., 2019). Our results verified the conclusions of the
predecessors and also instructed doctors to pay more attention to
these features in future clinical practice.

4. DISCUSSION

The study showed that machine learning can effectively identify
CI. In the time domain, the features of N100 had the best
performance. In the aspect of spatiality, the features of the right
frontal region and left parietal region had the best performance.
Then, we discussed our results from these two dimensions, and
particularly emphasized the influence of sensory contamination
within the TEP. Finally, we discussed the limitations of our study.

Previous studies have used TMS to stimulate the motor cortex
and have demonstrated that patients with AD have increased

FIGURE 3 | Comparison of TEPs using cluster-based permutation tests. Red means TEP of cognitive impairment (CI) is higher than HC, blue means TEP of CI is

lower than healthy controls (HC). The asterisk indicates that p < 0.01. (A) N100: CI vs. HC. (B) P200: CI vs. HC.
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FIGURE 4 | Distribution of spatial features in right frontal region. (A) N100: LMFP, (B) N100: STD, (C) N100: Latency, (D) N100: Amplitude, (E) N100: AVG, (F) N100:

AUC, (G) N100: Range, (H) P200: LMFP, (I) P200: STD, (J) P200: Latency, (K) P200: Amplitude, (L) P200: AVG, (M) P200: AUC, and (N) P200: Range.

TABLE 4 | Local features in right frontal region.

N100 P200

CI HC P-value CI HC P-value

LMFP 0.67 ± 0.40 0.37 ± 0.22 p < 0.001* 0.70 ± 0.38 0.33 ± 0.19 p < 0.001*

STD 1.23 ± 0.98 0.64 ± 0.38 p < 0.001* 1.05 ± 0.76 0.54 ± 0.27 p < 0.001*

Latency 0.12 ± 0.013 0.11 ± 0.014 0.001* 0.22 ± 0.031 0.22 ± 0.036 0.961

Amplitude –2.77 ± 1.68 –1.10 ± 0.72 p < 0.001* 2.64 ± 1.92 1.11 ± 0.64 p < 0.001*

AVG –1.17 ± 1.10 –0.17 ± 0.39 p < 0.001* 0.98 ± 0.93 0.22 ± 0.48 p < 0.001*

AUC –0.071 ± 0.067 –0.011 ± 0.023 p < 0.001* 0.098 ± 0.094 0.022 ± 0.048 p < 0.001*

Range 3.87 ± 2.71 1.97 ± 1.02 p < 0.001* 3.38 ± 2.19 1.71 ± 0.81 p < 0.001*

* means a significant difference with p = 0.01.
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FIGURE 5 | Feature visualization and importance comparison. (A) The visualization features map based on t-Distributed Stochastic Neighbor Embedding (t-SNE)

dimension-reduction. (B) The feature importance based on XGBoost.

cortical excitability, which is manifested by a decrease in RMT
and an increase in MEP (Alagona et al., 2001; Di Lazzaro et al.,
2004). There is also evidence of high excitability in patients with
AD after TMS stimulating the left DLPFC, which is manifested as
an increase in CEA, and this increase is negatively correlated with
overall cognitive and executive functions (Joseph et al., 2021).
In our study, the CI group had higher GMFP, suggesting higher
cortical excitability which is consistent with previous studies.
This hyper-excitability may reflect the plastic reorganization of
the sensorimotor system and may be used as a compensatory
mechanism to offset the loss of cortical volume and protect the
motor function of the patient (Niskanen et al., 2011; Bagattini
et al., 2019).

It was found in a previous study that the reliability of
the potentials induced by TMS in the left DLPFC are highly
consistent and the measurement error is small. The most
reliable peaks are generally located at 100 and 200 ms (Kerwin
et al., 2018). High reproducibility is necessary as a potential
neurobiomarker. Although there was some prior knowledge that
CI may affect P30 (Bagattini et al., 2019), considering the first
peak may be affected by preprocessing (–5–15 ms removed and
cubic interpolation), we still focused on the N100 and P200 two
components to preserve the temporal features.

In the time domain, the features of N100 have the best
performance according to the four indicators in the classifier. In
the CI group, the change of N100 and P200 may be related to
the alterations of GABAergic activity. Gamma-aminobutyric acid
(GABA) is an inhibitory neurotransmitter. Its natural function
is binding to GABA-A receptors and GABA-B receptors on the
neurons to modulate and block impulses between nerve cells
(Gou et al., 2013). There is some evidence that the amplitude of
the TEPs component is related to GABAergic activity. GABA-
A receptors agonists (alprazolam and diazepam) and GABA-
B receptors agonists (baclofen) can modulate the amplitude of

N100 or P200 (Premoli et al., 2014; Murphy et al., 2016). There
are also some studies stated that the alterations of GABAergic
circuits may contribute to CI by disrupting the overall network
function (Li et al., 2016). This may be the neuropathological basis
for the difference of N100 and P200 between the two groups,
which was the precondition for classification.

In the aspect of spatiality, the features of the right frontal
region and left parietal region had the best performance in the
SVM classifier. From the statistical results, the right prefrontal
region and the left parietal region both had significant differences
in these two selected time windows, which may explain why
the features of these two ROIs perform better in the classifiers.
Interestingly, the significant difference between CI and HC is
reflected in the anterior and posterior regions, and the trend
is opposite over time. This seems to indicate the abnormal
changes in the connectivity of the brains of patients with
CI. Previous studies have shown that the damaged excitatory-
inhibitory balance between anterior and posterior regions might
represent a maladaptive pathogenic mechanism (Bagattini et al.,
2019).

In addition, we want to emphasize the issue of sensory
contamination within the TEP. There is no doubt that the
auditory complex can overlap with N100 and P200 (Conde et al.,
2019), but in fact we have used strict online and offline methods
to avoid the impact of auditory and somatosensory evoked
potential as much as possible. In the data collection process, we
played white noise by earphones for the subjects. In addition, a
foam layer was placed under the coil to inhibit bone conduction
and weaken the scalp sensation caused by the vibration of
the coil. During data preprocessing, we paid attention to the
removal of auditory artifacts in the second ICA run which were
characterized by a topography centering over Cz to Fz and a time
course with bipolar peaks at approximately 100–200ms (Rogasch
et al., 2014). From another perspective, all subjects received
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the same protocol and all the EEG were produced in the same
environment and preprocessed by the same method. Therefore,
even if the online and offline methods cannot completely remove
the auditory and somatosensory evoked potentials, the remaining
potentials have the same effect on both two groups, which does
not contribute to the difference between groups, let alone the
impact on classification. In summary, there is no reason to think
that the difference in the selected time windows is related to
sensory contamination.

In this study, we observed that all classification results
had high specificity but unsatisfied sensitivity, meaning that
CI subjects were not well distinguished from HC. It is due
to the heterogeneity of cognitive related disease, time of
illness, and disease progression may lead to more scattered
features. There was a limitation that all patients with CI
enrolled were highly suspected of AD with mild to moderate
symptoms based on clinical diagnosis and MoCA, excluded
vascular and other types of dementia, but not on biological
markers of CSF or PET. The definition of AD is controversial
throughout articles (Jellinger, 2020; Milà-Alomà et al., 2021).
The focus of this study was the extraction method of
TEPs’ features and machine learning rather than strict AD
diagnostic criteria. To be conservative and rigorous, although
all subjects in the CI group were highly suspected of AD, we
did not define them as AD but summarized it with CI in
this study.

A further limitation is that the sample size in this study was
small in the field of machine learning. Although we have used
data augmentation and voting strategy to obtain a more robust
model, more data will still be needed in subsequent studies to
meet the real and complex clinical needs.

5. CONCLUSION

We found that the TEPs induced by TMS over the left DLPFC
has significant differences between CI and HC. Machine learning
based on the spatiotemporal features of TEPs is effective for the
classification of CI and HC.

In the time domain, the features of N100 had the best
performance in the SVM classifier, with an accuracy of 88.37%. In
the aspect of spatiality, the features of the right frontal region and
left parietal region had the best performance in the SVM classifier,
with an accuracy of 83.72%. By using XGBoost to evaluate the
importance of features, the LMFP, AVG, Latency, and Amplitude
contributed the most in classification. It is suggested that
clinicians should pay close attention to the important features

above, which may be potential biomarkers for diagnosing CI.
In this study, the features selected were all simple and

linear, the classification algorithms used were popular and
sophisticated. Therefore, our research particularly emphasized
the interpretability and clinical usability. These findings prove
that machine learning based on spatiotemporal features of TEP
has the potential to automatically clinical auxiliary diagnosis
of CI.
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