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Autism Spectrum Disorder (ASD) is a complicated collection of neurodevelopmental illnesses characterized by a variety of
developmental defects. It is a binary classification system that cannot cope with reality. Furthermore, ASD, data label noise, high
dimension, and data distribution imbalance have all hampered the existing classification algorithms. As a result, a new ASD was
proposed. This strategy employs label distribution learning (LDL) to deal with label noise and uses support vector regression
(SVR) to deal with sample imbalance. The experimental results show that the proposed method balances the effects of majority and
minority classes on outcomes. It can effectively deal with imbalanced data in ASD diagnosis, and it can help with ASD diagnosis.
This study presents a cost-sensitive approach to correct sample imbalance and uses a support vector regression (SVR)-based
method to remove label noise. The label distribution learning approach overcomes high-dimensional feature classification issues
by mapping samples to the feature space and then diagnosing multiclass ASD. This technique outperforms previous methods in
terms of classification performance and accuracy, as well as resolving the issue of unbalanced data in ASD diagnosis.

1. Introduction

Autism spectrum disorder (ASD) is a series of complex
neurodevelopmental disorders, and its clinical manifesta-
tions are mainly social interaction disorders, verbal com-
munication disorders, and stereotyped repetitive movements
[1, 2]. Statistics from the US Centers for Disease Control and
Prevention show that the prevalence of autism in American
childrenisashighas1:59. This shows that autism has become
arather serious health problem and there is an urgent need to
develop an effective method for timely diagnosis. However,
because the physiological cause of autism is not clear, medical
diagnosis can only be based on the patient’s symptoms and

feedback, qualitative/quantitative testing information, and
the physician’s personal experience, which has great uncer-
tainty [3]. Therefore, it is of great significance to use com-
puters to assist in the diagnosis of autism.

Studies have shown that autism spectrum disorders are
related to the abnormal brain function in patients and resting-
state functional magnetic resonance imaging, which reflects
functional changes such as brain metabolic activity in patients
under a resting state, is reflected using blood oxygen-de-
pendent levels [4, 5]. Resonance image (resting-state func-
tional magnetic resonance imaging, rs-fMRI) has become a
powerful tool for quantifying neural activity in the brain and
has gradually become one of the important means for the


mailto:saravanan@dadu.edu.et
https://orcid.org/0000-0002-4669-0970
https://orcid.org/0000-0002-9351-1795
https://orcid.org/0000-0001-5574-3563
https://orcid.org/0000-0002-7725-0863
https://orcid.org/0000-0001-6808-2055
https://orcid.org/0000-0003-3503-5564
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4464603

study of brain diseases such as ASD [6, 7]. Based on this
diagnosis, researchers have proposed a variety of computer-
aided autism diagnosis algorithms [8, 9]. For example, the
authors used high-order functional connectivity matrix for
auxiliary diagnosis of autism. He proposed multivariate graph
learning for auxiliary diagnosis of autism, the authors ex-
plored the relationship between brain regions through deep
learning and Correlation for auxiliary diagnosis of autism and
so on [10]. However, these methods can only deal with di-
chotomous problems, and in clinical practice, autism spec-
trum disorder includes several disorders related to
developmental disorders, such as autism [11] and Asperger’s
syndrome (Asperger’s disorder), nonspecific general devel-
opmental disorders (pervasive developmental disorder not
otherwise specified, PDD-NOS), and so on. Most of the
existing auxiliary diagnosis models for autism can only solve
the problem of binary classification and cannot distinguish
several related diseases of ASD at the same time. In addition,
these methods also do not deal with label noise in a targeted
manner [12]. Labeling noise is a challenge involved in the
auxiliary diagnosis of multiclass ASD and has serious adverse
effects on classifier performance [13]. Label noise refers to the
deviation between the target label of the training sample and
the true label of the corresponding instance. There are many
factors in the generation of labeling noise, such as the sub-
jectivity of the labeling process, the low recognizability of the
samples to be labeled, and communication/coding problems.
Labeling noise is prevalent in autism diagnosis scenarios.
Subjectivity in the diagnostic process, inconsistent diagnostic
criteria, and blurring of the boundaries of ASD subcategories
contribute to labeling noise [14].

The class imbalance problem under high-dimensional
features is another challenge involved in the auxiliary diag-
nosis of multiclass ASD [15]. The neuroimaging data usually
used for the auxiliary diagnosis of ASD often have hundreds
or thousands of features, and the number of training samples
is very limited, which may easily lead to overfitting problems
during classifier training. Moreover, the samples used to
construct the ASD classifier have the problem of class im-
balance, which causes the classification prediction results to
be biased towards the majority class [16, 17]. This paper
proposes a cost-sensitive label distribution support vector
regression learning for auxiliary diagnosis of ASD [18]. First
of all, multiclass ASD auxiliary diagnosis is faced with the
problem of label noise, and the unique label form of label
distribution can better overcome the influence of label noise
on the classifier through the description of the same sample by
different labels to accurately express the difference between
labels. The degree of correlation makes the learning process
contain richer semantic information, can better distinguish
the relative importance of multiple markers, and has better
pertinence to the problem of marker noise in the auxiliary
diagnosis of ASD [19, 20]. The kernel approach is introduced
at the same time as the support vector regression. The linearly
inseparable data in the original input space may be transferred
into a linearly separable feature space using the kernel
method’s nonlinear mapping, offering additional discrimi-
native information. Finally, a cost-sensitive technique is de-
vised to address the issue of category imbalance. The
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algorithm may adjust to the demands of actual applications to
some degree and treat a limited number of individuals eq-
uitably by introducing the imbalance of misjudgment costs of
various categories in reality.

Label distribution learning (LDL) is designed to cope with
label noise in this technique, while support vector regression
(SVR) is also used to handle the sample imbalance. According
to the results of the trials, the proposed technique optimizes
the effects of majority and minority classes on outcomes. It
can handle skewed data in ASD diagnosis and can assist with
ASD diagnosis. This study provided a cost-sensitive technique
for correcting sample imbalance using a support vector re-
gression (SVR)-based method to reduce label noise. The label
distribution learning approach addresses high-dimensional
feature classification challenges by mapping data to the fea-
ture space and then diagnosing multiclass ASD. In terms of
classification performance and accuracy, our proposed
strategy outperforms earlier methods, as well as eliminates the
challenge of unbalanced data in ASD diagnosis.

However, the improved model is still biased towards the
majority class to some extent, and the imbalanced data
problem should be improved further as a future study.
Researchers can further try to improve the data sampling
method or use the synthetic minority sample method as
future prespective

1.1. Organization. The paper is framed into several sections
where Section 1 states about the Introduction followed by
related work section in Section 2. Section 3 states about cost-
sensitive marker distribution learning for ASD-aided di-
agnosis, followed by Section 4 that describes the evaluation
of proposed methodology. The final section is the concluding
section numbered 5 that discusses the results obtained in the
study.

2. Related Work

2.1. Labeled Distribution Learning. Label distribution
learning (LDL) is a machine learning method that has
emerged in recent years [21]. It introduces the concept of label
distribution on the basis of single-label and multilabel
learning [22, 23]. In a multimarket scenario, if a sample is
related to multiple markers, the importance of these markers
to the sample will generally be different, and the marker
distribution is a marker form that describes the importance of
different markers to the same sample. Label distribution
learning is a machine learning method that takes label dis-
tribution as the learning target and has been applied in many
fields. Author proposed a deep label distribution learning
algorithm combining convolutional neural network and label
distribution learning to estimate age by face, and Author uses
wheel of emotions to automatically identify the user’s emo-
tional state from the text. Author proposed an algorithm
based on multivariate label distribution to detect head pose
[24, 25]. However, it has not yet been reported for the
auxiliary diagnosis of brain diseases. This study aimed to
identify particular qualities that aid in the automation of the
diagnostics, as well as evaluating and contrasting various
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FIGURE 1: Proposed label distribution support vector regression for cost sensitivity.

machine learning techniques [26]. The functional connec-
tivity structure acquired from resting-state MRI that was
being used to construct the auto-encoder that is semi-su-
pervised for autism diagnosis in this research is proposed [27].

2.2. Marker Enhancements. Label distribution learning re-
quires that the training data contain label distribution in-
formation. However, in real life, people often label samples in
the form of single-label or multilabel, making it difficult to
directly obtain label distribution information. Nonetheless,
the labels of these data still contain relevant information about
the distribution of the labels. Marker enhancement enhances
the supervised information of samples through the implicit
correlation between different sample markers, thereby
achieving better results in marker distribution learning [28].
For example, the authors proposed tag augmentation as an
auxiliary algorithm for tag distribution learning, which is used
to mine the implied tag importance information in the
training set, promote the original logical tag to tag distri-
bution, and assist tag distribution learning. The authors
proposed label-enhanced multilabel learning to reconstruct
latent label importance information from logical labels to
improve the performance of label distribution learning [29].

3. Cost-Sensitive Marker Distribution
Learning for ASD-Aided Diagnosis

3.1. Symbolic Representation. The main symbols in this
paper are expressed as follows: Use x; € R? to represent the i

sample, where g represents the dimension of the feature
vector; X=[x), Xp---xn] €RYN; I = [IL12, JK T
represents the logical token corresponding to x; where K
represents the number of possible tokens; and I/ € {0, 1}.
Similarly, d; = [d}, d, ,dlK , ]T € RK represents the label
distribution of the i sample, where d € [0, 1] represents the
™ value of the label distribution of the i sample, satisfying

Z,Ii(:l dz] = l’D = [dl’dZ" : ')dN] € RKXN‘

3.2. Proposed Methodology. The label distribution learning
algorithm for multiclass autism auxiliary diagnosis proposed
in this paper is shown in Figure 1. First, the rs-fMRI images
are preprocessed, and the functional connectivity matrix is
constructed on this basis, and the functional connectivity
feature vector of each sample is obtained based on the
functional connectivity matrix. At the same time, combining
the logical marker data and functional connectivity features
for marker enhancement, the marker distribution form of
the sample is obtained. Finally, a cost-sensitive label dis-
tribution learning model is carried out to obtain a multi
classification model for the auxiliary diagnosis of autism.

3.3. Marker Distribution Mechanism. Label distribution
learning describes the degree of correlation between each
label and sample by introducing a descriptive degree, so it
can obtain richer semantic information from the data than
multilabel and more accurately express the relative im-
portance difference of multiple labels of the same sample.
However, the basic requirement of labeled distribution
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TaBLE 1: Evaluation measures.

Index Formula
Chebyshev] Dis; = max Id{ - cAilJI
Jj€elLK]
KL| Dis, = Y, d/Ind//d]
- K i N2 090 L T0N\2
Mark distribution metrics Clark] Dis; = \/ZFl (df = )"/ (d] + )
Canberra| Dis, = Y, ld] - d/I/d!| + |d|
Intersection] Sim, = Zf:l min (d/,d))
Cosine] Sim, = d, - d,/|d;| - |d,|
.. _ N =
Multiclass metrics Precision P=1NY, Xn(;\]r(li’ )
mAB mAB = 1/N Y.\, p;

learning is to have labeled distributed datasets, which is often
difficult to meet in reality. The marker distribution data can
be obtained by transforming a given multimarket form
sample by a marker enhancement method. The label en-
hancement method based on FCM (fuzzy C-means) and
fuzzy operation is adopted [30]. The basic idea is as follows:

(1) Use FCM to divide N samples into p fuzzy clusters,
and find the center of each cluster, so that the sum of
the weighted distances from all training samples to
the cluster center is the smallest. Equation (1) lists the
specific weighted distance formula:

iy, = 1 1)
X . . g1
Z;):l (Dlst (x> yk)/Dlst(xi, /,tj))

Among them, mX represents the membership degree
of the i™ sample to the k™ cluster center, u repre-
sents the k™ cluster center, f is a fuzzy factor greater
than 1, Dist (*, %) represents the distance measure,
and each sample the membership degree represents
the strength of the association between the sample
and the cluster. The clustering result of traditional
FCM is greatly affected by the initial value and
cannot ensure convergence to the global optimal
solution, but in label enhancement, the clustering
result of FCM is only used as a transitional bridge.
Although the clustering result fluctuates, however, it
has little effect on the results of label enhancement,
and the gaps between the Chebyshev distance and
the KL divergence (Kullback-Leibler divergence) of
the results of multiple label enhancements are both
below 107°.

(2) Construct an association matrix A between markers
and clusters. The elements in the matrix represent
the degree of association between markers and
clusters. The calculation method of the association
matrix is as follows:

_ ko eqi
A]- —Aj"'mx,.’lfli =1. (2)

In the formula, Ajis the jth row of the matrix and Ajis
the sum of the membership degree vectors of the

samples of the j™ class. After the rows are normal-
ized, the association matrix A can be regarded as a
fuzzy relationship matrix of clustering and labeling.

(3) According to the fuzzy logic reasoning mechanism,
the fuzzy synthesis operation is performed on the
association matrix and the membership degree, and
the membership degree of the sample to the label is
obtained [31]. After normalization, it is the label
distribution.

The marker enhancement based on FCM and fuzzy
operation introduces cluster analysis as a bridge. Through
the compound operation between the membership degree of
the sample to the cluster and the membership degree of the
cluster to the marker, the membership degree of the sample
to the marker, that is, the marker, is obtained distributed. In
this process, the topological relationship of the sample space
is mined through fuzzy clustering, and this relationship is
projected to the label space through the association matrix,
so that the simple logical labeling generates richer semantic
information and transforms it into a label distribution.

4. Evaluation of Proposed Methodology

4.1. Evaluation Metrics. This paper uses both the evaluation
metric of the label distribution and the evaluation metric of the
multiclassification task for algorithm evaluation. All evalua-
tion indicators and calculation formulas are shown in Table 1.
The first six are evaluation indicators for labeled distribution
learning, and the last two are evaluation indicators for mul-
ticlassification tasks. “7” after the index name means that the
larger the value, the better the algorithm effect; with “|,” the
smaller the value, the better the algorithm effect.

In Table 1, P; is the precision of the j™ class, xnor is the
XOR calculation, Dis is the distance, Sim is the similarity,
and mAP is the macro-averaging precision.

4.2. Dataset Used. Allrs-fMRI datasets used in this paper were
obtained from the ABIDE website (Autism Brain Imaging Data
Exchange, http://fcon_1000.projects.nitrc.org/indi/abide/).
Table 2 shows the composition of each type of sample in each
dataset. Taking the NYU (New York University) dataset as an
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TABLE 2: Statistics of datasets.

Dataset Number of samples Normal Autism Asperger’s syndrome
NYU 175 104 56 24
UM 140 73 54 16
KKI 52 37 7 8
Leuven 104 64 23 17
UCLA 83 51 18 14
TaBLE 3: Comparison algorithms.
Comparison algorithm Description of the comparison algorithm
name
PT-SVM Based on the problem-transformed SVM
PT-BAYES BAYES-based gauss distribution
AA-KNN The algorithm-based KNN
AA-BP The algorithm-based BP neural network uses the softmax activation output as the predicted label distribution
SA-TIS IIS based on dedicated algorithm uses an improved iterative scaling algorithm to optimize the objective
function
LDSVR LDSVR based on a dedicated algorithm

Decision tree

An instance-based inductive learning method

KNN An instance-based classification method

example, the data collection institution of the NYU dataset is
New York University. During the collection process, the
subjects remained in a still state and did not perform any
actions. The specific parameters are shown in Table 2.

In Table 2, UM stands for the University of Michigan,
KKI for the Kennedy Krieger Institute, Leuven for the
University of Leuven, and UCLA for the University of
California, Los Angeles.

Although brain regions are spatially isolated from each
other, the neural activity between them influences each
other. This paper uses the brain functional connectivity
matrix between brain regions as a classification feature [32].
The calculation step (preprocessing step) of the functional
connectivity matrix is as follows:

(1) According to the resting-state functional magnetic
resonance imaging data, use the DPARSF (data pro-
cessing assistant for resting-state fMRI) tool to extract
the average time-series signals of each brain region,
calculate the Pearson coeflicient between the brain
regions, and obtain the functional connectivity matrix

(2) Take each row of the functional connectivity matrix
as the feature description of each brain region, take
the upper triangular matrix of the functional con-
nectivity matrix, and connect the rows in series to
obtain the corresponding eigenvectors

4.3. Proposed Algorithm. The proposed CSLDSVR method is
compared with six existing LDL algorithms and two multi-
classification algorithms. Two multiclassification algorithms
are decision tree and K-nearest neighbor (KNN), both of
which are classic multiclassification algorithms [33, 34]. The
six existing LDL algorithms are PT-SVM, PT-BAYES, AA-
KNN, AA-BP (back propagation), SA-IIS (improved iterative
scaling), and LDSVR, where “PT” stands for problem

TaBLE 4: Range of parameters.

Parameter name Parameter range

Weight factor 0.001, 0.01, 0.1, 1, 10, 100, 1000
Linear kernel, polynomial kernel,
Gaussian kernel

0.0001, 0.001, 0.01, 0.1
0.01, 0.1, 1, 10, 100

Type of kernel function

Insensitive area size
The kernel bandwidth of the
Gaussian kernel

transformation, “AA” for algorithm adaptation, and “SA” for
specialized algorithm [35, 36]. The specific description of the
comparison algorithm is shown in Table 3.

The CSLDSVR algorithm proposed in this paper has four
parameters, namely, the weight coeflicient C, the type of
kernel function, the size of the insensitive region ¢, and the
kernel bandwidth of the Gaussian kernel. The specific range
of parameters is shown in Table 4. The results were calcu-
lated using ten-fold cross-validation. The specific operation
steps are as follows: Randomly divide the dataset into 10
equal parts in each fold cross validation, and take 1 part as
the test set and the remaining 9 parts as the training set.
Repeat the above process 10 times, and take the average of
the 10 results as the evaluation index.

4.4. Comparison of Mark Distribution Algorithms. Table 5
summarizes the experimental results of six labeled distri-
bution learning algorithms and CSLDSVR on five different
datasets, and the experimental results are recorded in the
form of mean + standard deviation. Among them, the bold is
the best value of each indicator in different methods on the
current dataset. Clearly, in comparison with the label dis-
tribution learning algorithm, CSLDSVR has shown excellent
results in most cases, and it is more obvious on the UM,
UCLA, and KKI datasets. Among the indicators of the
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Comparative performance evaluation of CSLDSVR and LDL algorithms.

Evaluation metrics

Algorithm

NYU

UM

Leuven

UCLA

KKI

Chebyshev |

AA-BP
AA-KNN
LDSVR
SA-IIS
PT-BAYES
PT-SVM
CSLDSVR

0.223 7+£0.035 6
0.144 1+£0.011 6
0.150 1+0.024 3
0.147 8£0.011 8
0.381 8£0.111 9
0.200 5+0.041 2
0.141 3+0.016 2

0.218 4+0.045 8
0.154 0£0.021 1
0.140 0£0.012 8
0.153 5+£0.023 7
0.205 7 +£0.009 5
0.188 5+0.042 3
0.135 2+£0.023 6

0.248 0+£0.044 6
0.157 9£0.026 5
0.162 9+£0.034 4
0.174 8 £0.021 4
0.206 9 +£0.007 8
0.183 1+£0.040 1
0.140 2 £0.024 4

0.250 6 £0.053 5
0.142 6+0.031 3
0.169 4+0.053 4
0.145 8 £0.032 9
0.213 5£0.009 9
0.195 8+0.033 0
0.138 6 +0.038 4

0.254 7+£0.052 9
0.157 2+0.029 5
0.160 2+0.057 0
0.162 7+0.049 5
0.2154+0.008 1
0.182 2+0.058 9
0.126 7+0.034 9

CosineT

AA-BP
AA-KNN
LDSVR
SA-IIS
PT-BAYES
PT-SVM
CSLDSVR

0.8731+0.034 4
0.935 4+0.009 6
0.937 7+£0.019 1
0.940 7 +£0.009 3
0.798 5+0.071 3
0.898 7+0.038 5
0.940 5+£0.012 1

0.881 8+£0.035 6
0.928 6+£0.017 3
0.944 8+£0.013 3
0.934 4+0.016 7
0.915 6 +£0.006 2
0.904 3+£0.042 8
0.947 3+0.018 3

0.862 2+£0.049 8
0.927 4+£0.020 8
0.932 5+0.029 2
0.920 5+0.016 0
0.915 1+0.005 3
0.914 5+0.030 9
0.923 4+£0.025 5

0.839 9+0.057 8
0.929 7+£0.022 4
0.928 5+£0.052 0
0.939 5+£0.020 3
0.910 4 +0.006 9
0.897 4+0.036 5
0.942 8 +0.036 8

0.843 7+0.058 6
0.913 0+0.024 4
0.932 6+£0.047 4
0.924 6+£0.042 5
0.909 2£0.005 7
0.906 8 £0.045 8
0.936 3+0.029 4

Clark|

AA-BP
AA-KNN
LDSVR
SA-IIS
PT-BAYES
PT-SVM
CSLDSVR

0.468 1 +0.064 8
0.263 1+0.020 3
0.272 9+£0.036 4
0.266 3+£0.019 1
0.893 6+£0.359 8
0.358 0£0.070 2
0.261 6+0.032 1

0.461 3+£0.099 0
0.282 2+0.036 7
0.255 7£0.021 8
0.278 8 £0.039 7
0.352 0£0.014 5
0.348 1+£0.075 8
0.246 3+£0.037 6

0.517 0+0.083 8
0.287 3+£0.047 3
0.287 2+0.062 6
0.311 3+0.033 6
0.352 3+£0.012 7
0.325 3£0.065 5
0.253 9+0.041 8

0.5371+£0.110 1
0.261 3£0.053 5
0.295 6+£0.092 0
0.262 3+£0.055 5
0.363 6 +£0.016 2
0.350 5+£0.056 1
0.248 4+ 0.062 6

0.542 7+0.104 6
0.283 2+£0.053 9
0.281 9+0.100 8
0.293 9+0.088 0
0.366 3+£0.013 3
0.328 7+0.098 1
0.233 4+0.061 8

Intersection]

AA-BP
AA-KNN
LDSVR
SA-IIS
PT-BAYES
PT-SVM
CSLDSVR

0.776 3+£0.035 6
0.8559+0.011 6
0.849 9+0.024 3
0.852 2+£0.011 8
0.618 2+0.111 9
0.799 5+0.041 2
0.858 7+£0.041 5

0.781 6£0.045 8
0.846 0+£0.021 1
0.860 0+£0.012 8
0.846 5+0.023 7
0.794 3+£0.009 5
0.811 5+0.042 3
0.864 8+0.023 6

0.752 0+£0.044 6
0.8421+0.026 5
0.8371+0.034 4
0.825 2+0.021 4
0.793 1+0.007 8
0.816 9£0.040 1
0.859 8 £0.024 4

0.749 4£0.053 5
0.857 4+0.031 3
0.830 6+£0.053 4
0.854 2+£0.032 9
0.786 5+0.009 9
0.804 2+0.033 0
0.861 4+0.038 4

0.745 3+£0.052 9
0.842 8+£0.029 5
0.839 8£0.057 0
0.837 3£0.049 5
0.784 6£0.008 1
0.817 8£0.058 9
0.873 3+£0.034 9

KLT

AA-BP
AA-KNN
LDSVR
SA-IIS
PT-BAYES
PT-SVM
CSLDSVR

0.166 7+0.042 9
0.068 5+0.010 1
0.066 5+0.019 9
0.063 9+0.009 3
0.492 9+£0.251 0
0.108 1+0.041 2
0.060 3+0.041 5

0.161 2+0.051 7
0.076 0£0.018 4
0.059 3+£0.014 6
0.069 8£0.017 8
0.087 9+0.006 7
0.105 5+0.047 6
0.056 7+£0.019 5

0.192 0+ 0.069 3
0.076 6£0.022 1
0.070 3+£0.032 3
0.083 7+0.016 6
0.088 0£0.006 1
0.090 6£0.032 9
0.069 9+0.024 0

0.222 2+0.089 8
0.074 6+0.023 2
0.074 9 +£0.062 5
0.063 9+£0.021 0
0.093 5+0.008 0
0.110 4+0.040 5
0.060 1+0.046 1

0.227 9+£0.076 4
0.093 2+£0.026 6
0.071 1£0.049 8
0.080 0+£0.044 1
0.094 8 £0.006 6
0.100 3+0.048 1
0.068 2+£0.030 1

labeled distribution, KL divergence is an indicator de-
scribing the difference between the two distributions, and

the LDL algorithm used as a comparison uses KL divergence
as the objective function. The KL divergence of the pre-
diction result of CSLDSVR can be minimized. It shows that
the label distribution predicted by the new algorithm is the
closest to the real data distribution on the whole, which is

better than the comparison algorithm.

Figure 2 summarizes the results of CSLDSVR and the
marker distribution algorithm multiclass metrics precision
and mAP; from the two most important multiclass metrics,
CSLDSVR performs better. Some algorithms have a high
accuracy rate but a low macro average because these algo-
rithms do not consider the class imbalance problem, and the
model classification is biased towards the majority class.
CSLDSVR uses the kernel trick to solve the problem in a
more discriminative feature space, and CSLDSVR considers
the size of each class, which effectively solves the problem
caused by class imbalance.

To verify the performance improvement of the cost-sensitive
mechanism, the algorithm in this paper is compared with the

Precision & mAP

0.35 4
0.3 4
0.25 4
0.2 A
0.15 4
0.1 A
0.05 4

Precision

NYU

= AA-BP
= AA-KNN
= LDSVR
m SA-IIS

Precision

UM

Precision
Precision

Leuven

UCLA

mAP

Precision

KKI

= PT-BAYES

PT-SVM

CSLDSVR
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TaBLE 6: Performance evaluation for multiclassification algorithms.

Decision tree KNN CSLDSVR
Dataset
Precision mAP Precision mAP Precision mAP

NYU 0.548 8 +0.1423 0.409 3+0.0703 0.614 4+0.1525 0.364 7 +0.0527 0.655 4+0.0571 0.451 7 +0.0398
UM 0.576 7+0.1325 0.385 9+£0.0872 0.528 5+0.1214 0.374 0+ 0.0861 0.701 4+ 0.0708 0.497 1+0.1250
Leuven 0.617 1 +0.2261 0.424 2 +£0.2086 0.608 5+0 0.3333+0 0.617 6 +0.0725 0.448 2 +0.0861
UCLA 0.605 2 +0.1833 0.442 0+0.2086 0.654 3+0 0.3333+0 0.665 2 +0.1504 0.443 4 +0.1659
KKI 0.559 8 +0.2567 0.395 4+£0.2941 0.646 5+0 0.3333+0 0.687 5+0.1237 0.447 6 +0.1016
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F1Gure 3: Changes of evaluation indicators. (a) Impact of C on precision, (b) impact of € on precision, (c) impact of C on KL, and (d) impact

of ¢ on KL.

LDSVR without the cost-sensitive mechanism. As shown in
Table 5, in most cases, the learning effect of the algorithm
CSLDSVR in this paper is better; in addition, the standard
deviation of the results is basically maintained at a low level, that
is, the stability of the algorithm is improved. However, LDSVR
does not introduce a cost-sensitive mechanism, and the standard
deviation of the results obtained by the algorithm is large and

fluctuating. For example, the standard deviation of the Canberra
indicators in UCLA and KKI exceeds 0.1.

4.5. Multiclass Comparison Experiment. Table 6 shows the
comparison results of precision and mAP metrics of
CSLDSVR and two classical multiclassification algorithms,



decision tree and KNN, on five datasets. Among them, the
bold is the best value of the corresponding indicator in
different methods on the current dataset. Observing the
experimental results of the KNN method, it can be found
that the mAP of the KNN method appears 0.333 3 times, this
is because KNN is too biased towards the majority class, and
there is an extreme case of classifying all samples into the
majority class. In the case of high-dimensional imbalance of
autism neuroimaging data, traditional multiclassification
algorithms are prone to fall into the dimensional trap or bias
towards the majority class. The algorithm CSLDSVR in this
paper solves the above problems by using kernel skills and
cost-sensitive mechanisms and achieves better results. Good
classification model. The cost-sensitive mechanism reduces
the overall misclassification cost by increasing the mis-
classification cost of the minority class and reducing the
misclassification cost of the majority class and makes the
model avoid leaning towards the majority class. In other
words, the cost-sensitive mechanism is based on the original
standard cost loss function, adding some constraints and
weight constraints, so that the final model is biased towards
another minority class that is more concerned in practical
applications. This paper achieves the purpose of different
misjudgment costs for different categories by introducing
INj. In theory, this can avoid the tendency of the algorithm
model to the majority class and improve the prediction
accuracy for the minority class [37]. In the experiment, the
experimental results in Table 6 also verify this theory, and in
most cases, the stability of the algorithm has also been
improved, and the standard deviation of the experimental
results is small.

4.6. Effect of Parameters. In this section, we study the effect
of parameter changes on the performance of the algorithm
CSLDSVR. Figure 3 shows the changes of the evaluation
indicators precision and KL divergence when the parameters
C and ¢ take different values on five different datasets.
Comparing and studying two graphs of the same parameter
and different indicators, such as Figures 3(a) and 3(c), it can
be found that the curve trend of the same dataset is basically
opposite, and the point where precision takes the maximum
value is generally the same as the KL divergence is the
minimum value, which also corresponds to the previous
analysis of KL divergence, indicating that when the KL
divergence is small, the label distributions of the two are
more similar, and the classification results are more accurate.

It is found that for different datasets, the parameter
values for obtaining the optimal solution are not the same,
which also shows that in the diagnosis of autism, the data
distribution of different data centers is different, and the
parameters for building the model should also be different.
Moreover, it is found that for a dataset with fewer samples,
the result is more sensitive to the change of the parameters,
such as for the KKI dataset with only 48 samples, the
fluctuation is the largest when the parameter value changes.

It can be seen that the parameters of the CSLDSVR
algorithm should be based on the characteristics of the
dataset, and the corresponding parameter values should be
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set to build a model. If the parameter settings are reasonable,
CSLDSVR can overcome the high dimensionality and cat-
egory imbalance of the autism dataset. Thus, the whole
section contains the strategy of how ASD detection is done
by evaluating several strategies such as SVR and LDL by
considering certain parameters. Therefore, the label distri-
bution learning approach overcomes high-dimensional
feature classification issues by mapping samples to the
feature space and then diagnosing multiclass ASD. This
technique outperforms previous methods in terms of clas-
sification performance and accuracy, as well as resolving the
issue of unbalanced data in ASD diagnosis.

5. Conclusion

This research presents a cost-sensitive marker distribution to
enable an ASD-aided diagnostic approach for vector re-
gression based on functional connectivity characteristics
collected from rs-fMRI. Since ASD patients’ brain function
differs from that of healthy persons,so rs-fMRI is a useful
method for capturing brain activity. In this study, re-
searchers have introduced the label distribution learning
that solves the label noise problem in multiclassification
ASD diagnosis. Furthermore, the new technique have been
implemented, which provides class balancing and in addi-
tion balances the effect of the majority and minority classes
on the objective function using the labeled distribution
support vector regression method. The new method
employed in this study effectively solves the imbalanced data
problem in ASD diagnosis by overcoming the imbalance of
the influence of the majority and minority classes on the
results obtained in the paper. Besides, it presents a cost-
sensitive approach to correct sample imbalance and uses a
support vector regression (SVR)-based method to remove
label noise. The label distribution learning approach over-
comes high-dimensional feature classification issues by
mapping samples to the feature space and then diagnosing
multiclass ASD. The overall result obtained in this technique
outperforms previous methods in terms of classification
performance and accuracy, as well as resolves the issue of
unbalanced data in ASD diagnosis. However, the improved
model is still biased towards the majority class to some
extent, and the imbalanced data problem should be im-
proved further as a future study. Researchers can further try
to improve the data sampling method or use the synthetic
minority sample method, etc. as future prespective. How-
ever, relatively high-level distances must also be introduced,
which necessitates more prior knowledge. Since prior
knowledge is no longer used, the Euclidean distance is used
instead. Other advanced distances have their set of benefits
that will be refined in future research.
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