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The molecular structures (i.e., conformation spaces, CS) of bio-macromolecules and the
dynamics that molecules exhibit are crucial to the understanding of the basis of many
diseases and in the continuous attempts to retarget known drugs/medications, improve
the efficacy of existing drugs, or develop novel drugs. These make a better understanding
and the exploration of the CS of molecules a research hotspot. While it is generally easy to
computationally explore the CS of small molecules (such as peptides and ligands), the
exploration of the CS of a larger biomolecule beyond the local energy well and beyond the
initial equilibrium structure of the molecule is generally nontrivial and can often be
computationally prohibitive for molecules of considerable size. Therefore, research
efforts in this area focus on the development of ways that systematically favor the
sampling of new conformations while penalizing the resampling of previously sampled
conformations. In this work, we present Deep Enhanced Sampling of Proteins’
Conformation Spaces Using AI-Inspired Biasing Forces (DESP), a technique for
enhanced sampling that combines molecular dynamics (MD) simulations and deep
neural networks (DNNs), in which biasing potentials for guiding the MD simulations are
derived from the KL divergence between the DNN-learned latent space vectors of [a] the
most recently sampled conformation and those of [b] the previously sampled
conformations. Overall, DESP efficiently samples wide CS and outperforms
conventional MD simulations as well as accelerated MD simulations. We acknowledge
that this is an actively evolving research area, and we continue to further develop the
techniques presented here and their derivatives tailored at achieving DNN-enhanced
steered MD simulations and DNN-enhanced targeted MD simulations.
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INTRODUCTION

The functions of biomolecules are encoded in their structures and dynamics (Council and others 1989;
Karplus andKuriyan, 2005; Yang et al., 2014). And there are innumerable pieces of evidence linking the
basis of many diseases to anomalies in the structures and the dynamics of the molecules that are
involved in the biological systems that the diseases affect (McCafferty and Sergeev, 2016; Chiti and
Dobson, 2017; Guo et al., 2017; Hartl, 2017; Tramutola et al., 2017; Salawu, 2018a; Ittisoponpisan et al.,
2019; Laskowski et al., 2020) because the normal functioning of the biological systems depends on the
molecules’ proper structures and dynamics. Furthermore, the various structures that a molecule can
take (i.e., the molecule’s conformation space, CS) and their associated MD are not only of vital
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importance in deciphering of many diseases (Salawu, 2018a;
Salawu, 2018b) but are also crucial in the drug development
efforts targeted at curing or managing many diseases (Carlson
and McCammon, 2000; Lee et al., 2018; Pawełand and Caflisch,
2018; Wang et al., 2018; Lin et al., 2020). These recognitions have
motivated extensive efforts in the field of structural biochemistry
and form the rationale for many structural biology studies (such as
through X-ray crystallography, NMR, and Cryo-EM) and the
creation of the Protein Data Bank (Berman et al., 2000) as well
as other databases for molecular structures. Nonetheless,
considerable challenges exist because the solely static molecular
structures obtained through the wet laboratory approaches alone
(such as the ones listed above) often fall short of providing enough
insights into the dynamics of the molecules of interest. These
challenges have led to the growing roles and the increasing
importance of computational approaches, such as molecular
dynamics (MD) simulations, that are often used for studying
the dynamic behaviors of molecules and their interactions with
other molecules as well as for exploring much wider CS of the
molecules of interest.

While it is generally easy to computationally explore the CS of
small molecules (such as peptides and ligands), the exploration of
the CS of larger a biomolecule beyond the local energy well and
beyond the initial equilibrium structure of the molecule is
generally nontrivial (Shaw et al., 2008; Shaw et al., 2009) and
can often be computationally prohibitive for a molecule of
considerable size. These difficulties arise from the existence of
energy barriers between different states that the molecule could
assume, thereby hindering the movement of the molecule from
one structural state to another (Hamelberg et al., 2004; Hénin and
Chipot, 2004; Salawu, 2020). At this point, it is important to
acknowledge existing efforts targeted at removing, avoiding/
sidestepping, lowering, or surmounting these energy barriers,
thereby achieving enhanced sampling of the CS of molecules.
Therefore, we recognize some of the previous publications in this
domain and highlight them in the next paragraphs.

Most of the existing popular approaches for achieving
enhanced sampling may be broadly viewed in two categories,
namely: those that require the user to specify well-defined
collective variables (CVs)/reaction coordinates (RCs) (Babin
et al., 2008; Laio and Gervasio, 2008; Bussi and Laio, 2020)
and those that do not require the user to explicitly specify the
CV/RC (Sugita and Okamoto, 1999; Hamelberg et al., 2004;
Moritsugu et al., 2012; Harada and Kitao, 2013; Miao et al.,
2015; Chen and Ferguson, 2018; Salawu, 2020). Reconnaissance
meta-dynamics uses a self-learning algorithm for accelerated
dynamics and is capable of handling a large number of
collective variables by making use of bias potentials created as
a function of individual locally valid CVs that are then patched
together to obtain the sampling across a large number of
collective variables (Tribello et al., 2010). Some of the
challenges of reconnaissance meta-dynamics such as those
associated with the creation of bias potentials as a function of
individual locally valid CVs could be addressed by any technique
that could potentially learn a compressed representation of those
CVs and efficiently explore the combined CVs together in the
compressed space. This is the subject of an actively growing

research area that leverages the powers of deep neural networks
(DNNs)/machine learning (ML). Bridging the fields of enhanced
sampling and ML, Bonati et al. (2019) developed DNN-based
variationally enhanced sampling that uses neural networks to
represent the bias potential in a variational learning scheme that
makes it possible for the efficient exploration of even high-
dimensional free energy surfaces. In a similar way, reweighted
autoencoded variational Bayes (RAVE) models MD simulation
trajectories using the VAE whereby the learned distribution of the
latent space variable is used to add biasing potentials, thereby
penalizing the repeated sampling of the most favorable frequently
visited states (Ribeiro et al., 2018). Although other enhanced
sampling methods implement the biasing protocol in two steps,
RAVE’s identification of the RC and its derivation of unbiased
probability distribution occur simultaneously. And through the
systematic use of the Kullback–Leibler (KL) divergence metric,
RAVE can identify physically meaningful RCs from among a
group of RCs explored.

In addition to the efforts mentioned above, the combination of
well-tempered meta-dynamics and time-lagged independent
component analysis to study rare events and explore complex
free energy landscapes have also been looked into (McCarty and
Parrinello, 2017). Since the initial choice of CVs formeta-dynamics
is often suboptimal, the work shows the finding of new and optimal
CVs with better convergence properties by the analysis of the initial
trajectory using time-lagged independent component analysis
(McCarty and Parrinello, 2017). However, a more recent study
has shown that rather than using linear dimension reduction
methods (such as independent component analysis) a modified
autoencoder couldmore accurately encode the low dynamics of the
underlying stochastic processes of MD simulations better than
linear dimension reduction methods (Wehmeyer and Noé, 2018).
Indeed, there are continuous and growing efforts in the
combinations of DNN models and MD simulations in the
enhancement of the sampling of molecules’ CS and other
various aspects of molecular sciences (Allison, 2020; Salawu,
2020; Sidky et al., 2020).

In this work, we present Deep Enhanced Sampling of Proteins’
Conformation Spaces Using AI-Inspired Biasing Forces (DESP),
which also combines DNNs andMD simulations to create a robust
technique for enhanced sampling of CS of molecules. Here, a DNN
model is trained alongside MD simulations of the molecule of
interest such that the models learn a compressed representation of
the sampled structures of the molecule. The latent space vectors of
the DNN model are then used in ways that provide useful
information for inferring appropriate biasing potentials that are
then used for guiding the MD simulations, thereby allowing
efficient sampling of the molecule’s CS. More specifically, the
use of the KL divergence between the VAE’s latent vectors of
the current conformation (obtained from theMD simulations) and
the VAE’s latent vectors of the known, previously sampled,
conformations makes it possible to bias the MD simulation
away from visiting previously sampled conformations and
rather toward visiting previously unsampled conformations.

The AI-based enhanced sampling approach presented in this
work is not dependent on having prior knowledge of the
molecule’s CS distribution and does not require any careful
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selection of collective variables. Therefore, this approach is very
promising, given that the selection of appropriate collective
variables is often very challenging (Tribello et al., 2010), and
there is no well-defined solution that can fit all situations/all
molecular systems. Rather than requiring manual specification of
the collective variables to use, DESP, by itself, learns the
compressed representation of the molecular system of interest
and derives biasing potentials based on the distribution of the
molecule’s conformations in that compressed representation
space. The results obtained show that DESP outperforms both
conventional and accelerated MD simulations, and efficiently
samples wider CS than conventional and accelerated MD
simulations. Furthermore, the ideas in DESP are generalizable
and may be used for implementing other forms of biased MD
simulations including targeted and steered MD simulations. In
the next section, we present the methods that make DESP
possible and thereafter the overall DESP algorithm.

MATERIALS AND METHODS

Protein Molecules Used
We began with a smaller protein/peptide (alanine dodecapeptide
with 12 alanine residues, A12) and modeled its 3D structure using
RPBS (Alland et al., 2005). The small size of alanine
dodecapeptide helped in the initial testing and fine-tuning of
DESP. In addition to A12, we obtained a solution nuclear
magnetic resonance (NMR) structure of GB98 that was
expressed in Escherichia coli BL21 (DE3) from the Protein
Data Bank (Berman et al., 2000), PDB ID: 2lhd (He et al.,
2012). GB98 was selected because of its relatively small/
medium size and because of the presence of the various
secondary structure types (namely, alpha-helix, beta-sheet, and
coils) in it. On the other hand, any protein could be used for the
demonstration of the functionality of DESP, and the ones used
here are just examples.

Creation of the Initial Molecular Systems
Assignment of appropriate residues’ charges and protonation
states were handled using PDB2PQR (Dolinsky et al., 2007; Jurrus
et al., 2018). Using AmberTools18’s tLeap (Pearlman et al., 1995;
Case et al., 2005; Salomon-Ferrer et al., 2013a; Salomon-Ferrer
et al., 2013b), ff14SB (Maier et al., 2015) force-fields for the
proteins, and ions234lm_126_tip3p for the ions and the water
molecules (Li and Merz, 2014), we created explicitly solvated
molecular systems for A12’s and GB98’s molecular dynamics
(MD) simulations with OpenMM (Eastman et al., 2017)
containing 2068 TIP3P water molecules (42.38Å × 48.80Å ×
47.15Å box size, for A12) or 9,981 (101.10Å × 94.35Å × 98.34Å
box size, for GB98) TIP3P water molecules.

Energy Minimization and Heating
Each of the molecular systems was energy-minimized using
OpenMM (Eastman et al., 2017). The energy minimizations
were done in two stages—weakly (2.5 kcal/mol/Å2) restraining
all the alpha carbon atoms in the first stage, and without any
restraints in the second stage. With the weak restraints (2.5 kcal/

mol/Å2) reapplied on the alpha carbon atoms, the molecular
systems were steadily heated to a temperature of 310 K in a
canonical ensemble using the Langevin thermostat (Pastor et al.,
1988).

Conventional Molecular Dynamics
Simulations
During both the equilibration and production runs, we controlled
the systems’ temperatures and pressures using the Langevin
thermostat (Pastor et al., 1988) with a collision frequency of
2ps−1 and the Monte Carlo barostat (Chow and Ferguson, 1995;
Åqvist et al., 2004), respectively. Full electrostatic interaction
energies were calculated using the particle mesh Ewald method
(Darden et al., 1993). A cutoff distance of 10Å and a cubic spline
switch function were used when calculating nonbonded
interactions. All bonds in which at least one atom is hydrogen
are constrained using the SHAKE algorithm (Ryckaert et al.,
1977). All production run MD simulations were performed at 2
femtoseconds time step. Overall, the results from 800 ns of
conventional MD simulations, 800 ns of accelerated MD
simulations, and 280 ns of DESP MD simulations are
presented in this work for each of the A12 and the GB98
molecular systems.

Representations of the Molecules for Deep
Learning Modeling
Since considerable changes in the conformation of biomolecules
can be captured by variations in the dihedral angles of the
molecules (Salvador, 2014; Cukier, 2015; Ostermeir and
Zacharias, 2014; Lemke and Peter, 2019), we represent a
molecule’s conformation by the cosine and the sine of the
dihedral angles (Mu et al., 2005) of that conformation. For
these, we make use of the omega (ω), phi (ϕ), psi (ψ), and
chi1 (χ1) dihedral angles (with examples illustrated in
Figure 1). Although using both the cosine and the sine of
each of the dihedral angles doubles the dimensionality, it helps

FIGURE 1 | Dihedral angles in a short segment of a protein. While the
omega (ω), phi (ϕ), and psi (ψ) dihedral angles are in the proteins backbone, the
chi1 (χ1) dihedral angle is at the beginning of an amino acid’s side chain.
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in removing the adverse effect that the periodicity of the dihedral
angles would have had on the modeling. Extensive details of the
benefits of using the dihedral angles (Lemke and Peter, 2019) and
of simultaneously using both their cosines and sines have been
documented elsewhere (Mu et al., 2005) and, for brevity, are not
repeated here.

DNN Architecture: Variational Autoencoder
Our DNN of the type variational autoencoder (VAE) has a simple
architecture, as shown in Figure 2. The input layer takes both the
cosine and the sine of the dihedral angles’ representation of the
molecular conformation (giving rise to a vector of dimension
DDihedrals*2) as input. The input layer is followed by N hidden
layers (whereN � 7 in the current case). Each of the hidden layers,
numbered n � [1, 2 . . . N], has DDihedrals/n nodes. The next layer
is made up of two latent space vectors, each of size (DDihedrals*2)/
(N + 1), which is (DDihedrals*2)/8 in the current case. The first

latent space vector represents the mean for the Gaussian
distribution that the latent space encodes (i.e., mean in
Figure 2), while the second vector represents the natural
logarithm of the variance for the Gaussian distribution that
the latent space encodes (i.e., ln_var in Figure 2). The DNN
architecture up to this point is the encoder (Figure 2).

The decoder, which is like a mirror image of the encoder,
begins with an input layer with (DDihedrals*2)/(N + 1) nodes and is
followed by M hidden layers (where M � 7 in the current case).
Each of the hidden layers, numbered m � [M, M-1 . . . 1], has
(DDihedrals*2)/m nodes. The output (which is the final) layer emits
the reconstructed cosine and sine of the dihedral angles of the
molecular conformation that was passed in as input. To allow the
passage of backpropagation signals through the entire VAE
(i.e., from the decoder to the encoder), we connect the
encoder and the decoder by a re-parameterization trick that is
made up of an equation that takes the output of the encoder
(namely, the vector of mean, and the vector of the logarithm of
variance) as an input and uses it to sample from the
corresponding normal distributions. This is done indirectly by
initially drawing samples from the standard normal distribution.
The samples drawn are then scaled and shifted accordingly using
the variance vector and the mean vector, thereby obtaining the
intended distribution (see the re-parameterization expression in
Figure 2). The output of the re-parameterization is then fed into the
decoder’s input layer (Figure 2). We used PyTorch (Paszke et al.,
2019) with CUDA support for building all deep neural network
models in this study. Given the architecture of the DNN and its
inputs and outputs, we can now examine how the DNN is trained.

DNN Training
We defined the model’s loss function as a weighted combination
(Eq. 1) of reconstruction loss captured by mean square error
(MSE) loss (Eq. 2) and the Kullback–Leibler (KL) divergence loss
(Eq. 3). We set the weighting parameter, w, to 0.1 so that the MSE
loss has a higher weight (1–0.1 � 0.9) than the KL divergence loss
(0.1). We arrived at this weighting scheme from our preliminary
experiments through grid search, wherein we observed that
setting the KL divergence’s weight to 0.1 helped in the faster
convergence of the model loss and in achieving a much better
reconstruction accuracy for the trained model, on both the
training dataset and validation dataset.

Lossmodel � (1 − w)pLossMSE + (w)pLossKL (1)

LossMSE � 1
n
∑n
i�1

(Yi − Ŷ i)2 (2)

LossKL � DKL {N [(μ1, . . . , μn)T , diag(σ2
1, σ

2
n)]

∣∣∣∣∣∣∣∣∣∣N (0, I)}
� 1

2
∑n
i�1
[σ2

i + μ2i − ln(σ2
i ) − 1]

(3)

The KL Divergence upon which Eq. 3 is based represents a special
case involving the KL-divergence between a multivariate normal
distribution, N [(μ1, . . . , μn)T , diag(σ21, . . . , σ2n)] with means
μ1, . . . , μn and variances σ21, . . . , σ

2
n, and a standard normal

distribution, N (0, I) .

FIGURE 2 | The architecture of the DESP’s VAE model. The dimension
of the input layer (as well as the output layer) is two times the number of
dihedral angles because both the cosine and the sine of each of the dihedral
angles are used to deal with periodicity issues (Mu et al., 2005). Each of
the hidden layers is a fully connected (FC) layer, followed by parameterized
rectified linear units (PReLUs). The latent space between the encoder and the
decoder has a dimension that is one-eighth of the input dimension to learn a
compressed representation of the molecules in a reduced dimension. The
encoder and the decoder are connected through the re-parametrization trick
wherein samples are selected from the standard normal distribution, N (0, I),
and then scaled by the variance and shifted by the mean.
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For the minimization of the loss and, thus, the training of the
model, we used the Adam optimizer proposed by (Kingma and
Ba, 2014) and with the modifications proposed by (Reddi et al.,
2019). We initialized the learning rate to 1e-4, the betas [which
are used for computing the running averages of gradient and its
square (Paszke et al., 2019)] to 0.9 and 0.999, and the weight
decay (which is a form of L2 regularization penalty) to 0.01. We
used a multistep learning rate scheduler to gradually reduce the
learning rate as the training proceeds through 50 equally
distributed epoch milestones. At each of the milestones, the
new learning rate is obtained by multiplying the current
learning rate by 0.99. We used a batch size of 512 and set
out to run 5,000 epochs in the initial training of the model.
We adopt early stopping if the model does not improve over
250 consecutive epochs, in which case we would retain the
last known best model and stop further training of
the model.

DESP: Deep Enhanced Sampling of
Proteins’ Conformation Space Algorithm
Having described the individual components of the DESP above,
we now present the overall DESP algorithm (Figure 3) that
combines DNN with MD simulations to achieve enhanced
sampling of the conformation space of macromolecules. It
begins with the initialization of the total number of MD
simulation steps needed (e.g., NNeeded � 1e9), the number of
MD simulation steps for the initial short MD run (NShort � 1e7)
that will be used for the initial DNN model training, the total
number of steps completed (NCompleted � 0), the number of steps
to run before saving a frame (NSaving � 1e4), and the total number
of steps completed before updating the biasing potentials (NBiasing

� 50). While NCompleted essentially ranges from 0 to NNeeded over
time, the other variables are relatively as follows:

NBiasing ≪ NSaving ≪ NShort ≪ NNeeded (4)

FIGURE 3 | DESP algorithm. The DESP combines DNNs with MD simulations to achieve enhanced sampling of molecules’ conformation spaces.
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We use “<<” to signify a difference of one order of magnitude or
more. NBiasing, NSaving, NShort, NNeeded, and NCompleted are natural
numbers.

We run NShort steps of unbiased MD simulation, saving frames
for every NSaving steps. The saved frames are added to a pool of
frames (i.e., set SFrames): increase NCompleted by Nshort

(i.e., NCompleted ← NCompleted + NShort). We use the MD
simulation’s frames in SFrames (or its subset, selected
randomly) to train the VAE and save the trained VAE
(VAETrained). While NCompleted is less than NNeeded, we
continue the biased MD simulations coupled with the usage of
the VAETrained and its further training as follows. 1) Calculate the
KL divergence (using latent vectors of the VAETrained’s means and
variance, based on Eq. 5) between the last frame of the MD
simulations and the representative/sampled structures from pool
SFrames. 2) Run the ongoing MD simulation for NBiasing steps, but
now by adding a biasing potential (VBiasing, as defined in Eq. 6)
that is based on the KL divergence. Keep track of the VBiasing.
Increase NCompleted by NBiasing (i.e., NCompleted ← NCompleted +
NBiasing). 3) For every NSaving steps of theMD simulations, add the
new frame to pool SFrames. And for every NSaving * 100 steps of the
MD simulations (which means that additional 100 new frames
would have been added to SFrames), we use the frames in SFrames

(or its subset, selected randomly) to further train the VAETrained.
When the NCompleted is equal to NNeeded, we stop the MD
simulations and use the trajectory of VBiasing to reweigh the
MD simulation trajectory.

The KL Divergence upon which the biasing potential is based
involves pairs of multivariate normal distributions of the same
dimension and can be represented by Eq. 5, which denotes the KL
divergence of N 1 ∼ N (μ1, Σ1) from N 0 ∼ N (μ0, Σ0).

VKL � DKL(N 0 ||N 1)

� 1
2
(tr(Σ−1

1 Σ0) + (μ1 − μ0)T∑−1
1
(μ1 − μ0) − k

+ ln(detΣ1

detΣ0
)) (5)

Vbiasing � (VKLupper / VKL)2 (6)

where VKLupper , which is set to 1e-5 in this work, is a weak upper
bound of VKL. VKLupper is a settable parameter but can be left at this
default value obtained from our preliminary experiments where
this provided optimal enhanced sampling without making the
system unstable. This value can be tuned up or down to modulate
how aggressive (high VKLupper) or conservative (low VKLupper) the
enhancement of the sampling should be. The obtained VBiasing is
added to the potential energy term involving the protein atoms.

At this point, we find it important to further clarify that the use
of dihedral angles as input to the VAE in DESP does not mean
that dihedral angles are being used directly as the reaction
coordinates for biasing the MD simulations. Using all the
dihedral angles by themselves would be overwhelming
(especially for medium-sized to large-sized molecules) and,

more importantly, will not work if used directly even with
existing enhanced sampling methods. On the other hand, the
VAE learns the compressed representation of the molecular
system, and it is the compressed representation (obtainable
from the latent space vectors of the VAE, see Figure 2) that is
used for achieving the biasing, as presented in the algorithm (see
Figure 3). In other words, generally, a bias potential V(R) used in
the MD simulation would depend on R, the atomistic coordinate,
usually through some collective variables. The same is, in
principle, true in the current work, except that the bias
potential V(R) used in DESP depends on R’, where R’ is a
compressed representation of R that is obtained from the DNN.

Reweighing of the Probability Distribution
The probability, p’ (RC), along a reaction coordinate of interest,
RC (r), where r represents the atomic coordinates r1

3, . . . , rn
3,

based on the biased MD simulations can be reweighed using
VBiasing to obtain the un-normalized probability distribution, p
(RC), of the canonical ensemble (Sinko et al., 2013; Miao et al.,
2015; Salawu, 2018a) as shown in Eq. 7. And the reweighed free
energy change can be obtained from Eq. 8.

p(RCa) � p’(RCa)p e
βVbiasing
a

∑M
a�1 e

βVbiasing
a

for a � 1, . . . , M (7)

where β � − 1
kBT

.

F(RCa) � β lnp(RCa) (8)

FIGURE 4 | Initial structures of the proteins studied. (A) A12 is a
dodecapeptide with 12 alanine residues, and (B) GB98 is a small protein with
four beta-sheets and one alpha helix.
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RESULTS AND DISCUSSION

GB98 is a Small Protein With One α- and
Four β-Folds, While A12 is a Dodecalanine
We show the initial 3D structure of the studied molecules, A12

and GB98, in Figures 4A,B, respectively. A12 is a peptide with 12

alanine amino acids, while GB98 is a small protein with four beta-
sheets, and one alpha-helix (He et al., 2012; Salawu, 2016). These
small-sized and medium-sized molecules helped in illustrating
the capabilities of DESP.

DNN Model Loss During the DESP
The initial training of the DESP’s VAE started with a high
model total loss (LossModel, Eq. 1) of approximately 915.71
(Figure 5, for the GB98 molecular system), which decreased
steadily as the model continued to learn the compressed
representation of the molecule under study (inset of
Figure 5). The initial model training was stopped when
the LossModel reached 66.65 after 5,664 epochs and would
not further decrease for the next 250 epochs. The LossModel

during the subsequent training of the DNN alongside the
DNN-biased MD simulations (using the MD simulation’s
newly generated molecular structures) is shown in the rest of
Figure 5 from epoch 5,664 to the end.

The reader would notice that the LossModel obtained during the
subsequent training of the model alongside the DNN-biased MD
simulations is slightly higher than the smallest LossModel obtained
in the initial model training. This is interesting and
understandable because the initial training of the DESP’s
DNNs was done using only the structures/conformations of
the molecule obtained from conventional MD simulations in
the first segment of the DESP (Figure 6A), while the subsequent
training of the DNNwas done using the more structurally diverse
conformations of the molecule obtained during the biasing
segment of the DESP (Figure 6B).

The initial stages of DESP (as well as the initial stage of the
accelerated MD) simulations are identical to those of

FIGURE 5 | Model loss values during the DESP for the GB98 molecular
system. The loss decreased steadily in the first segment of the DESP (see the
inset). The model’s loss is slightly higher in the subsequent training of the
model because the model was exposed to a more diverse molecular
structure. The trajectory of the loss for the A12 molecular system is similar in
the overall structure/trend to that of the GB98 molecular system and is not
shown here for brevity. DESP systematically modifies the molecular system’s
energy surface.

FIGURE 6 | The potential energy for A12 (top) and GB98 (bottom) molecular
systems. (A and E) The initial stages of DESP (as well as the initial stages of
accelerated) MD simulations are identical to conventional MD simulations and have
identical systems’ potential energies. (B and F) The trajectories of the potential
energy for the conventional MD simulations are shown in green; (C and G) those for
the accelerated MD simulations are shown in blue; while (D and H) those for the
DESP MD simulations are shown in red.

FIGURE 7 | Projections of the trajectory to the first principal component
for GB98 (bottom). The projection of each of the frames in the DESP trajectory
into the PC1’s space (A) and PC2’s space (B) are shown for GB98. Similar
projections for the A12 molecular system do not offer additional
information and are now shown here for brevity.
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conventional MD simulations, and the molecular systems are
observed to have identical systems’ energy surfaces/
distributions as conventional MD simulations. Indeed, in
the current work, for a given molecular system, after
equilibration, the ongoing conventional MD simulation is
forked/copied into three: one for continuation as a
conventional MD simulation, one for continuation as an
accelerated MD simulation, and one for continuation as a
DESP MD simulation. At the start of the biasing phase of
DESP, we observed that the molecular systems’ energies are
modified and the potential energies increase and change
based on the conformation being sampled (Figures 6A–D
for the A12 molecular system, and Figures 6E–H for the GB98
molecular system; not drawn to the same scale for all the MD
simulations). The modification of the systems’ potential
energies makes it possible for the system to escape possible
energy barriers, thereby encouraging the sampling of wider
conformation spaces (Figure 7; Figure 8).

DESP Efficiently Samples a Wider Range of
a Molecule’s Conformation Space Than
Both Conventional and Accelerated MD
Simulations
To compare the conformation spaces sampled by DESP to that
sampled by conventional and accelerated MD simulations, we
carried out dihedral principal components analysis (dPCA) on
the molecule’s dihedral angles (namely, phi, psi, omega, and chi1)
by making use of both the cosine and the sine of each of the

dihedral angles (Mu et al., 2005) and projected each of the
sampled structures from the DESP and from both the
conventional and accelerated MD simulations into the
principal components’ (PC) space. A visualization of the
trajectory in the PC space (see Figure 7 for the first two PCs,
PC1 and PC2) shows that DESP samples a wider range of the
molecule’s conformation spaces than the conventional and the
accelerated MD simulations (Figure 7) despite that the DESP is
just about one-third as long (i.e., ∼280 ns) as the conventional and
the acceleratedMD simulations (i.e., ∼800 ns, Figure 6; Figure 7).

It is worthy of note that the distributions shown in Figure 7
are unweighed and cannot be strictly interpreted in the
probability sense most especially for the DESP and for the
accelerated MD simulations that involve the use of biasing
potentials. It is, therefore, important to reweigh any DESP-
obtained (or accelerated-MD-obtained) distribution while
considering the biasing potentials (Salawu, 2018a; Sinko et al.,
2013; Miao et al., 2015). Such reweighting can be achieved
through Eqs 7, 8 or as described in previous publications
(Sinko et al., 2013; Miao et al., 2015; Salawu, 2018a).

For the potentials of mean force (PMF) obtainable through the
reweighting of the trajectories, we use two physically
interpretable/physically meaningful reaction coordinates,
namely, the molecule’s radius of gyration (RoG) and the
molecule’s root mean square deviation (RMSD) from the
experimentally solved structure (i.e., the NMR structure in the
case of GB98) or the initial structure (i.e., the energy minimized
modeled structure in the case of A12). The PMF obtained from the
reweighed trajectory (Figure 8) further establishes that DESP

FIGURE 8 | Potentials of mean force (PMF) showing the distribution of the sampled conformations by conventional MD, acceleratedMD, and DESPMD simulations
of A12 (top) and GB98 (bottom) molecular systems. Reweighting has been done wherever necessary. Comparison using PMF based on physically meaningful collective
variables, namely, the root mean square deviation from a known experimental/initial structure (RMSD) and the radius of gyration (RoG) are shown for conventional (A and
D), accelerated (B and E), and DESP (C and F) MD simulations for the A12 (top/A, B, C) and the GB98 (bottom/D, E, F) molecular systems. Overall, one would
notice that the rightmost panels (C and D) show wider and more diverse regions visited by the molecular system, which means that the DESP can explore more
conformation spaces than either the conventional (A and B) or the accelerated (B and E) MD simulations for these collective variables. The regions with stable
conformations sampled by both DESP and accelerated MD simulations but not sampled by the conventional MD simulations are marked with “K,” while the regions
sampled by DESP alone but not sampled by either the conventional or the accelerated MD simulations are marked with “L” and “M.”
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samples have much wider conformation spaces than the
conventional and the accelerated MD simulations. We show
the PMF obtained from collective variables (CVs) defined by
the combination of the RMSD and the RoG in Figure 8.

From the energy landscape one sees regions with stable
conformations that are sampled by DESP but are not sampled
by the conventionalMD simulations (see Figures 8A–C for the A12

molecular system, and Figures 8D–F for the GB98 molecular
system). For the sake of illustration, we mark the regions sampled
by both DESP and accelerated MD simulations but not sampled by
the conventional MD simulations with “K” (Figures 8B,C), and we
mark the regions sampled byDESP alone but not sampled by either
the conventional MD simulations or the accelerated MD
simulations with “L” and “M” (Figure 8F). Overall, one would
notice that the rightmost panels (C, D) show wider and more
diverse regions visited by the molecular system, which means that
the DESP can explore more conformation spaces than either the
conventional (A, B) or the accelerated (B, E) MD simulations, to
the extent of capturing a few global but moderate unfolding and
refolding events. The comparison of the energy landscapes shows
that while DESP shows a moderately better sampling of a wider
range of conformation spaces than both the conventional and the
accelerated MD simulations for a small molecular system (namely,
A12, Figures 8A–C), the superiority of the sampling efficiency of
DESP is more remarkably evident for larger molecules as shown by
the medium-sized GB98 molecular system wherein DESP samples
much wider regions/conformations spaces than both the
conventional and the accelerated MD simulations (Figures
8D–F). This is desirable because it is with the larger molecules
that highly efficient conformation space samplingmethods, such as
DESP, are most needed.

CONCLUSION

In this work, 1) It has been shown, with computational
experiments and pieces of evidence obtained therefrom, that it
is possible to enhance the MD simulation sampling of molecules’
conformation spaces using deep learning techniques (VAE in the
current case). 2) It has been shown one of the possible ways with
which it could be achieved, namely, by biasing the MD
simulations based on the VAE’s latent space vectors. 3) The
use of the KL divergence of the DNN-learned latent space
vectors of the most recently sampled conformation from the
previously sampled conformations made it possible to bias
the MD away from visiting already sampled conformations,
and thereby encouraging the sampling of previously
unsampled states. 4) It should be noted that the ideas in
DESP are generalizable and may be used for implementing
other forms of biased MD simulations, including targeted and
steered MD simulations, and we explore these in our
subsequent articles.
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