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Abstract

The release of genetically-modified or sterile male mosquitoes offers a promising form of mosquito-transmitted pathogen
control, but the insights derived from our understanding of male mosquito behaviour have not fully been incorporated into
the design of such genetic control or sterile-male release methods. The importance of aspects of male life history and
mating behaviour for sterile-male release programmes were investigated by projecting a stage-structured matrix model
over time. An elasticity analysis of transient dynamics during sterile-male releases was performed to provide insight on
which vector control methods are likely to be most synergistic. The results suggest that high mating competitiveness and
mortality costs of released males are required before the sterile-release method becomes ineffective. Additionally, if
released males suffer a mortality cost, older males should be released due to their increased mating capacity. If released
males are of a homogenous size and size-assortative mating occurs in nature, this can lead to an increase in the abundance
of large females and reduce the efficacy of the population-suppression effort. At a high level of size-assortative mating, the
disease transmission potential of the vector population increases due to male releases, arguing for the release of a
heterogeneously-sized male population. The female population was most sensitive to perturbations of density-dependent
components of larval mortality and female survivorship and fecundity. These findings suggest source reduction might be a
particularly effective complement to mosquito control based on the sterile insect technique (SIT). In order for SIT to realize
its potential as a key component of an integrated vector-management strategy to control mosquito-transmitted pathogens,
programme design of sterile-male release programmes must account for the ecology, behaviour and life history of
mosquitoes. The model used here takes a step in this direction and can easily be modified to investigate additional aspects
of mosquito behaviour or species-specific ecology.
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Introduction

One of the most recognized forms of Allee effects that can lead

to population extinctions is a lack of successful mating opportu-

nities when population sizes fall below a certain threshold [1].

That reproduction, by essentially creating an artificial Allee effect,

rather than induced mortality, could be used as an effective form

of pest control was first described by Knipling [2,3]. He

introduced the sterile insect technique whereby the sex ratio of

fertile males to females is heavily skewed through the overflooding

of an area with sterilized males, potentially leading to local

extinction of the pest. The sterile insect technique (SIT) has been

applied successfully against various insects of agricultural or

medicoveterinary importance, such as the New World screwworm

Cochliomya hominivorax [4], and tsetse, the vectors of human African

trypanosomiasis [5,6].

Vector control has and continues to play a major role in the

global fight against mosquito-transmitted pathogens such as those

causing malaria and dengue. The SIT could plausibly become an

important component in certain scenarios, for instance where

insecticide resistance is prevalent, or for vector species that are not

amenable to traditional control measures such as indoor residual

spraying, or insecticide-treated bed nets. Trial releases of

radiation-sterilized or chemosterilized male mosquitoes have

occurred since the late 19509s with varying degrees of success

[7,8]. With technological advances, such as genetic modification of

insects [9,10] and an improved understanding of mass production

of competitive insects, there has been a re-emergence of interest in

this area [8].

The SIT for mosquitoes could possibly be most effective as part

of an integrated vector management strategy [11], the WHO

recommended approach that aims to combine two or more

control methods that work in a synergistic manner and are most

suited to a particular ecological setting [12]. For instance, SIT

might benefit from integration with other control measures that

lower the wild population size beforehand, because SIT becomes

more effective at lower population sizes, or to be timed for

deployment at lows in population recruitment or just prior to

seasonal increases in population size [13]. The SIT method can

also be used effectively alongside methods that induce mortality in

one or more life stages, such as the release of parasitoids or use of

insecticides [14,15]. However, a thorough understanding of the
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ecology of the target insect is required in order to effectively

integrate control measures [16], and little attention has been given

so far on how traditional mosquito-control strategies should be

implemented alongside SIT. Although the advances in sterile male

mosquito releases have led to a recognized need for greater insight

into male mosquito biology [17], this has not yet been translated to

effective SIT management recommendations that take the mating

behaviour and ecology of mosquitoes into account. Here, I explore

these issues using simple modifications of a deterministic matrix

model. The objective was to see how the following life history and

behavioural parameters affect the short-term, transient population

dynamics during a simulated sterile-male release programme.

Polyandry and sperm precedence
While the importance of aspects of mating behaviour, such as

polyandry (i.e., a female mating multiple times, either in succession

or by remating after a number of gonotrophic cycles have passed).

and male mating-competitiveness, have been previously explored

using theoretical models [13,14,18,19], less is known about how

these factors interact with the degree of last male paternity

resulting from sperm precedence or displacement [20]. This

interaction is potentially relevant to the amount of suppression that

is achieved by an SIT strategy, because when remating occurs, the

proportion of a female’s fecundity that is due to the last male she

mated with will depend on how sperm mixes and whether sperm

displacement occurs.

Male competitiveness and mortality
Differences in multiple male traits can influence how effective

released males are at competing with wild type males for wild type

females. Examples of such traits are their dispersal ability,

mortality, their physiological mating capacity, and ability to

compete in a swarm for access to mating opportunities. Additional

mortality imposed on sterile males could result from the

sterilization process, or from side-effects of colonization (e.g., if

mass rearing results in males less capable of responding to floral

odours). The importance of mortality costs in conjunction with a

reduced competitiveness is investigated. An interaction between

mosquito life history traits that could be important to sterile male

releases is that both male and female survivorship is usually better

described by age-dependent rather than exponential functions

[21,22,23] and that male mating capability also depends on age

and size [24,25,26,27]. While for mass production it may be more

convenient to release pupae or newly emerged mosquitoes, if the

mating capabilities of males increase over the first week of life it

may be more efficient to store the males in a low-mortality lab for

5–6 d before release. The effect of releasing older males rather

than 1-d-old males is explored.

Male harassment
A form of sexual coercion, male harassment, whereby the

repeated attempts of males to copulate are costly to females [28]

may be of particular relevance to sterile-male releases, because the

operational sex ratio becomes heavily skewed over a short

timeframe and females potentially encounter males at far greater

rates than normal. That male harassment occurs in mosquitoes has

been demonstrated in Anopheles gambiae: females that were subject

to males for only 3 days had a 2-d shorter median lifespan than

females that were not, and the authors were able to attribute this to

male harassment rather than a different cost of reproduction (egg

production, oviposition, etc.) [29]. In Aedes aegypti, conclusive

evidence of harassment was not found. Although females kept with

a high density of males had the lowest survival rate, it was not

significantly different from females kept with other females [30].

The effect of including such a mating cost on the effectiveness of

sterile male release programmes is addressed.

Size-assortative mating and consequences for vectorial
capacity

An important aspect of mosquito ecology is density dependence

operating at the larval stage. Models suggest that through this

mechanism, in certain cases, particularly if release rates are

Figure 1. A path diagram of the transitions of the matrix population model employed when larval stages are distinct, to allow for a
time lag following oviposition, male mortality is age-dependent, and females mate with wild-type males, sterile males, or both.
doi:10.1371/journal.pone.0076228.g001
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insufficient, or in areas adjacent to release sites, population size

could increase as a result of the release of sterile males

[13,31,32,33]. For genetic methods where mortality does not

occur in the embryo but during the pupal stage (as occurs in the

release of insects carrying a dominant lethal gene [31]), models

predict that this is less relevant, but traditional mosquito SIT

strategies may benefit from being supplemented during critical

periods with alternative methods of vector control. A simplification

underlying previous models is that density dependence affects only

larval survivorship, but not the acquisition of reserves and

subsequent imago size. This is an oversight because adult size

and teneral reserves of mosquitoes affect both adult longevity

(under conditions of starvation) and host-seeking behaviour

[34,35,36,37,38,39,40], two important components of disease

transmission potential. If SIT results in a temporary increase of

larger mosquitoes, this raises the question whether it is possible

that the vectorial capacity of the population during this time

inadvertently is increased (i.e., is a reduction in mosquito

abundance offset by an increase in mosquito survivorship and

biting rate), and should be considered when disease control, rather

than the suppression of a mosquito population, is the aim of a

programme.

A potential threat to the success of a sterile release programme is

the evolution of a resistant phenotype whereby females preferen-

tially mate with wild-type males. Adult size is important to

consider, because one form of preferential mating that may

already be present from the outset is size-assortative mating. SIT

programmes could be vulnerable to this if they optimize larval

rearing methods to produce a standardized, homogenous male

population.

Perturbation analysis of life history traits
To find an effective way to integrate mosquito sterile-male

releases into an area-wide integrated vector-management pro-

gramme, it would be useful to know how perturbations of life

history parameters of mosquitoes affect female population size

during the course of a sterile male release programme. A

perturbation analysis of short-term, transient dynamics [41] could

help place sterile male programmes in such a framework: by

indicating how changes in parameter values affect the outcome of

the model, it may give insight into which life history parameters to

target with additional vector control methods throughout different

stages of the programme.

The purpose of considering these behavioural complexities was

to determine whether they impact the efficacy of SIT programmes,

and if so, whether cognizance of them may lead to more effective,

integrated methods.

Materials and Methods

Model description
Studies on the mating behaviour and mortality patterns of

mosquitoes remain relatively scant but have largely focused on,

and are divided between two important vectors, the malaria vector

An. gambiae and dengue vector Ae. aegypti. Although the parameter

values used for this model come mainly from experiments on An.

gambiae, certain aspects (e.g., remating, male harassment) may be

more relevant to Aedes species. Where possible, a comparison

between genera is made. The model incorporates density-

dependent immature mortality, a mating function, and the release

of sterile males. A population projection matrix that encapsulates

life stages, female state and male type and age is therefore

appropriate [42]. The structure of the base model is depicted in

Fig. 1. It is an extension of a stage-structured model used

previously to investigate the effects of sugar availability on

populations of Anopheles gambiae [43]. It consists of immature stages

(N1-N5) with density-dependent mortality (see below) and

incorporates immature stages to allow for a time delay between

oviposition and adult emergence. Female fecundity is assumed to

be more strongly influenced by mating status than by age. In a

single lifetime, a female can mate with sterile or wild-type males,

or both. The latter (indicated in the diagram as ‘‘remated’’) will be

a small portion: first a female has to be receptive to remating

(modelled using a ‘‘polyandry factor’’) and the second mating has

to be with a male of a different type, which depends on male

ratios. The probability of mating with a wild type or sterile male is

given by the following terms:

jwt~

P
N m,wtð Þx Q

x

� �

Nf z
P

Nm,xQ
x

� �

js~

P
N m,sð Þx Q

x
C

� �

Nf z
P

Nm,xQ
x

� �

where wx is the mating capability of males of age x and C is an

additional term for competitiveness of released males. In order to

keep the model manageable, polyandrous females are assumed to

remate only once, where remating indicates an additional

copulation leading to insemination. Mated Anopheles females are

assumed to avoid male swarms, and to remate very rarely [44],

while aedine males are assumed to harass or attempt to mate with

a female regardless of the female’s mating status, suggesting a

higher frequency of copulations. Fertility of females mated only

with a sterile male is assumed to be zero in the base model. The

term z is used to allow the most recent mating to account for a

varying proportion of the female’s offspring. Males are structured

so as to account for age-dependent mortality and age-dependent

mating competence. Mating capacity follows Verhoek & Takken

[24], with a peak at 7 days. Mortality is based on mesocosm data

from Stone et al. [23], and a Gompertz-Makeham survival function

[45], so that the male age-specific survival probability is

pm,x~
exp½{ l

c (ec(xz1){1){c(xz1)�
exp½{ l

c (ecx{1){cx�

with the following parameter values: l= 0.0083 and c= 0.068.

An additional mortality for sterile males is included by increasing

the value of parameter c, as described below. The immature death

rate, resulting in an under-compensatory form of density

dependence, is given by:

ml~clza Nl,tð Þb

With values as given in Table 1, which were fitted so as to result

in a equilibrium female population size of 500–600 mosquitoes.

The duration of the immature stage did not depend on larval

density and was determined by parameter e, with a value within

the range found in artificial breeding sites [46,47]. The transition

matrix for the model with distinct larval stages and male age-

dependent mortality is as follows:

Transient Population Dynamics of Mosquito SIT
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a11 0 0 0 0 0 R 0 (1{z)R zR 0 0 0 0

a21 a22 0 0 0 0 0 0 0 0 0 0 0 0

0 a32 a33 0 0 0 0 0 0 0 0 0 0 0

0 0 a43 a44 0 0 0 0 0 0 0 0 0 0

0 0 0 a54 a55 0 0 0 0 0 0 0 0 0

0 0 0 0 a65 a66 0 0 0 0 0 0 0 0

0 0 0 0 0 a76 a77 0 0 0 0 0 0 0

0 0 0 0 0 a86 0 a88 0 0 0 0 0 0

0 0 0 0 0 0 a97 0 a99 0 0 0 0 0

0 0 0 0 0 0 0 a108 0 a1010 0 0 0 0

0 0 0 0 a115 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 a1211:::: a3131 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 a3332:::: a5252

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

And the transitions between stages are described by the

elements of the transition matrix, aij, as follows:

a11~e{(ezml )

a21~(1{e({e))e{ml

::::

a65~a(1{e({e))e{ml

a115~a(1{e({e))e{ml

a66~(1{jwt{js)e
{mf

a76~jwte
{mf

a86~jse
{mf

a77~(1{cjs)e
{mf

a88~(1{cjwt)e
{mf

a97~cjse
{mf

a108~cjwte
{mf

a99~e
{mf

a1010~e
{mf

a1211:::a3130~pm,x

a3131~pm,x

a3332:::a5352~pms,x

a5353~pms,x

Simulations
Sterile releases were modelled by assuming 1000 males were

released once per week for 20 successive weeks, starting at day

100, at which time the wild type mosquito population was still

increasing in size, after being initiated with 100 1st instar larvae

only. The effectiveness of the male releases was assessed by

comparing the size of the wild type female subpopulation one week

after cessation of sterile releases to the female population size in a

simulation where the population was projected to the same time

point in the absence of sterile releases (referred to as a control).

The Matlab code used for these simulations is available from the

author upon request.

Modifications to the model and simulations
performed per question

Polyandry and sperm precedence
To assess the influence of polyandry and sperm precedence both

the probability of remating, c, and the degree of last male

paternity,z, were varied between 0 and 1 by 0.1 increments. For

each of these 121 combinations of parameter values a simulation

was run as described above and compared to a control simulation

where no sterile males were released.

Male competitiveness and mortality
Mortality of both wild type and released males was assumed to

follow a Gompertz-Makeham function, described above, while a

constant, c (representing additional mortality of released males

compared to wild type males), was increased from 0 to 0.25, which

encompasses the range of male An. gambiae survivorship found in

mesocosms with different levels of nectar availability [23].

Competitiveness was varied from 0.1 to 1 by 0.1 increments;

cases where competitiveness of released males is greater than 1

(sterile males are hypercompetitive) or 0 (e.g., sterile males form

mating aggregations in the wrong sites) were not considered. This

resulted in 110 simulation runs that were each compared to the

control simulation. A term for incomplete sterility, is, of released

males was included to explore the importance of this assumption

made in the base model, in which case the number of viable

offspring produced by females mated with a sterile male becomes

the product of daily fecundity and the amount of residual fertility,

is*R. Sets of 110 simulations were thus performed with the value of

incomplete sterility set at 0% and at 3%.

To assess the impact of releasing older males instead of recently

emerged males, depending on the mortality cost of sterile males,

the additional mortality parameter, c, was increased from 0 to 0.5

in 0.05 increments. A simulation was run for each of these values

and compared to the control simulation when releasing 1-d-old

males and when releasing 6-d-old males instead.

Transient Population Dynamics of Mosquito SIT
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Male harassment
Here female survival is considered to be negatively affected by

increased male abundance, so that the female death rate is given

by:

mf ~chzah Nmales,tð Þbh

With values of 0.034 (ch, the base female death rate), and 0.2 (bh),

while the value of ah is varied between 0 (resulting in the regular

death rate) and 0.05 to allow for an investigation of a range of

detrimental effects of males on female survivorship. A single

simulation run was then performed for each value of ah.

Table 1. Rate parameter descriptions and values used.

Parameter Description Values used

e Eclosion rate 0.14 (immature); 0.7 (per instar)

mf Female death rate 0.034; 0.028 (large)

lgm Male mortality factor (Gompertz-Makeham) 0.0083

cgm Male mortality factor (Gompertz-Makeham) 0.068

cgm Additional male mortality varies

a Primary sex ratio 0.5

j Mating term varies

c Polyandry factor, receptivity to remating 0.02, or varies

z Sperm competition, last male’s contribution to offspring 0–1

cl Constant immature mortality factor 0.07; 0.2

a Density-dependent immature mortality factor 0.15; 0.2

b Density-dependent mortality modifier 0.15; 0.3

w Mating capability of males varies by age

R Fecundity/f/d 18

is incomplete sterility of released males 0.03

C Male mating competitiveness 0.1–1

doi:10.1371/journal.pone.0076228.t001

Figure 2. Simulation of a SIT release, showing population sizes of females, wild-type males and larvae, and sterile males that are
released at weekly intervals. Dashed lines refer to population sizes in the absence of sterile male releases.
doi:10.1371/journal.pone.0076228.g002
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Size-assortative mating and consequences for vectorial
capacity

An assumption made here is that SIT programmes will typically

optimize the number of sterile males produced, rather than the

size of males, and that therefore sterile males are of a smaller size

than males reared at a low density (but the case where sterile males

are larger, or comprise a range of sizes is also explored, see below).

To evaluate the effects of size-assortative mating on a suppression

strategy, the model is modified into a matrix that keeps track of

two groups of mosquitoes: small and larger mosquitoes. The

matrix was obtained by simplifying the previous structure to one

Figure 3. Effects of sperm displacement and probability of remating on female population size after 20 weekly sterile males
releases, compared to population size in the absence of sterile males.
doi:10.1371/journal.pone.0076228.g003

Figure 4. The effect of male mating competitiveness (from 1 to 0.1) and additional mortality incurred by sterile males over wild-
type males (expressed as different values of a constant mortality factor in the Gompertz-Makeham survivorship function) on the
suppression of the female population achieved after 20 weeks of sterile male releases.
doi:10.1371/journal.pone.0076228.g004
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with only one larval stage and two male stages (teneral males and

mature males). The rate at which larvae (N1) become large and

small mosquitoes is assumed to depend on larval density:

el~e{0:5a(N1,t)b

where a and b represent the same (constant) values used to

calculate larval density-dependent mortality. To allow for size-

assortative mating, the mating terms are adjusted by including an

assortative mating competitiveness term, Ca. For small females,

small males are modified by Ca, whereas large males are modified

by 1-Ca, and vice versa for large females. Simulations were run

with Ca set to 0.5 (i.e., no size-assortative mating) and 0.9 (a high

degree of assortative mating) and the impact on female population

Figure 5. If male mating capacity is age-dependent, the loss of efficacy due to an increased mortality of sterile males can be
partially offset by releasing older males, and this effect increases with increasing mortality of sterile males. A) The male age-
dependent survivorship and mating capacity curves used in these simulations; B) The difference in the proportion of suppression achieved after 20
weeks of sterile male releases when 6-d-old males are released compared to 1-d-old males.
doi:10.1371/journal.pone.0076228.g005

Figure 6. The female population size (left panel) during simulation runs where sterile males are released at weekly intervals
starting at day 100 when the female death rate is affected by male harassment (right panel) according to different values of
parameter a in the function for male-dependent female mortality.
doi:10.1371/journal.pone.0076228.g006
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size tracked. The impact of changes in mosquito biting rates,

abundance and survival on the ability of a mosquito population to

propagate disease can be investigated by calculating the vectorial

capacity of the population [48]:

C~
ma2peip

{ln(p)

Figure 7. The effect of mosquito size and assortative mating on population size and vectorial capacity during and after the release
of sterile males. Solid red lines indicate simulations with a degree of assortative mating, Ca, equal to 0.9; dashed black lines represent simulations
without assortative mating (Ca = 0.5). Sterile males were released starting on d 100 for 20 consecutive weeks. Blue dotted lines represent a control
where no sterile males were released. A) Population sizes of small (left panel) and large females (right panel). B) Vectorial capacity, a measure of
disease transmission potential, of mosquito populations comprising small and large females. The shaded area represents the period during which
(small) sterile males are released.
doi:10.1371/journal.pone.0076228.g007
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where m is the density of mosquitoes (here taken as female

population size), a the biting rate (0.3 d21 for small females and 0.5

d21 for large females), p daily survivorship and eip the extrinsic

incubation period of the parasite in question (12 d); thus this is a

simplified measure of the potential number of infective bites

resulting from one infected human. This measure was calculated

seperately and summed over large and small female subpopula-

tions.

Perturbation analysis of life history traits
An elasticity analysis was performed to investigate the effect of

small proportional changes in parameter values on female

population size [49]. In order to calculate elasticities the projection

equation is written as follows:

N(tz1)~A½h,n(t)�n(t)zb(t)

Where h is a vector of parameters of interest (competitiveness;

larval mortality parameters a, b, and c; female and male death rate;

incomplete sterility; daily fecundity) and b(t) a subsidy vector

indicating release of sterile males. The base model was simplified

to include only one larval stage, two stages for males (teneral and

mature), and it is here assumed females only mate once. Instead of

weekly pulses of sterile males, the use of a subsidy vector assumes a

constant level of release, which was set at 150. The transient

sensitivity of n(t) to parameter changes is given by:

dNtz1

dhT
~A½h,nt �

dNt

dhT
z(NT

t 6Is)
dvecA½h,nt�

dhT

z(NT
t 6Is)

dvecA½h,nt �
dNT

t

dNt

dhT

and the elasticity is

1

N tð Þ c
T dn tð Þ

dhT
diag hð Þ

where cT is a weight vector with zeroes for non-females and ones

for females, to calculate elasticity for the female population size

[41]. Additionally, because the interest is in perturbations caused

by vector control measures, a single death rate mm for sterile and

wild-type males was used, so that a perturbation in this rate would

affect both (because it is unlikely that a control measure could

affect males of one type but not the other).

Results

Figure 2 shows the outcome of a straightforward simulation in

the presence and absence of sterile male releases, to illustrate how

the system functions. The population starts at a very low level (100

Figure 8. Transient elasticity of female population size to h, a vector of life history parameters (C, male competitiveness; a,b,c,
aspects of larval density dependent mortality; mf, female mortality; mm, male mortality; is, incomplete sterility; R, daily fecundity),
throughout the duration of a sterile-male release programme. Release of sterile males was continuous (150 males/day).
doi:10.1371/journal.pone.0076228.g008
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immatures) and increases towards, but does not reach, equilibrium

over the first 100 days, at which point weekly pulses of 1000 sterile

males are released. The number of released sterile males was

chosen so that the standing sterile population size during the

release period would be approximately ten times the size of the

wild type male population. Due to the releases of sterile males

there is a dramatic drop in the larval population and a steady

decline in adult males and females over the course of 20 weeks.

Elimination is not achieved, however, and the population

rebounds rapidly at the end of the release period (not shown).

Figure 3 explores the effect and interactions between the degree

of remating and last male precedence on a suppression strategy, in

terms of the degree of suppression achieved one week after

cessation of sterile male releases, compared to a control scenario in

which no sterile males are released. The effect of an increase in the

rate of female remating depends on the paternity attributable to

the last mating. Particularly if the last male has precedence, the

sterile-male release programme becomes less effective at high rates

of remating, but there is a slight increase in the efficiency of the

programme at low rates of remating.

In figure 4 the effect of reduced competitiveness and mortality

of released males is explored. Both reductions in competitiveness

and mortality make suppression less efficient, but in order for this

to be of a magnitude where the female population continues to

increase (albeit at a slower rate), rather than decrease, a significant

reduction in both competitiveness and mortality is required. This

is the case regardless of whether released males are fully sterile or

have a small amount (3%) of residual fertility (Fig. S1).

The implications of releasing older sterile males instead of newly

emerged males are depicted in figure 5. Apparent is that when

sterile males suffer no or only a small mortality cost over wild-type

males there is no appreciable difference in the effectiveness of the

sterile release programme, but as the mortality cost of sterile males

increases, the advantage of releasing older males increases.

In figure 6 the relation between female population size during

sterile male releases and the value of parameter ah, which modifies

the mortality cost on females associated with male harassment, is

depicted. As the effect of males on female mortality increases, the

efficacy of the sterile release programme increases: after 20 releases

the female population size is 13% of the population without male

releases without male harassment (ah = 0), whereas it is only 2% of

the population size without male releases when ah = 0.05.

The effect of including size-classes and size-assortative mating

into the model is depicted in figure 7a. An interesting point is that

suppression strongly reduces the numbers of small females and the

larval population. As a result of this, while male releases are

ongoing there is an increase in larger females. After the releases of

sterile males end, the population returns to its stable state. The

greater the degree of assortative mating, the more resilient the

population is to suppression. Vectorial capacity throughout the

release period is shown in figure 7b. If size-assortative mating

occurs (Ca = 0.9), overall vectorial capacity increases during the

releases, before returning to the stable state. The overall decrease

is more pronounced in the absence of size-assortative mating, but

at certain periods during the sterile male releases vectorial capacity

increases over the baseline. The result is dependent on the

assumption of a higher biting rate of larger females, and a simple

countermeasure could be the release of sterile-male mosquitoes of

a range of sizes. The latter is confirmed in Fig. S2, which shows the

outcomes for female population sizes and vectorial capacity when

either large males only or a mixture of large and small males are

released.

Elasticity of female population size to h, i.e. a vector with the

parameters of interest, over the timespan of a sterile male release

programme is given in figure 8. Female population size during a

sterile male programme is most sensitive to changes in the female

death rate, mf, female daily fecundity, R, and to the immature

density-dependent mortality parameters a and b. Perturbations in

components related to male mosquitoes, such as incomplete

sterility (is), death rate (mm) or competitiveness (C) are relatively less

important.

Discussion

The objective of this analysis was to bring into focus how aspects

of male mosquito life history and mating behaviour influence the

outcome of sterile-male release programmes, and how best to

integrate this method with other vector control tools. Two

components emerge as most deserving of further consideration:

the influence of (size-)assortative mating and the observation that

decreasing larval competition can undermine the effectiveness of a

suppression effort, particularly by resulting in larger mosquitoes

with higher biting rates, survivorship, and fecundity. This

underscores the importance of developing a better understanding

of density dependence acting on immature mosquitoes in terms of

development time, survivorship, and body mass. Important

questions raised in a recent review [50] are, for instance, how

density affects the different larval instars, how it varies seasonally,

and how relevant density dependence is in natural breeding sites,

shared with other mosquito species and predators. We also need to

develop a better understanding of how size and energetic reserves

of adult mosquitoes affect their vectorial capacity, and models on

vector control methods should take adult size and energetics into

account. An example in need of further study that relates to

disease transmission is the tendency to take additional (gonotro-

phically discordant) blood meals under different environmental

conditions (for reviews see [51,52]).

An advantage of the stage-structured matrix model used for

these simulations is that state- and age-specific components can be

investigated, such as the mating competitiveness, age-specific

mating capacity, and age-specific mortality rates of released and

wild-type males. A specific recommendation for SIT programmes

resulting from this finer definition of male fitness is that if sterile

males suffer a significant mortality cost over their wild-type peers,

as was recently demonstrated for the genetically modified

OX513A strain of Ae. aegypti [53], it may be beneficial – from a

biological, but not necessarily a cost-effectiveness perspective - to

maintain them in a low-mortality laboratory environment for their

first week of adult life instead of releasing them immediately after

emergence. Such a pre-release period is often employed in fruit fly

SIT programmes [54]. This result depends on the assumption that

male mating capacity increases over their first week of life, which

appears to be the case for both An. gambiae and Ae. aegypti [24,25],

but perhaps not for all mosquito species. Aedes albopictus, for

instance, were shown to be fully able to mate once sexual

maturation was complete [55], although in another study the

mating competitiveness of male Ae. albopictus did increase over

time, possibly due to an improved nutritional status, leading the

authors to likewise suggest keeping males in a laboratory for the

first few days before releasing them [56].

The influence of remating and male competitiveness on sterile

male releases has been previously investigated using theoretical

models. These typically suggested that polyandry would not affect

the outcome of such releases if males are equally competitive but

would if, for instance, sperm quality or quantity decreases with

successive matings [14,57]. The conclusion from the present

analysis agrees with this in general, but not under all circum-

stances. At low levels of remating, sterile male releases achieved a
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slightly higher level of suppression than in the absence of remating.

Presumably, this occured because the benefits of cancelling out a

proportion of the fecundity of previously mated females out-

weighed the detrimental effects of sterile-male mated females

regaining a proportion of their fertility. Whether first or last male

precedence occurs in mosquitoes is not entirely clear. In a classic

review on sperm competition in insects, a number of studies were

cited to suggest that mosquitoes have strong first male precedence

[58], but not all these studies made a clear distinction between

either copulations or insemination and use of sperm for

fertilization. Here, precedence is taken to mean the proportion

of offspring fertilized with sperm from the initial versus a second

mating. If proportion fertilized is merely due to differences in

sperm quantity transferred by males (in this study treated as a part

of male competitiveness), neither male has precedence (in this

model this is the case if the degree of last male pre-

cedence,z, = 0.5). Although female mosquitoes may copulate more

than once, typically it is the first mating that counts and instills

refractory behaviour in females [59]. When a second copulation

does lead to insemination, this is thought to typically occur within

a few hours of the first mating before refractoriness has set in, or

when the initial mating was disturbed or with a depleted male

[60]. Remating has also been linked to females having gone

through a number of gonotrophic cycles, presumably depleting the

sperm available to them [61]. In the instances where a second

copulation does lead to insemination, the progeny tends to be

divided between the males, suggesting that if first or last male

precedence occurs in mosquitoes, it is not complete [62,63].

However, most studies reporting polyandry in mosquitoes have

provided multiple males at the same time, and are therefore

unable to provide insight into precedence. Other studies that have

let females mate with one male first and a different male later only

report that polyandry has occurred, but not the proportion of

offspring due to the first or second mating [59,64]. Therefore, the

question of first or last male precedence remains unresolved for

mosquitoes. The analysis reported here suggests that it can impact

the effectiveness of SIT programmes, and further studies on this

topic may thus be worthwhile. More detailed individual-based

theoretical analysis that takes into account, for instance, female

refractoriness, quantity of sperm received, and the likelihood of

copulations being disturbed by other males (putatively more likely

when large numbers of males are released in an area) may also be

useful, although it is clear from this study that at the levels at which

polyandry occurs in mosquitoes, the impact on SIT programmes

will likely be small.

The degree to which male harassment operates in different

species of mosquitoes in nature is unknown, but it likely affects

mosquitoes in confined laboratory cages to a greater extent and

thereby potentially complicates the extrapolation of results from

contained, small-scale experiments to a field situation. In nature,

for a species such as An. gambiae, females locate male swarms when

seeking a mate, but otherwise most likely they will not be subject to

male harassment. For a species with a host-based mating system,

such as Ae. aegypti, males may attempt to mate with females while

they attempt to blood-feed, but the laboratory evidence is

inconclusive. An effect not considered here is that if harassment

occurs, females may attempt to avoid this conflict by dispersing to

neighbouring areas. This is difficult to study in laboratory settings,

but the topic should be investigated further.

The survival values used as baseline in these simulations was

based on survival under favourable conditions in a mesocosm,

rather than in the field. This choice was made because age-

dependent mortality of males under field conditions currently

remains unknown and because sterile male fitness costs are most

likely be tested under laboratory or semi-field conditions, making

comparisons easier. It is likely that under these conditions, male

competitiveness and fitness costs affect a suppression effort more

than they would using lower rates of survival and resulting higher

weekly release rates to maintain a comparable overflooding ratio.

Given that even under the favorable conditions simulated these

factors were not very influential (for instance, assuming a

competitiveness of 0.5, a mortality penalty of c = 0.25 –i.e., an

additional mortality compared to wild type males, expressed as a

constant value in a Gompertz-Makeham function- was required

before the suppression effort only stabilized but did not drive the

population further down), it seems reasonable to suggest that these

components of male fitness are not nearly as critical for further

study as behavioural traits (e.g., being able to cue in on

appropriate swarm sites, or mating assortatively) that could result

in complete mating failure.

Another question facing sterile male programmes is what size

male to release. Studies on mating success of different sizes of

males of An. gambiae suggest that medium-sized males may have an

advantage in mating swarms, perhaps due to a combination of

energetic reserves and in-flight manoeuvrability [26,65], although

not all studies have confirmed this [27]. To optimize production of

sterile males, it may be most efficacious to homogenize the

development time and size of the emerging adults [66]. An

outcome of this study is that if size-assortative mating already

occurs in a mosquito species, as has been shown recently for An.

gambiae [65], or is something that could easily evolve in the face of

prolonged sterile male releases, it may be beneficial to release a

mixture of large and small males instead, to avoid potential

increases in the mosquito population’s vectorial capacity resulting

from the reduction in larval density-dependent mortality and

development. That this unintended increase as a result of sterile

male releases was observed only at high levels of size-assortative

mating suggests that other mosquito species, sharing the same

larval habitat, could potentially be affected in an even stronger

manner. Consequences in terms of abundance of co-existing

mosquito species as a result of interspecific competition have

previously been modelled [67], and the current results suggest that

surveillance of target and non-target mosquito species prior to and

during a sterile male programme may also have to take vectorial

capacity, rather than merely abundance of vector species, into

account.

The inclusion of a large class of mosquitoes illustrates the

importance of expressing the impact of control measures in terms

of disease transmission potential rather than merely mosquito

abundance, as even in the absence of assortative mating, the

impact on vectorial capacity is less strong than the reduction in

total population size (Fig. 7). Such effects will not be restricted to

SIT approaches, but will be most relevant to any vector control

method that diminishes mosquito abundance but not the mean

age of adult females or the duration of the feeding cycle (e.g., larval

control through the use of larvicides). A question that naturally

arises is whether combining SIT with another vector control

method could help reduce the population and its vectorial capacity

during periods where immatures are released from intra-specific

competition.

An interpretation of the elasticity analysis is that oviposition site

reduction, which would increase or help maintain larval intra-

specific competition, would be efficacious. This is indicated by the

effect of the density-dependent immature mortality parameter a,

which Dye [68] describes as being inversely proportional to the

number of available larval development sites. It is not obvious how

parameter b could be perturbed in nature, because it reflects an

innate relationship between mortality and population size. It has
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been pointed out that the value of this factor likely shifts from

overcompensating to undercompensating with larval development

[68]. Future detailed investigations may therefore want to use

instar-specific density-dependence. Methods that target adult

females, such as indoor residual spraying or insecticide-treated

nets, would likewise be useful, and bed nets may have the

additional benefit of increasing the time between successful blood

meals and thereby reduce the average daily fecundity of females

(R). The current insights stem from a perturbation analysis and

only point out which life history parameters ideally would be

targeted. Further explicit modelling of alternative control strategies

alongside SIT should be undertaken to develop this area further,

particularly for strategies that may impact two or more life history

parameters, such as ITNs, or the implications of, e.g., using

larvicides (which would not necessarily maintain high levels of

competition) versus oviposition site reduction through environ-

mental management.

The number of investigations of male mosquito life histories and

mating behaviour pale in comparison to the number of studies on

female behaviour, although progress in this field is being made.

For the further development of mosquito SIT it is desirable that

these insights are expanded and used to inform and optimize an

integrated vector management approach. The results of this

analysis apply to a greater or lesser extent to different species, such

as Ae. aegypti or An. gambiae, highlighting the need for species-

specific knowledge, particularly on larval density-dependent

development, and the effect on resulting female size and disease

transmission potential in mosquitoes.

Supporting Information

Figure S1 The effect of male mating competitiveness (from 1 to

0.1) and additional mortality incurred by sterile males over wild-

type males (expressed as different values of a constant mortality

factor in the Gompertz-Makeham survivorship function) on the

suppression of the female population achieved after 20 weeks of

sterile male releases, when released males are not completely

sterile (is = 0.03).

(TIF)

Figure S2 The effect of mosquito size and assortative
mating on population size and vectorial capacity during
and after the release of sterile males. Solid lines indicate

simulations where 1000 large males are released weekly, dashed

lines indicate simulations where a mixture of 500 large and 500

small males are released. The degree of assortative mating, Ca, is

either 0.5 or 0.9. A) Population sizes of small (left panel) and large

females (right panel). B) Vectorial capacity, a measure of disease

transmission potential, of mosquito populations comprising small

and large females. The shaded area represents the period during

which sterile males are released.

(TIF)
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