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Background: Recent studies have shown that the mRNA expression-based stemness index (mRNAsi) can
accurately quantify the similarity of cancer cells to stem cells, and mRNAsi-related genes are used as
biomarkers for cancer. However, mRNAsi-driven tumor heterogeneity is rarely investigated, especially
whether mRNAsi can distinguish hepatocellular carcinoma (HCC) into different molecular subtypes is still
largely unknown.
Methods: Using OCLR machine learning algorithm, weighted gene co-expression network analysis, con-
sistent unsupervised clustering, survival analysis and multivariate cox regression etc. to identify
biomarkers and molecular subtypes related to tumor stemness in HCC.
Results: We firstly demonstrate that the high mRNAsi is significantly associated with the poor survival
and high disease grades in HCC. Secondly, we identify 212 mRNAsi-related genes that can divide HCC into
three molecular subtypes: low cancer stemness cell phenotype (CSCP-L), moderate cancer stemness cell
phenotype (CSCP-M) and high cancer stemness cell phenotype (CSCP-H), especially over-activated ribo-
somes, spliceosomes and nucleotide metabolism lead to the worst prognosis for the CSCP-H subtype
patients, while activated amino acids, fatty acids and complement systems result in the best prognosis
for the CSCP-L subtype. Thirdly, we find that three CSCP subtypes have different mutation characteristics,
immune microenvironment and immune checkpoint expression, which may cause the differential prog-
nosis for three subtypes. Finally, we identify 10 robust mRNAsi-related biomarkers that can effectively
predict the survival of HCC patients.
Conclusions: These novel cancer stemness-related CSCP subtypes and biomarkers in this study will be of
great clinical significance for the diagnosis, prognosis and targeted therapy of HCC patients.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Hepatocellular Carcinoma (HCC) is one of most common and
aggressive human malignancies with the 5-years survival rate less
than 5% [1,2]. Especially, the lack of reliable early diagnostic mark-
ers and effective methods to distinguish molecular subtypes
results in the poor prognosis for HCC patients [3–5]. Of note, many
recent studies demonstrate that HCC can be divided into different
subtypes by using distinct molecular characteristics [3–6]. HCC can
be subdivided into seven groups by 591 variable CpG sites [7]. HCC
can be distinguished into three molecular subtypes:cell prolifera-
tion, metabolic disorder and immune disorder based on the whole
protein expression profile [8]. HCC can be also divided into three
molecular subtypes:iCluster1, iCluster2, iCluster3 by integrating
multi-omics data [9,10]. Even so, the high heterogeneity of HCC
makes it difficult to accurately classify HCC into molecular sub-
types up to now. Obviously, similar to the classic molecular sub-
types of breast cancer [11], establishing a reliable model for
distinguishing molecular subtypes is very necessary for effective
diagnosis and treatment of HCC patients.

Cancer progression involves the loss of a differentiated pheno-
type and acquisition of progenitor and stem-cell-like features, par-
ticularly cancer stemness is often used to assess how similar
cancer cells (especially cancer stem cells, CSC) in tumor tissue
are to stem cells [12,13]. CSCs is an important component in the
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complex tumor microenvironment and has the ability to self-
renew and differentiate from cell origin, which can produce a vari-
ety of tumor cells through its own stem cell characteristics [14,15].
Remarkably, these undifferentiated cell populations with stem
cell-like properties have been identified as the main factors affect-
ing recurrence and progression in HCC [16,17]. However, due to the
complexity of the tumor microenvironment, CSCs cannot be quan-
tified well. Fortunately, a recent study indicated that CSCs can be
well quantified by the mRNA expression-based stemness index
(mRNAsi) and the mRNAsi can effectively quantify the degree of
oncogenic differentiation of tissues [18]. This mRNAsi is an cancer
stemness score to measure the similar degree between tumor cells
and stem cells, and can quantify the CSC in tumor tissue. The value
of mRNAsi is between 0 and 1. The closer to 1, the lower the degree
of differentiation of tumor cells and the stronger the characteristics
of CSCs [18]. The mRNAsi has been confirmed to be significantly
related to the level of tumor dedifferentiation and the biological
process of cancer stem cells [18]. Interestingly, multiple mRNAsi-
related genes have been proved to widely participate in the occur-
rence of tumors and act as prognosis markers of patients [19–21].
However, most studies are mainly focused on the identification of
mRNAsi-related prognostic genes, but not tumor heterogeneity.
More importantly, the relationship between tumor heterogeneity
and mRNAsi in HCC patients is still unknown to date. Therefore,
further revealing the cancer stemness-driven heterogeneity is of
great significance for the accurate classification and targeted treat-
ment of HCC patients.

In this study, we used the weighted gene co-expression net-
work analysis (WGCNA) to screen 212 mRNAsi-related genes that
can subdivide HCC patients into three subtypes: CSCP-L, CSCP-M,
and CSCP-H, especially patients with the CSCP-L subtype have
the best prognosis, but the worst prognosis for patients with the
CSCP-H subtype. Interestingly, our study has demonstrated that
three CSCP subtypes have different mutation characteristics,
immune infiltration microenvironment and immune checkpoint
expression. Overall, we first reveal three molecular subtypes asso-
ciated with cancer stemness in HCC, which will be very helpful for
further promoting the diagnosis and treatment of HCC patients.
2. Materials and methods

2.1. Data collection and preprocessing

Gene expression profiles (FPKM) and corresponding clinical
information of 341 HCC tumor tissues and 50 para-cancerous sam-
ples of TCGA were originated from UCSC Xena database (https://
xena.ucsc.edu/). The mRNAsi of TCGA samples was obtained from
the study of Tathiane et al [18], and the mRNAsi of verification
dataset was obtained by running the source code of the one class
linear regression (OCLR) algorithm [18]. The somatic mutation pro-
files of HCC patients were downloaded from the GDC (https://por-
tal.gdc.cancer.gov/). The verification data numbered GSE14520
came from Gene Expression Omnibus database (https://www.
ncbi.nlm.nih.gov/geo/) [22,23]. The Japan HCC samples came from
the International Cancer Genome Consortium (ICGC) database
(https://icgc.org/).
2.2. Calculation of the mRNAsi of tumor samples

The OCLR machine learning algorithm was used to calculate the
mRNAsi of tumor tissue [18]. The OCLR can use the expression data
of various stem cells generated by the Progenitor Cell Biology Con-
sortium (PCBC) as a training set to build a predictive model to pre-
dict the mRNAsi of new samples [18]. These main code steps are as
follows (https://github.com/dxsbiocc/learn/tree/main/R/CSCs).
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First, register and download these expression data of the stem cell
training set of PCBC. Second, mean and normalize these data. Third,
construct a prediction model by the gelnet function of the gelnet
package and use one-class logistic regression to obtain the weights
for each gene. Fourth, map these gene names of the new tissue and
PCBC data, and extract the expression matrix and weights of these
shared genes. Fifth, use spearman to calculate the correlation
between weights and expression values to measure the mRNAsi
of new samples and normalize it to fall between 0 and 1.

2.3. Differential expression analysis and WGCNA analysis

Differentially expressed genes (DEGs) were screened using the
limma R package [24] with filtering criteria |log2FC| > 1 and
FDR < 0.05. These DEGs were used for the WGCNA algorithm to
identify mRNAsi-related gene modules by using the WGCNA R
package [25]. The WGCNA algorithm is a systems biology tool to
describe the correlation pattern of gene expression in samples, par-
ticularly it can use the expression correlation coefficient between
genes to measure their co-expression relationships [25]. Genes
with similar expression patterns may be involved in the same bio-
logical process or pathway, thereby simplifying complex omics
data into several functional modules. These biologically meaning-
ful modules can be discovered by correlating these modules with
phenotypic information. These phenotype-related module genes
identified by the WGCNA are closely related and may jointly affect
the phenotype, which coheres with the biological significance of
functional modules. In addition, this WGCNA adopts a soft thresh-
old to construct a co-expression network, which enables the net-
work model to be more in line with the scale-free network
distribution and be closer to the biological network.

2.4. Identification of CSCP molecular subtypes in HCC

The ConsensusClusterPlus R package [26] was used to perform
the consistent unsupervised clustering of HCC samples to identify
different molecular subtypes. According to the Consensus Cumula-
tive Distribution Function (CDF) and Delta Area Plot, the optimal
cluster number K value was determined to be 3. Principal compo-
nent analysis was used to verify whether mRNAsi-related genes
can effectively distinguish HCC patients into different subtypes.
The Pheatmap R package (https://cran.r-project.org/web/pack-
ages/pheatmap/index.html) was used to analyze these expression
patterns among different molecular subtypes. According to the
default distance algorithm built in Pheatmap, these 212 mRNAsi-
related genes are clustered into 2 clusters in CSCP subtypes.

2.5. Functional enrichment and mutation data analyses

Use Pheatmap to extract two clusters of mRNAsi-related genes
for subsequent functional analysis. Both Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were
conducted by the clusterProfiler R package [27]. The R package
maftools was used to analyze these HCC mutation data [28]. The
built-in somaticInteractions and mafCompare function was used
to investigate co-mutations and mutually exclusive mutations as
well as differential mutations, respectively.

2.6. Tumor immune infiltration cell (TIICs) and tumor purity analysis

The single sample gene set enrichment analysis (ssGSEA) in this
GSVA package [29] was used to evaluate relative abundance of 28
kinds of TIICs based on their 782 marker genes [30]. The estimate R
package was used to calculate the tumor purity of HCC samples
[31].
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2.7. Survival analysis and prognostic model construction

The Kaplan–Meier survival analysis was used to compare the
survival rate between different groups. These independent prog-
nostic marker genes were identified through the following steps.
First, the univariate cox hazard analysis was applied to 212
mRNAsi-related genes to identify potential markers (p-
value < 0.05). Next, the batch survival analysis was performed to
further filter these prognostic genes (p-value < 0.05). Finally, the
multivariate stepwise regression analysis was used to identify
robust independent markers (p-value < 0.05). These robust mark-
ers were further used to establish a prognostic model and predict
the patient’s risk score. Of note, the model was constructed by exe-
cuting the coxph function, and the patient’s risk score was calcu-
lated by the predict function of the survival R package. The
mathematical formula is: Riskscore=h0(t) * exp (b1X1+b2X2 + . . .+bn-
Xn). Herein, Xn represents 10 prognostic genes, bn represents the
regression coefficient of the gene, exp represents the expression
level of the gene, and h0(t) is a constant. The receiver operating
characteristic curve (ROC) was used to verify the model reliability.
The rms R package (https://cran.r-project.org/web/packages/rms/
index.html) was used to construct nomograms and transform com-
plex multivariate cox regression equations into clinically available
visualization model.
2.8. Data statistics and visualization

Statistical analysis of all data was performed using R (version 4).
The Mann-Whitney-Wilcoxon test was used to calculate the statis-
tical significance of mRNAsi scores and immune cell infiltration.
The fisher’s exact test or chi-square test was used to calculate
the statistical significance of tumor grade and mutation signifi-
cance of different subtypes. The log-rank test was used to calculate
the statistical significance of survival curves.
3. Result

3.1. High mRNAsi is associated with the poor prognosis of HCC patients

Here, we systematically examined whether mRNAsi is related to
the survival and the disease progression of HCC patients from
TCGA dataset (Table S1). Our results demonstrated that mRNAsi
in tumor tissues is significantly higher than that in normal tissues
(p < 0.001) (Fig. 1A), and patients of the high mRNAsi group have
lower survival rate than ones of the low mRNAsi group
(p = 0.003) (Fig. 1B), as well as the mRNAsi in these dead patients
is higher that one in the alive population (p = 0.043) (Fig. 1C),
implying that the increase of tumor stem characteristics is not con-
ducive to the survival of patients. Similarly, HCC patients with
higher T stage, G grade, American Joint Committe on cancer (AJCC)
stage and tumor burden have higher mRNAsi (Fig. 1D � 1G), but no
significant difference between patients of different ages and gen-
ders (Fig. S1). Notably, although mRNAsi is generally higher in
higher T and AJCC stages, it is decreased in T4 and AJCC stage IV
(Fig. 1D and Fig. 1F). This cause may be due to the small number
of patient samples for T4 and AJCC stage IV. Furthermore, we found
that the tumor purity of tumor tissues is significantly positively
correlated with the value of mRNAsi (R = 0.47, p < 0.001)
(Fig. 1H), particularly a significant positive correlation exists
between mRNAsi and AFP (the most commonly used clinical detec-
tion marker for HCC) (R = 0.23, p < 0.001) (Fig. 1I). Taken together,
our results indicated that the increase of tumor stem characteris-
tics is closely associated with the poor prognosis and the disease
progression of HCC patients.
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3.2. Identifing HCC molecular subtypes

Herein, we further used this WGCNA to analyze the relationship
between mRNAsi and 1,527 differentially expressed genes in
tumor and para-cancerous tissues of TCGA cohort. Notably, we
used the soft threshold (b = 10) to realize the scale-free topology
criterion of the network (Fig. S2A�S2B). Our findings showed that
under this threshold, the number of non-scale topological structure
connected genes changes exponentially, and the linear fitting
result further proves that this data network conforms to the non-
scale network distribution with R2 > 0.9 (Fig. 2A). We then con-
structed a cluster dendrogram and used the hybrid dynamic cut-
ting tree algorithm to divide these co-expressed genes into
multiple gene modules (GM) in different colors (Fig. 2B), finding
that 7 modules are significantly related to mRNAsi (Fig. 2C). Espe-
cially, the blue module has the strongest positive correlation with
mRNAsi (r = 0.41, p < 0.001), whereas the yellow module has the
strongest negative correlation with mRNAsi (r = -0.7, p < 0.001)
(Fig. 2C). Herein, therefore, we further chose the blue gene module
(containing 212 DEGs) for subsequent analysis (Table S2).

Interestingly, we found that 212 mRNAsi-related genes from
the blue gene module can precisely divide HCC patients into three
different subtypes, and HCC patients of group1, group2 and group3
subtype account for 32.8%, 21.1% and 46.0%, respectively (Fig. 2D
and Fig. S2C�S2D). Surprisingly, 212 mRNAsi-related genes can
be further subdivided into two large clusters (Fig. 2E and Fig. S3).
The first cluster of 45 genes only highly expressed in the group1
subtype (Table S2), and the second cluster of 167 genes just highly
expressed in the group2 subtype (Table S2), whilst certain genes of
the two clusters are moderately expressed simultaneously in the
group3 subtype (Fig. 2E and Fig. S3). Correspondingly, these results
from the principal component analysis further revealed that 212
mRNAsi-related genes can effectively distinguish HCC patients into
three subtypes (Fig. 2F).
3.3. Prognostic value of three CSCP subtypes

We here found that significant mRNAsi difference exists among
three HCC subtypes, and the order of the mRNAsi value is
group2 > group3 > group1 (p < 0.001) (Fig. 3A). Therefore, we fur-
ther named group1, group2 and group3 subtype as low cancer
stemness cell phenotype (CSCP-L), high cancer stemness cell phe-
notype (CSCP-H) and moderate cancer stemness cell phenotype
(CSCP-M) respectively (Fig. 3A and Table S1). Interesting, we found
that some classical CSC markers, such as POU5F1, CD44, BMI1, EZH2,
NES, TWIST1, NOTCH1, KDM5B, are more higher expressed in
patients with CSCP-H and CSCP-M subtype than those in patients
with CSCP-L subtype, in particular the tumor detection marker
AFP is also highest expressed in CSCP-H subtype patients
(Fig. 3B). As expected, our results demonstrated that patients with
CSCP-H subtype have a higher proportion of deaths (p < 0.001)
(Fig. 3C) and a worse overall survival (p = 0.001) and a disease-
free survival rate (p = 0.018) (Fig. 3D�3E). In contrast, patients
with CSCP-L subtype have a better survival outcome
(Fig. 3D � 3E). Similarly, patients with CSCP-H subtype have a
more severe disease progression accompanied by a higher propor-
tion of G grade, AJCC stage and T stage (Fig. 3F�3H). Remarkably,
patients with CSCP-M subtype have a moderate overall survival
and tumor progression, which intermediates between patients
with CSCP-L and CSCP-H subtypes (Fig. 3C�Fig. 3H). As a whole,
our findings implied that three CSCP subtypes may have an impor-
tant clinical significance for the diagnosis and prognosis of HCC
patients.
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Fig. 1. mRNAsi is associated with the prognosis and disease progression of HCC patients. A: Differences in mRNAsi between HCC adjacent tissues and tumor tissues of TCGA
cohort. B: The overall survival rate of HCC patients in the high and low mRNAsi groups. According to the median mRNAsi value of HCC patients, patients were divided into
high and lowmRNAsi groups. C: Differences in mRNAsi between living and dead HCC patients. D: Differences in mRNAsi of HCC patients with different T stages. E: Differences
in mRNAsi of HCC patients with different G grades. F: Differences in mRNAsi of HCC patients with different AJCC stages. G: Differences in mRNAsi of HCC patients with
different tumor burdens. H: Correlation between mRNAsi and tumor purity. I: Correlation between mRNAsi and HCC clinical detection marker AFP (alpha-fetoprotein). The
Mann-Whitney-Wilcoxon test was used to calculate the significance of mRNAsi difference between the two groups. Analysis of variance (ANOVA) was used to calculate the
significance of mRNAsi differences between multiple groups.
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3.4. Functional roles of mRNAsi-related genes

We further carried out both GO annotation and KEGG pathway
enrichment analysis on these 212 mRNAsi-related genes, and
found that 45 mRNAsi-related genes of the CSCP-L subtype not
only can be functionally annotated as organic acid metabolism,
carboxylic acid metabolism, heterologous metabolism, organic acid
transport (Fig. 4A), but also can be enriched in these signaling
pathways such as amino acids, fatty acids, propanoate and P450
drug metabolism and coagulation complement system (Fig. 4B).
Interestingly, based on the network analysis, we found that ABAT,
ACAA2, CAT, G6PC, CYP2C8, C1S and C1R are involved in the meta-
bolic and complement system pathway (Fig. 4C and Fig. S5A). Espe-
cially, highly expressed CAT, G6PC and ABAT and so on can
significantly promote the survival of HCC patients, respectively
(Fig. S6A�S6C). These results implied that 45 highly expressed
mRNAsi-related genes can enhance the survival of HCC patients
with CSCP-L subtype.

In contrast, 167 mRNAsi-related genes of the CSCP-H subtype
not only can participate in nuclear transcription, endoplasmic
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reticulum protein localization, ribosomal subunit assembly, and
pyrimidine (Fig. 4A and Fig. S4A and Fig. S4C), but also can involve
in ribosomes, spliceosomes, RNA degradation, pyrimidine metabo-
lism and VEGF pathway (Fig. 4B and Fig. S4B and Fig. S4D). These
ribosomal genes include RPL8, RPL38, RPS7 and RPS27 and so on,
and the spliceosome genes consist of SNRPA, SNRPC, SNRPE, as well
as the pyrimidine metabolism genes are NME1, NME2 and NME3
(Fig. 4D and Fig. S5B). In particular, these high expressions of
RPL8, RPS21, RPL223A, RPL27, RPL38, NME1, SNRPA, SNRPC and
SNRPE significantly reduce the survival rate of HCC patients,
respectively (Fig. S6D�S6L). These above results revealed that
these highly expressed genes may result in the worst prognosis
of patients with CSCP-H subtype.
3.5. Three CSCP subtypes are verified by using other HCC data sets

Here, we further used three other independent data sets to ver-
ify whether mRNAsi-related genes can also divide HCC into three
CSCP subtypes. Interestingly, HCC patients from ICGC dataset can
be clearly clustered into three different subtypes by 212 mRNAsi-



Fig. 2. WGCNA analysis identifies mRNAsi-related gene modules in HCC of TCGA. A: The linear fitting curve when the soft threshold b = 10. This is used to determine whether
the gene network identified by WGCNA conforms to the scale-free network distribution. The closer the fitted value R2 is to 1, the more consistent it is. B: Clustering
dendrogram of mRNAsi-related genes, based on the difference in topological overlap, and the assigned merged module color and original module color. C: The correlation
between gene modules and mRNAsi calculated based on WGCNA. D: Consensus clustering of HCC patients based on 212 mRNAsi-related genes. When the clustering matrix
parameter is 3, the patients are effectively clustered into three subtypes. E: The heat map shows the differences in the expression of 212 mRNAsi-related genes in the three
subtypes. F: Principal component analysis verifies and visualizes that HCC patients are divided into three groups.
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related genes (Fig. 5A). The heat map clustering showed that three
subtypes have same molecular characteristics as three CSCP sub-
types of TCGA, respectively (Fig. 5B, Fig. S3 and Fig. S7). For exam-
ple, some metabolism and complement system-related genes, such
as ACAA2, CAT, G6PC, CYP2C8, C1R, C1S, are highly expressed in the
group3 patients, which is similar to the CSCP-L subtype of TCGA.
Many ribosome-related genes (e.g. RPL8, RPSA, RPS7, RPL27) and
spliceosome genes (e.g. SNRPA, SNRPC, SNRPE) as well as pyrim-
idine metabolism related genes (e.g. NME1, NME2, NUDT2) are sig-
nificantly up-regulated in the group2 patients, which is agreement
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with the CSCP-H subtype of TCGA (Fig. 5B, Fig. S3 and Fig. S7).
Interestingly, patients with the group1 subtype moderately
expressed all subtype genes, suggesting a similar transition state
to the CSCP-M subtype in the TCGA cohort (Fig. 5B, Fig. S3 and
Fig. S7). Similar to the TCGA dateset, patients with group3 subtype
have a higher survival rate and a fewer proportion of patients with
severe tumors progression (Stage 3 � 4) (Fig. 5C�5D), but patients
with group2 subtype have the worse survival rate (p = 0.038) and a
higher proportion of patients with severe stage (p < 0.001) (Stage
3 � 4) (Fig. 5C�5D). Remarkably, patients with group2 subtype



Fig. 3. Differences in clinical characteristics of the three subtypes. A: Differences in mRNAsi among three subtypes. B: Differences in the expression levels of CSC markers and
AFP in the three subtypes. C: Stacked histogram showing the proportion of survival outcomes in different subtypes. D: The overall survival rate curve of different subtypes. E:
The disease-free survival rate curve of different subtypes. F: Stacked histogram showing the proportion of G grade in different subtypes. G: Stacked histogram showing the
proportion of AJCC stage in different subtypes. H: Stacked histogram showing the proportion of T stage in different subtypes. Analysis of variance (ANOVA) was used to
calculate the significance of mRNAsi differences between multiple groups. The tumor grade significance of different subtypes were statistically calculated by chi-square test.
The log-rank test was used to calculate the significance of survival curves.
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have the highest tumor stemness mRNAsi (p < 0.001) (Fig. 5E) and
the highest expression level of CSC marker such as POU5F1, KLF4,
CD44, EZH2, NES, HIF1A, NOTCH1 and KDM5 (p < 0.001) (Fig. 5F),
which is consistent with the result from the TCGA dateset. Of note,
other two datasets (GPL571 and GPL3921) of GSE14520 also con-
firmed the result from the TCGA dateset (Fig. S8). Collectively,
three CSCP subtypes are robust for the identification of HCC
patients.

3.6. Gene mutation characteristics of three CSCP subtypes

To reveal the underlying mechanism of leading to the different
prognosis among three CSCP subtype patients, we here further dec-
tected these gene mutation features of these three subtypes. Our
results showed that the CSCP-H subtype has a higher gene muta-
tion rate of 37.1% (Fig. 6A), in particular these higher gene muta-
tion types are nonsense mutation, in frame del, frame shift del
and missense mutation, while the lower mutation type is in frame
ins (Fig. 6A). Especially, we identified some high frequency muta-
tion genes such as TP53, CTNNB1, TTN, MUC16 (Fig. 6B), which have
been proved to be dysregulated in HCC patients [10]. Interestingly,
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compared with CSCP-L, both CSCP-H and CSCP-M subtypes have a
higher proportion of TP53 mutations, respectively (p < 0.01 and
p < 0.05) (Fig. 6B and Fig. S9A � S9C), revealing that the mutation
of the classic tumor suppressor TP53 may promote their poorer
prognosis than patients with CSCP-L subtype. On the contrary,
the MUC4 mutation in the CSCP-H subtype is significantly lower
than that of CSCP-L and CSCP-M subtypes (Fig. 6B and
Fig. S9A � S9C), suggesting that MUC4 may be a novel marker for
HCC patients. Remarkably, these co-mutated gene pairs in the
CSCP-L subtype include ABCA12_TTN, ABCA12_CTNNB1, ABCA12_-
MUC16, and KMT2D_APOB, but the mutually exclusive mutation
gene pair only includs TP53_CTNNB1 (Fig. 6C). Whereas these co-
mutated gene pairs in the CSCP-H subtype include CUBN_USH2A,
FLG_OBSCN, etc., and the mutually exclusive mutation pair is
TP53_BAP1 (Fig. 6D). In contrast to CSCP-L and CSCP-M subtypes,
the CSCP-M subtype has fewer co-mutations and mutually exclu-
sive mutations (Fig. S9D). Generally, genes with cooperative muta-
tions will jointly drive the development of tumors, while genes
with mutually exclusive mutations may be potential synthetic
lethality [32,33]. Therefore, our results seemed to suggest that
the different prognosis between CSCP-L and CSCP-H subtypes



Fig. 4. Differences in molecular characteristics of three subtypes. A: Functional enrichment analysis shows the biological processes (BP) involved in two clusters of genes. B:
Functional enrichment analysis shows the KEGG signaling pathway involved in two clusters of genes. C: KEGG network analysis of the first cluster of genes enriched by CSCP-
L subtype. The cluster genes are mainly enriched in pathways such as metabolism and complement system. Most of them are down-regulated in tumors and may act as
potential tumor suppressors such as CAT, G6PC and ABAT (refer to Fig. S6). D: KEGG network analysis of the second cluster of genes enriched by CSCP-H subtype. The cluster
genes are mainly enriched in the ribosome, spliceosome and pyrimidine metabolism pathways. Most of them are up-regulated in tumors and may act as potential oncogenic
factors such as RPL8, RPS21, RPL223A, RPL27, RPL38, NME1, SNRPA, SNRPC and SNRPE, etc. (refer to Fig. S6). The gene names included in Cluster 1 and Cluster 2 refer to table
S2.The size of the circle in the KEGG network represents the number of genes enriched in the pathway, and the color of the circle represents the difference fold of the gene. For
space constraints in the figure, GO or KEGG descriptions that are too long in the figure are replaced by ‘‘. . .”, see supplementary table S3 and table S4 for full names.
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may be caused by these different combinations of mutations. In
particular, CTNNB1 and BAP1 genes, which are mutually exclusive
with TP53, may be potential synthetic lethal genes and they are
expected to become potential therapeutic targets for HCC patients
with TP53 mutations.
3.7. The comparison of tumor immune microenvironment of three
CSCP subtype patients

Herein, we further explored immune cell differences within
three CSCP subtypes. Our results indicated that the ratio of MDSC
(p < 0.05), plasmacytoid dendritic cell (p < 0.05) and T follicular
helper cell (p < 0.05) in the CSCP-H subtype is respectively signif-
icant higher than other two CSCP subtypes (Fig. 7A). Of note, MDSC
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and plasmacytoid dendritic cells usually play a role in promoting
cancer [30,34], thereby their increase may lead to the worst prog-
nosis of CSCP-H subtype patients. Additionally, we found that eosi-
nophil (p < 0.01), gamma delta T cell (p < 0.05), memory B cell
(p < 0.001) and monocyte (p < 0.05) in the CSCP-H subtype are
respectively significantly decreasing (Fig. 7A). Interestingly, we
found that the CSCP-H subtype has a high proportion of activated
CD4 T cells (p < 0.001) and activated dendritic cells (p < 0.05)
(Fig. 7A), which are inconsistent with their roles of anti-tumor by
presenting tumor antigens. Moreover, CD8 T cells, as tumor-
killing effector cells, have similar proportions among CSCP-L,
CSCP-M and CSCP-H subtype, indicating that CD8 T cells are not
the main cause of promoting the prognosis difference among three
CSCP subtypes. These findings implied that the poorer prognosis of



Fig. 5. Validation of CSCPs subtypes in other HCC datasets. A: Consensus clustering of HCC patients in the ICGC dataset based on 212 mRNAsi-related genes. When the
clustering matrix parameter is 3, patients are effectively clustered into three subtypes. B: The heat map shows the expression differences of 212 mRNAsi-related genes in the
3 subtypes of the ICGC data set. C: The overall survival rate curve of different subtypes in ICGC data set. D:Stacked histogram showing the proportion of Liver Cancer Study
Group of Japan (LCSGJ) stage in different subtypes in ICGC data set. E: Differences in mRNAsi among three subtypes in ICGC data set. F: Differences in the expression levels of
CSC markers in the three subtypes ICGC data set. Analysis of variance (ANOVA) was used to calculate the significance of mRNAsi differences between multiple groups. The
tumor grade significance of different subtypes were statistically calculated by chi-square test. The log-rank test was used to calculate the significance of survival curves.
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CSCP-H patients may be related to immune escape. We thus fur-
ther detected these expression levels of multiple immune check-
point molecules in three CSCP subtype patients. Surprisingly, we
found that CTLA4, CD274 (PDL1), TIGIT, LAG3 and PDCD1 (PD-1)
2935
involved in inhibiting the immune activity of T cells are signifi-
cantly highly expressed in the CSCP-H subtype (p < 0.01)
(Fig. 7B). Especially, CD80 and CD86 are also significantly highly
expressed in the CSCP-H subtype (p < 0.01) (Fig. 7B). Previous stud-



Fig. 6. Differences in genome mutations in different CSCP subtypes. A: The histogram shows the proportion of different types of mutations in different CSCP subtypes. B: The
waterfall chart shows high-frequency mutations of different CSCP subtypes. C: Analysis of cooperative mutations and mutually exclusive mutations in CSCP-L subtypes. D:
Analysis of cooperative mutations and mutually exclusive mutations in CSCP-H subtypes. Co-mutated genes mean that these genes are often mutated simultaneously in
tumor tissues or cells, and they tend to synergistically promote tumor initiation and progression such as ABCA12_TTN and ABCA12_CTNNB1 of CSCP-L subtype as well as
FLG_OBSCN and CUBN_USH2A of CSCP-H subtype. In contrast, mutually exclusive genes mean that these genes do not co-mutate in tumor tissues or cells, and they may play
antagonistic functions in promoting tumor progression such as TP53_CTNNB1 of CSCP-L subtype and BAP1_TP53 of CSCP-H subtype. Different combinations of mutations may
have affected tumor progression. Use fisher’s exact test to analyze co-occurring or exclusiveness between mutant genes.
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ies revealed that the B7 molecular ligand (CD80/CD86) is usually
expressed in antigen presenting cells and can simultaneously bind
to CD28 (p = ns) to activate T cell immunity or CTLA4 to inhibit T
cell immunity [35,36]. Taken together, our results suggested that
CTLA4-mediated immune escape may exist in patients with CSCP-
H subtype accompanied by a significant upregulation of CTLA4
instead of CD28, in particular this result can explain the incompe-
tence of the increase of activated CD4 T cells and activated den-
dritic cells.
3.8. Construction of the prognostic model based on mRNAsi-related
genes

Herein, we identified 10 robust prognostic markers (EIF3B,
G6PC, SAC3D1, DYNLL1, PSMG3, TMEM147, SNRPA, SNRPD2, CYTOR,
CPEB3) from 212 mRNAsi-related genes through univariate cox
2936
regression and multivariate cox regression analysis (Fig. S10).
Among them, highly expressed G6PC and CPEB3 can act as protec-
tive factors to promote the survival of HCC patients, while these
high expressions of remaining risk factors significantly reduce
the survival rate of HCC patients (Fig. S10). Similarly, these 10
markers are closely associated to HCC patient’s disease progression
and tumor burden (Fig. 8A). We further used the prognostic model
consisting of 10 markers to score the risk of patients and found that
the survival rate of the high-risk group is significantly lower than
that of the low-risk group with about 3 times cumulative deaths
within 5 years (p < 0.0001) (Fig. 8B). These receiver operating char-
acteristic curves (ROC) also proved that the prognostic model has a
good accuracy and sensitivity with 1-year, 3-year and 5-year AUC
value for 0.794, 0.733 and 0.753, respectively (Fig. 8C). Besides, the
model risk score can still act as an independent prognostic factor
by including clinical indicators G grade, T stage, AJCC stage and



Fig. 7. Differences of immune microenvironment in different CSCP subtypes. A:Differences of tumor immune infiltrating cells in different CSCP subtypes. B: Differences of
immune checkpoint molecules in different CSCP subtypes. The abundance of immune infiltrating cells in tumor samples was calculated by single-sample gene set enrichment
analysis (ssGSEA). The Mann-Whitney-Wilcoxon test is used to calculate the significance of immune cell abundance and immune checkpoints.

C. Wang, S. Qin, W. Pan et al. Computational and Structural Biotechnology Journal 20 (2022) 2928–2941
tumor burden as a covariate correction (p < 0.001) (Table 1). Of
note, similar results were also verified in the ICGC cohort
(Fig. 8D�8F). Interestingly, we found strong associations between
high and low risk groups and CSCP subtypes (Fig. S11). The high-
risk group of the TCGA cohort had a higher proportion of patients
with CSCP-H and CSCP-M subtypes and a lower proportion of
patients with CSCP-L subtype, while the low-risk group had a
higher proportion of patients with CSCP-L subtype and a lower pro-
portion of patients with CSCP-H subtype (p < 0.001) (Fig. S11A).,
Interestingly, this result was validated again in the ICGC cohort
(p < 0.001) (Fig. S11B). Finally, to provide a clinically usable prac-
tical model, we constructed a nomogram model containing 10
markers (Fig. 8G). Clinicians can obtain the individual score of each
marker and the total score according to their expression levels and
the nomogram, which can be directly used to predict the survival
rate of this patient in different years (Fig. 8G).
4. Disscusion

The mRNAsi has been used as a digital phenotype for the iden-
tification of CSC-related genes and diagnostic and prognostic mark-
ers for different cancer patients [19–21], but studies on mRNAsi-
driven tumor heterogeneity are still sorely lacking. A previous
report has demonstrated that the CSC-driven tumor heterogeneity
can cause the differences of prognosis and treatment for HCC
patients [37]. Obviously, systematically revealing the mechanism
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of CSC-driven tumor heterogeneity is helpful for further accurately
distinguishing HCC patients into different subtypes and providing
effectively targeted treatment. Remarkably, the tumor stemness
related methylated locus has been applied to distinguish these
molecular subtypes of prostate cancer [38]. Interestingly, our pre-
sent works have identified 2 gene modules significantly associated
with mRNAsi through the WGCNA (Fig. 2C). Among them, the pos-
itively correlated blue modules include 212 mRNAsi-related genes
that can divide HCC patients into three molecular subtypes: CSCP-
L, CSCP-M and CSCP-H (Fig. 2). Especially, HCC patients with CSCP-
H subtype have the worst survival rate and tumor status, while
patients with CSCP-L subtype have the best prognosis (Fig. 3).
Importantly, three CSCP subtypes can be well validated in three
other cohorts (Fig. 5 and Fig. S8), indicating that these three CSCP
subtypes may have an important clinical application value for
effectively monitoring and treating HCC patients. In contrast, this
negatively correlated yellow module containes 52 mRNAsi-
related genes. Although these 52 mRNAsi-related genes can sepa-
rate patients into two subtypes with different expression patterns
in the TCGA cohort, there is no significant difference in the survival
rate between two subtypes (Fig. S12A�S12C), particularly these
results from the ICGC cohort are also inconsistent with those of
the TCGA cohort, either in terms of survival curves or molecular
signature expression patterns (Fig. S12D�Fig. S12F), suggestting
that 52 mRNAsi-related genes fo this yellow module cannot be
used as a stable and effective typing tool for HCC patients.



Fig. 8. Identifing robust prognostic markers in mRNAsi-related genes. A: The relationship between robust markers in 10 mRNAsi-related genes and clinical facor of HCC in
TCGA. B: Survival curve of HCC patients in high and low risk groups in TCGA. The risk score of patients is predicted by the model composed of 10 markers. C: The ROC curve is
used to evaluate model reliability in TCGA. D: Survival curve of HCC patients in high and low risk groups in ICGC cohort. E: Use the ROC curve to evaluate the reliability of the
model in the ICGC. F: Differences in risk scores of different AJCC stages in the ICGC cohort. G: A nomogram constructed based on 10 markers predicts the survival rate of HCC
patients. Draw a vertical line between the expression value of each gene and points to get the corresponding score. The total risk score of HCC patients is obtained by adding
the scores of all genes. Draw the vertical line between the patient’s total risk score and the risk probability to obtain the 1-year, 3-year, and 5-year survival probabilities of
HCC patients.
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The liver is an important metabolic organ, and its normal meta-
bolism is necessary to ensure the good prognosis of patients [39].
The complement system has also been proved to be essential for
2938
maintaining human normal immunity [40]. Of note, our findings
demonstrate that 45 mRNAsi-related genes in the CSCP-L subtype
are mainly involved in amino acids and fatty acids metabolism as



Table 1
Univariate and multivariate analysis of model risk value and other clinical indicators.

Univariate analysis Multivariate analysis

Hazard ratio (95%CI) pvalue Hazard ratio (95%CI) pvalue
Grade 1.115(0.858–1.454) 0.422 1.107(0.830–1.479) 0.489
T stage 1.76(1.430–2.165) <0.001 1.456(0.680–3.119) 0.334
AJCC stage 1.789(1.436–2.229) <0.001 1.010(0.447–2.287) 0.98
Status 2.717(1.786–4.133) <0.001 2.246(1.451–3.477) <0.001
Riskscore 3.293(2.138–5.074) <0.001 3.635(1.714–7.710) <0.001

Note: The abbreviations in the table are as follows, which are derived from the guidelines of the American Joint Committee on Cancer (AJCC). Grade: A numerical value
expressing the degree of abnormality of cancer cells. It is an indicator of differentiation and invasiveness. T stage: Extent of the primary cancer when the patient was first
diagnosed. AJCC Stage: The extent of a cancer, that whether the disease has spread from the original site to other parts of the body. Status: The neoplasm cancer status when
the patient was first diagnosed. Risk scores were predicted by a multivariate cox regression model constructed from 10 prognostic genes. The model was constructed by
executing the coxph function and the patient’s risk score was calculated by the predict function of the survival R package. The mathematical formula is: Riskscore = h0(t) * exp
(b1X1 + b2X2 + . . . + bnXn). Xn represents 10 prognostic genes, bn represents the regression coefficient of the gene, exp represents the expression level of the gene, and h0(t) is
a constant.
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well as coagulation complement system (Fig. 4 and Fig. S3), and
highly expressed CAT, G6PC and ABAT significantly promote the
survival of HCC patients (Fig. S6), implying that 45 highly
expressed mRNAsi-related genes are responsible for the good prog-
nosis of HCC patients with CSCP-L subtype. In contrast, 167
mRNAsi-related genes in the CSCP-H subtype are significantly
enriched in ribosomes, spliceosomes and pyrimidine metabolism-
related pathways. Previous studies revealed that ribosomes are
important protein synthesis organelles, in partular ribosomes can
synthesize many certain proteins to induce the metastasis of can-
cer cells [41–43]. For example, ribosomes can synthesize some cer-
tain proteins to promote the migratation of epithelial-
mesenchymal transition (EMT) during the tumor metastasis [42].
Remarkably, the EMT transition state can promote the production
of circulating tumor cells and tumor stem cells, which can promote
tumor cells to invade and infect surrounding cells, thereby helping
them to acquire drug resistance [44,45]. In our work, we find that
these highly expressed ribosome-related genes RPL8, RPS21,
RPL23A, RPL27, RPL38 do significantly reduce the survival rate of
HCC patients (Fig. S6). Similarly, many spliceosome- and pyrim-
idine metabolism-related genes, such SNRPA, SNRPE, NME1, and
NME2, have also been reported to be involved in the tumorigene-
sisprocess of various cancers [46–49]. Interestingly, our study has
shown that highly expressed NME1, SNRPA, SNRPC and SNRPE sing-
nificatly reduce the survival rate of HCC patients (Fig. S6), indicat-
ing that 167 highly expressed mRNAsi-related genes may result in
the poor prognosis for patients with CSCP-H subtype. Remarkably,
these mRNAsi-related genes do not appear to be clearly stratified
in the CSCP-M subtype, but they do present a transitional state
of moderate expression (Fig. 2E), which may explain that the sur-
vival rate of patients with CSCP-M subtype is between CSCP-L
and CSCP-H subtypes. Additionally, we attempted to identify speci-
fic DEGs of patients with CSCP-M subtype. Unfortunately, we did
not find these feature genes that are significantly enriched in the
CSCP-M subtype at the transcriptome level (Fig. S13A). This reason
may be that CSCP-M is the transition state of CSCP-L and CSCP-H at
the transcriptome level (Fig. S13B), thereby these specific charac-
teristics of CSCP-M need to be explored from the proteome, DNA
methylation or copy number variation. Especially, our works have
verified the accuracy of three CSCP subtypes in three other inde-
pendent data sets (Fig. 5 and Fig. S8), which means that three CSCP
subtypes are widely presented in HCC patients and have real clin-
ical significance for diagnosis and prognosis of HCC patients.

Remarkably, our works reveal that the CSCP-H subtype has a
higher overall mutation rate than two other subtypes, in particular
TP53 (Fig. 6). Studies indicated that the disorder of TP53 can lead to
the detunings of ribosomal biosynthesis and protein synthesis. For
example, TP53 can inhibit RNA Pol I-mediated transcriptions of
ribosomal genes by preventing the interaction between SL1 and
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UBF [50]. TP53 can bind to the core initiation factor TF-IIIB of
RNA Pol III to interfere the combination of other components (such
as TF-IIIC2), thereby significantly inhibiting RNA Pol III-mediated
ribosomal biosynthesis and translation [51,52]. These results fur-
ther support that the high-frequency mutation of TP53 in the
CSCP-H subtype causes the abnormal activation of ribosome genes
and accelerates tumor progression. Additionally, the proportion of
cancer-promoting MDSC and plasmacytoid dendritic cell (pDC) in
the CSCP-H subtype is significant higher than two other subtypes
(Fig. 7A). Previous studies reported that the accumulation of
MDSCs is significantly related to the decrease of tumor infiltrating
lymphocytes and the increase of tumorigenicity in HCC [53], while
myeloid LAMP3 + DC cells are related to tumor migration to lymph
nodes [54]. Interestingly, our findings indicate that some neutral
cell types, such as eosinophils, memory B cells and monocytes,
are also significantly reduced in the CSCP-H subtype (Fig. 7A).
Many works have revealed that eosinophil-mediated anti-tumor
response is necessary for DPP4 inhibitor to treat HCC and breast
cancer [55], and eosinophils activated by IL5 and eotaxin have
anti-tumor activity in HCC [56], as well as B cells in the tertiary
lymphatic structure are found to be closely related to the patient’s
response to immune checkpoint inhibitor therapy [57]. Herein, we
do find that activated CD4 T cells and activated dendritic cells with
anti-tumor activity are enriched in the CSCP-H subtype. Activated
CD4 T cell and activated dendritic cell are the main cell types for
antigen presentation [58], so their increases should not promote
the prognosis of the CSCP-H subtype patients. Of note, these high
expressions of multiple immune checkpoint genes have been sug-
gested to inhibit the immune activity of T cells and further result in
the immune escape [59–63]. We thus suggest that highly
expressed CTLA4, CD274 (PDL1), TIGIT, HAVCR2 (TIM3), LAG3 and
PDCD1(PD-1) may lead to the immune escape and be responsible
for the worst prognosis of the CSCP-H subtype patients (Fig. 7B).
Especially, these highly expressed immune checkpoints and the
higher mutation load of the CSCP-H subtype mean that they are
likely to benefit for immunotherapy [64].

In this work, we establish the prognostic model, which consists
of 10 mRNAsi-related genes including down-regulated G6PC and
CPEB3 and up-regulated EIF3B, SAC3D1, SNRPA, DYNLL1, CYTOR,
PSMG3, TMEM147 and SNRPD2 (Fig. 8 and Fig. S10). Previous stud-
ies have shown that the inactivating mutation or down-regulation
of G6PC gene can cause glycogen accumulation to induce liver can-
cer occurrence [65,66]. The CPEB3-mediated translational inhibi-
tion of MTDH can inhibit the progression of HCC and be used as
a prognostic marker of liver cancer [67]. EIF3B can induce C-MET
protein synthesis to promote cell proliferation and invasion of
HCC [68]. SAC3D1 can act as a new prognostic marker for HCC
[69]. SNRPA has been found to be differentially expressed in other
cohorts [70,71], but its relationship with HCC has to be further
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studied. The up-regulation of methylation-driven DYNLL1 is associ-
ated with HCC mortality and higher tumor stages [72]. LncRNA
CYTOR can affect the proliferation, cell cycle and apoptosis of liver
cancer cells [73], and it can also promote colon cancer EMT and
metastasis [74]. However, the relationship between PSMG3,
TMEM147, SNRPD2 and HCC is still rarely reported, so we suggest
that they may serve as new markers and therapeutic targets for
HCC patients in future studies.

In this study, we have constructed three molecular subtypes
CSCP-L, CSCP-M and CSCP-H associated with mRNAsi in HCC. Our
results demonstrated that patients with the CSCP-H subtype have
the worst prognosis, while patients with the CSCP-L subtype have
the best prognosis, and patients with the CSCP-M subtype have a
moderate prognosis, implying that 212 mRNAsi-related genes
might act as a potential molecular typing for clinical application
of HCC. Whilst our findings suggested that developing diagnostic
kits targeting these 212 genes should be also a good option for
HCC patient diagnosis. Additionally, HCC patients are classified
into three CSCP subtypes, which will be helpful for judging and
predicting the prognosis and treatment plan of HCC patients. For
example, clinicians may employ more conservative treatment
based on the favorable molecular profile of patients with the
CSCP-L subtype. Conversely, clinicians may need to give patients
with the CSCP-H subtype more monitoring and more aggressive
treatment regimens due to their own malignant molecular profile.
In particular, HCC patients with CSCP-H subtype may be consid-
ered as a candidate for immunotherapy (e.g. anti-CTLA4) due to
their high expressions of multiple immune checkpoints and a
higher mutational load. However, our present work belongs to
the category of basic research, and the clinical significance and
practicability of CSCPs still need to be tried and tested clinically.

In summary, our study provides important enlightenments for
molecular typing and prognostic prediction of HCC patients.

Statement of ethics

This article titled ‘‘mRNAsi-related genes can effectively distin-
guish hepatocellular carcinoma into new molecular subtypes” was
written by Canbiao Wang, Shijie Qin, Wanwan Pan, Xuejia Shi,
Hanyu Gao, Ping Jin, Xinyi Xia and Fei Ma.

The main data of this study were obtained from public data-
bases, and no ethical permission was involved or required.

This research was funded by grants from the National Natural
Science Foundation of China (No. 31970477) and the Natural
Science Foundation of Jiangsu Province (No. BK20191368).

We promise that there will be no plagiarism and has not been
published in any journal or platform. All authors have read and
approved the manuscript and we declare that there is no conflict
of interest.

Acknowledgments

We thank our colleagues for their suggestions and criticisms on the
manuscript.

Funding

This research was funded by grants from the National Natural
Science Foundation of China (No. 31970477) and the Natural
Science Foundation of Jiangsu Province (No. BK20191368).

Author contributions

Shijie Qin and Fei Ma conceived the study. Canbiao Wang, Shijie
Qin and Xuejia Shi collected omics data and conducted analysis.
2940
Xuejia Shi and Wanwan Pan visualized diagrams. Shijie Qin and
Canbiao Wang wrote the draft. Fei Ma, Xinyi Xia and Ping Jin
revised the draft. Ping Jin and Wanwan Pan supervised the project
progress. Hanyu Gao, Wanwan Pan and Xinyi Xia participated in
the commentary of the manuscript.

Conflicts of interest

We declare that we have no conflict of interest.

Availability of data and materials

All the data supporting the findings of this study are available
within the article and its supplementary information files.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.csbj.2022.06.011.

References

[1] Huang X, Gan G, Wang X, Xu T, Xie W. The HGF-MET axis coordinates liver
cancer metabolism and autophagy for chemotherapeutic resistance.
Autophagy 2019;15(7):1258–79.

[2] Yang Y, Chen L, Gu J, Zhang H, Yuan J, Lian Q, et al. Recurrently deregulated
lncRNAs in hepatocellular carcinoma. Nat Commun 2017;8:14421.

[3] Bidkhori G, Benfeitas R, Klevstig M, Zhang C, Nielsen J, Uhlen M, Boren J,
Mardinoglu A: Metabolic network-based stratification of hepatocellular
carcinoma reveals three distinct tumor subtypes. Proc Natl Acad Sci U S A
2018, 115(50):E11874-E11883.

[4] Calderaro J, Couchy G, Imbeaud S, Amaddeo G, Letouze E, Blanc JF, et al.
Histological subtypes of hepatocellular carcinoma are related to gene
mutations and molecular tumour classification. J Hepatol 2017;67(4):727–38.

[5] Chaisaingmongkol J, Budhu A, Dang H, Rabibhadana S, Pupacdi B, Kwon SM,
et al. Common molecular subtypes among Asian hepatocellular carcinoma and
cholangiocarcinoma. Cancer Cell 2017;32(1):57–70 e53.

[6] Li W, Wang H, Ma Z, Zhang J, Ou-Yang W, Qi Y, et al. Multi-omics analysis of
microenvironment characteristics and immune escape mechanisms of
hepatocellular carcinoma. Front Oncol 2019;9:1019.

[7] Cheng J, Wei D, Ji Y, Chen L, Yang L, Li G, et al. Integrative analysis of DNA
methylation and gene expression reveals hepatocellular carcinoma-specific
diagnostic biomarkers. Genome Med 2018;10(1):42.

[8] Gao Q, Zhu H, Dong L, Shi W, Chen R, Song Z, et al. Integrated proteogenomic
characterization of HBV-related hepatocellular carcinoma. Cell 2019;179
(5):1240.

[9] Zhao Y, Zhang L, Zhang Y, Meng B, Ying W, Qian X: Identification of hedgehog
signaling as a potential oncogenic driver in an aggressive subclass of human
hepatocellular carcinoma: A reanalysis of the TCGA cohort. (1869-1889
(Electronic)).

[10] Cancer Genome Atlas Research Network. Electronic address wbe, Cancer
Genome Atlas Research N: Comprehensive and Integrative Genomic
Characterization of Hepatocellular Carcinoma. Cell 2017, 169(7):1327-1341
e1323.

[11] Roulot A, Hequet D, Guinebretiere JM, Vincent-Salomon A, Lerebours F, Dubot
C, et al. Tumoral heterogeneity of breast cancer. Ann Biol Clin (Paris) 2016;74
(6):653–60.

[12] Lian H, Han YP, Zhang YC, Zhao Y, Yan S, Li QF, et al. Integrative analysis of gene
expression and DNA methylation through one-class logistic regression
machine learning identifies stemness features in medulloblastoma. Mol
Oncol 2019;13(10):2227–45.

[13] Zhang K, Che S, Pan C, Su Z, Zheng S, Yang S, et al. The SHH/Gli axis regulates
CD90-mediated liver cancer stem cell function by activating the IL6/JAK2
pathway. J Cell Mol Med 2018;22(7):3679–90.

[14] Lyssiotis CA, Kimmelman AC. Metabolic Interactions in the Tumor
Microenvironment. Trends Cell Biol 2017;27(11):863–75.

[15] Qin S, Long X, Zhao Q, Zhao W. Co-Expression network analysis identified
genes associated with cancer stem cell characteristics in lung squamous cell
carcinoma. Cancer Invest 2020;38(1):13–22.

[16] Nio K, Yamashita T, Kaneko S. The evolving concept of liver cancer stem cells.
Mol Cancer 2017;16.

[17] Yamashita T, Wang XW. Cancer stem cells in the development of liver cancer. J
Clin Invest 2013;123(5):1911–8.

[18] Malta TM, Sokolov A, Gentles AJ, Burzykowski T, Poisson L, Weinstein JN, et al.
Machine learning identifies stemness features associated with oncogenic
dedifferentiation. Cell 2018;173(2):338–354 e315.

[19] Zhang YA-O, Tseng JT, Lien IC, Li F, Wu W, Li H: mRNAsi index: machine
learning in mining lung adenocarcinoma stem cell biomarkers. LID -
10.3390/genes11030257 [doi] LID - 257. (2073-4425 (Electronic)).

https://doi.org/10.1016/j.csbj.2022.06.011
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0005
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0005
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0005
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0010
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0010
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0020
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0020
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0020
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0025
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0025
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0025
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0030
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0030
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0030
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0035
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0035
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0035
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0040
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0040
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0040
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0055
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0055
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0055
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0060
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0060
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0060
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0060
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0065
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0065
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0065
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0070
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0070
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0075
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0075
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0075
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0080
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0080
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0085
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0085
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0090
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0090
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0090


C. Wang, S. Qin, W. Pan et al. Computational and Structural Biotechnology Journal 20 (2022) 2928–2941
[20] Lian H, Han YP, Zhang YC, Zhao Y, Yan S, Li QF, Wang BC, Wang JJ, Meng W,
Yang J et al: Integrative analysis of gene expression and DNA methylation
through one-class logistic regression machine learning identifies stemness
features in medulloblastoma. (1878-0261 (Electronic)).

[21] Zhang M, Wang X, Chen X, Guo F, Hong J: Prognostic value of a stemness
index-associated signature in primary lower-grade glioma. (1664-8021
(Print)).

[22] Roessler S, Jia HL, Budhu A, Forgues M, Ye QH, Lee JS, et al. A unique
metastasis gene signature enables prediction of tumor relapse in early-
stage hepatocellular carcinoma patients. Cancer Res 2010;70
(24):10202–12.

[23] Roessler S, Long EL, Budhu A, Chen Y, Zhao X, Ji J, et al. Integrative genomic
identification of genes on 8p associated with hepatocellular carcinoma
progression and patient survival. Gastroenterology 2012;142(4):957–966
e912.

[24] Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers
differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res 2015;43(7):e47.

[25] Langfelder P, Horvath S. WGCNA: an R package for weighted correlation
network analysis. BMC Bioinf 2008;9:559.

[26] Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with
confidence assessments and item tracking. Bioinformatics 2010;26
(12):1572–3.

[27] Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing
biological themes among gene clusters. OMICS 2012;16(5):284–7.

[28] Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and
comprehensive analysis of somatic variants in cancer. Genome Res 2018;28
(11):1747–56.

[29] Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for
microarray and RNA-seq data. BMC Bioinf 2013;14:7.

[30] Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, et al.
Pan-cancer immunogenomic analyses reveal genotype-immunophenotype
relationships and predictors of response to checkpoint blockade. Cell Rep
2017;18(1):248–62.

[31] Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia
W, et al. Inferring tumour purity and stromal and immune cell admixture from
expression data. Nat Commun 2013;4:2612.

[32] Sinha S, Thomas D, Chan S, Gao Y, Brunen D, Torabi D, et al. Systematic
discovery of mutation-specific synthetic lethals by mining pan-cancer human
primary tumor data. Nat Commun 2017;8:15580.

[33] Dobzhansky T: Genetics of natural populations; recombination and variability
in populations of Drosophila pseudoobscura. (0016-6731 (Print)).

[34] Jia Q, Wu W, Wang Y, Alexander PB, Sun C, Gong Z, et al. Local mutational
diversity drives intratumoral immune heterogeneity in non-small cell lung
cancer. Nat Commun 2018;9(1):5361.

[35] Greene JL, Leytze GM, Emswiler J, Peach R, Bajorath J, Cosand W, et al. Covalent
dimerization of CD28/CTLA-4 and oligomerization of CD80/CD86 regulate T
cell costimulatory interactions. J Biol Chem 1996;271(43):26762–71.

[36] Slavik JM, Hutchcroft JE, Bierer BE. CD28/CTLA-4 and CD80/CD86 families:
signaling and function. Immunol Res 1999;19(1):1–24.

[37] Chang JC: Cancer stem cells: Role in tumor growth, recurrence, metastasis, and
treatment resistance. Medicine (Baltimore) 2016, 95(1 Suppl 1):S20-S25.

[38] Li S, Yue D, Chen X, Wang L, Li J, Ping Y, et al. Epigenetic regulation of CD271, a
potential cancer stem cell marker associated with chemoresistance and
metastatic capacity. Oncol Rep 2015;33(1):425–32.

[39] Ding HR, Wang JL, Ren HZ, Shi XL. Lipometabolism and glycometabolism in
liver diseases. Biomed Res Int 2018;2018:1287127.

[40] Defendi F, Thielens NM, Clavarino G, Cesbron JY, Dumestre-Perard C. The
immunopathology of complement proteins and innate immunity in
autoimmune disease. Clin Rev Allergy Immunol 2020;58(2):229–51.

[41] Madan B, Harmston N, Nallan G, Montoya A, Faull P, Petretto E, et al. Temporal
dynamics of Wnt-dependent transcriptome reveal an oncogenic Wnt/MYC/
ribosome axis. J Clin Invest 2018;128(12):5620–33.

[42] Prakash V, Carson BB, Feenstra JM, Dass RA, Sekyrova P, Hoshino A, et al.
Ribosome biogenesis during cell cycle arrest fuels EMT in development and
disease. Nat Commun 2019;10(1):2110.

[43] Zhou W, Ouyang J, Li J, Liu F, An T, Cheng L, et al. MRPS17 promotes invasion
and metastasis through PI3K/AKT signal pathway and could be potential
prognostic marker for gastric cancer. J Cancer 2021;12(16):4849–61.

[44] Katsuno Y, Lamouille S, Derynck R. TGF-b signaling and epithelial-
mesenchymal transition in cancer progression. Curr Opin Oncol 2013;25
(1):76–84.

[45] Saitoh M. Involvement of partial EMT in cancer progression. J Biochem
2018;164(4):257–64.

[46] Dou N, Yang D, Yu S, Wu B, Gao Y, Li YA-OX: SNRPA enhances tumour cell
growth in gastric cancer through modulating NGF expression. (1365-2184
(Electronic)).

[47] Jia D, Wei L Fau - Guo W, Guo W Fau - Zha R, Zha R Fau - Bao M, Bao M Fau -
Chen Z, Chen Z Fau - Zhao Y, Zhao Y Fau - Ge C, Ge C Fau - Zhao F, Zhao F Fau -
Chen T, Chen T Fau - Yao M et al: Genome-wide copy number analyses
2941
identified novel cancer genes in hepatocellular carcinoma. (1527-3350
(Electronic)).

[48] Hindupur SK, Colombi M, Fuhs SR, Matter MS, Guri Y, Adam K, Cornu M,
Piscuoglio S, Ng CKY, Betz C et al: The protein histidine phosphatase LHPP is a
tumour suppressor. (1476-4687 (Electronic)).

[49] Yamaguchi A, Urano T Fau - Fushida S, Fushida S Fau - Furukawa K, Furukawa K
Fau - Nishimura G, Nishimura G Fau - Yonemura Y, Yonemura Y Fau - Miyazaki
I, Miyazaki I Fau - Nakagawara G, Nakagawara G Fau - Shiku H, Shiku H:
Inverse association of nm23-H1 expression by colorectal cancer with liver
metastasis. (0007-0920 (Print)).

[50] Zhai W, Comai L. Repression of RNA polymerase I transcription by the tumor
suppressor p53. Mol Cell Biol 2000;20(16):5930–8.

[51] White RJ, Trouche D, Martin K, Jackson SP, Kouzarides T. Repression of RNA
polymerase III transcription by the retinoblastoma protein. Nature 1996;382
(6586):88–90.

[52] Cairns CA, White RJ: p53 is a general repressor of RNA polymerase III
transcription. (0261-4189 (Print)).

[53] Liu YT, Tseng TC, Soong RS, Peng CY, Cheng YH, Huang SF, et al. A novel
spontaneous hepatocellular carcinoma mouse model for studying T-cell
exhaustion in the tumor microenvironment. J Immunother Cancer 2018;6
(1):144.

[54] Zhang Q, He Y, Luo N, Patel SJ, Han Y, Gao R, et al. Landscape and dynamics of
single immune cells in hepatocellular carcinoma. Cell 2019;179(4):829–845
e820.

[55] Hollande C, Boussier J, Ziai J, Nozawa T, Bondet V, Phung W, et al. Inhibition of
the dipeptidyl peptidase DPP4 (CD26) reveals IL-33-dependent eosinophil-
mediated control of tumor growth. Nat Immunol 2019;20(3):257–64.

[56] Kataoka S, Konishi Y, Nishio Y, Fujikawa-Adachi K, Tominaga A. Antitumor
activity of eosinophils activated by IL-5 and eotaxin against hepatocellular
carcinoma. DNA Cell Biol 2004;23(9):549–60.

[57] Cabrita R, Lauss M, Sanna A, Donia M, Skaarup Larsen M, Mitra S, et al. Author
Correction: Tertiary lymphoid structures improve immunotherapy and
survival in melanoma. Nature 2020;580(7801):E1.

[58] Gardner A, Ruffell B. Dendritic cells and cancer immunity. Trends Immunol
2016;37(12):855–65.

[59] Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J
Cancer Res 2020;10(3):727–42.

[60] Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set
point. Nature 2017;541(7637):321–30.

[61] Meng F, Li L, Lu F, Yue J, Liu Z, Zhang W, et al. Overexpression of TIGIT in NK
and T cells contributes to tumor immune escape in myelodysplastic
syndromes. Front Oncol 2020;10:1595.

[62] Das M, Zhu C, Kuchroo VK. Tim-3 and its role in regulating anti-tumor
immunity. Immunol Rev 2017;276(1):97–111.

[63] Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, et al. Immune
inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to
promote tumoral immune escape. Cancer Res 2012;72(4):917–27.

[64] Osipov A, Murphy A, Zheng L. From immune checkpoints to vaccines: the past,
present and future of cancer immunotherapy. Adv Cancer Res
2019;143:63–144.

[65] Liu Q, Li J, Zhang W, Xiao C, Zhang S, Nian C, et al. Glycogen accumulation and
phase separation drives liver tumor initiation. Cell 2021.

[66] Resaz R, Vanni C, Segalerba D, Sementa AR, Mastracci L, Grillo F, Murgia D,
Bosco MC, Chou JY, Barbieri O et al: Development of hepatocellular adenomas
and carcinomas in mice with liver-specific G6Pase-a deficiency. (1754-8411
(Electronic)).

[67] Zhang H, Zou C, Qiu Z, Li Q, Chen M, Wang D, et al. CPEB3-mediated MTDH
mRNA translational suppression restrains hepatocellular carcinoma
progression. Cell Death Dis 2020;11(9):792.

[68] Fang QL, Zhou JY, Xiong Y, Xie CR, Wang FQ, Li YT, et al. Long non-coding RNA
RP11-284P20.2 promotes cell proliferation and invasion in hepatocellular
carcinoma by recruiting EIF3b to induce c-met protein synthesis. Biosci Rep
2020;40(3).

[69] Han ME, Kim JY, Kim GH, Park SY, Kim YH, Oh SO. SAC3D1: a novel prognostic
marker in hepatocellular carcinoma. Sci Rep 2018;8(1):15608.

[70] Dou N, Yang D, Yu S, Wu B, Gao Y, Li Y. SNRPA enhances tumour cell growth in
gastric cancer through modulating NGF expression. Cell Prolif 2018;51(5):
e12484.

[71] Yuan M, Yu C, Chen X, Wu Y. Investigation on potential correlation between
small nuclear ribonucleoprotein polypeptide A and lung cancer. Front Genet
2020;11:610704.

[72] Berkel C, Cacan E. DYNLL1 is hypomethylated and upregulated in a tumor
stage- and grade-dependent manner and associated with increased mortality
in hepatocellular carcinoma. Exp Mol Pathol 2020;117:104567.

[73] Hu B, Yang XB, Yang X, Sang XT. LncRNA CYTOR affects the proliferation, cell
cycle and apoptosis of hepatocellular carcinoma cells by regulating the miR-
125b-5p/KIAA1522 axis. Aging (Albany NY) 2020;13(2):2626–39.

[74] Yue B, Liu C, Sun H, Liu M, Song C, Cui R, et al. A positive feed-forward loop
between LncRNA-CYTOR and Wnt/b-catenin signaling promotes metastasis of
colon cancer. Mol Ther 2018;26(5):1287–98.

http://refhub.elsevier.com/S2001-0370(22)00225-2/h0110
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0110
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0110
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0110
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0115
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0115
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0115
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0115
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0120
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0120
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0120
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0125
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0125
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0130
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0130
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0130
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0135
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0135
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0140
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0140
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0140
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0145
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0145
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0150
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0150
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0150
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0150
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0155
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0155
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0155
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0160
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0160
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0160
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0170
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0170
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0170
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0175
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0175
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0175
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0180
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0180
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0190
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0190
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0190
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0195
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0195
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0200
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0200
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0200
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0205
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0205
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0205
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0210
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0210
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0210
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0215
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0215
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0215
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0220
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0220
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0220
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0225
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0225
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0250
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0250
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0255
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0255
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0255
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0265
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0265
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0265
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0265
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0270
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0270
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0270
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0275
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0275
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0275
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0280
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0280
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0280
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0285
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0285
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0285
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0290
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0290
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0295
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0295
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0300
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0300
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0305
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0305
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0305
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0310
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0310
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0315
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0315
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0315
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0320
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0320
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0320
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0325
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0325
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0335
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0335
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0335
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0340
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0340
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0340
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0340
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0345
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0345
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0350
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0350
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0350
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0355
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0355
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0355
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0360
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0360
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0360
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0365
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0365
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0365
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0370
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0370
http://refhub.elsevier.com/S2001-0370(22)00225-2/h0370

	mRNAsi-related genes can effectively distinguish hepatocellular carcinoma into new molecular subtypes
	1 Introduction
	2 Materials and methods
	2.1 Data collection and preprocessing
	2.2 Calculation of the mRNAsi of tumor samples
	2.3 Differential expression analysis and WGCNA analysis
	2.4 Identification of CSCP molecular subtypes in HCC
	2.5 Functional enrichment and mutation data analyses
	2.6 Tumor immune infiltration cell (TIICs) and tumor purity analysis
	2.7 Survival analysis and prognostic model construction
	2.8 Data statistics and visualization

	3 Result
	3.1 High mRNAsi is associated with the poor prognosis of HCC patients
	3.2 Identifing HCC molecular subtypes
	3.3 Prognostic value of three CSCP subtypes
	3.4 Functional roles of mRNAsi-related genes
	3.5 Three CSCP subtypes are verified by using other HCC data sets
	3.6 Gene mutation characteristics of three CSCP subtypes
	3.7 The comparison of tumor immune microenvironment of three CSCP subtype patients
	3.8 Construction of the prognostic model based on mRNAsi-related genes

	4 Disscusion
	Statement of ethics
	ack23
	Acknowledgments
	Funding
	Author contributions
	Conflicts of interest
	Availability of data and materials
	Appendix A Supplementary data
	References


