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Abstract
In the face of chronic stress, some individuals can maintain normal function
while others go on to develop mental illness. Addiction, affecting one in every
twelve people in America, is a substance use disorder long associated with
stressful life events and disruptions in the sleep/wake cycle. The circadian and
stress response systems have evolved to afford adaptability to environmental
changes and allow for maintenance of functional stability, or homeostasis. This
mini-review will discuss how circadian rhythms and stress individually affect
drug response, affect each other, and how their interactions may regulate
reward-related behavior. In particular, we will focus on the interactions between
the circadian clock and the regulation of glucocorticoids by the
hypothalamic-pituitary-adrenal (HPA) axis. Determining how these two systems
act on dopaminergic reward circuitry may not only reveal the basis for
vulnerability to addiction, but may also illuminate potential therapeutic targets
for future investigation.
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Introduction
Within any given environment, an organism must learn to antici-
pate and adapt to external changes/stressors in order to survive. Two 
systems, the circadian and stress response systems, have evolved 
to afford adaptability to both recurring and spontaneous environ-
mental changes. Through the active process of allostasis (McEwen, 
1998; Sterling & Eyer, 1988), these systems and many others 
work to maintain an internal state of stability, or homeostasis, in 
the presence of these changes. In the face of acute and/or chronic 
stressors, the ability for an organism to adapt and avoid negative 
biological consequences is known as resilience. Within the context 
of psychopathology, resilience can be seen as a person’s ability 
to maintain physiological and psychobiological homeostasis, in 
spite of adversity (Charney, 2004; Feder et al., 2009). While resil-
ient individuals uphold “normal” mental health and homeostatic 
function when exposed to stress, other individuals may go on to 
develop neuropsychiatric or behavioral disorders. According to the 
vulnerability-stress model (Ingram & Luxton, 2005; Zubin & 
Spring, 1977), some individuals may be more biologically vulnera-
ble to developing neuropsychiatric disorders when faced with acute 
and/or chronic stressors (Pihl & Nantel-Vivier, 2005). To fully 
understand this phenomenon, current research seeks to understand 
the effects of stress in the brain (reviewed in McEwen et al., 2015), 
and elucidate potential structural and/or molecular bases resulting 
in the vulnerability to develop mental illnesses.

Many neuropsychiatric disorders have long been associated with 
altered circadian rhythm (Mills et al., 1977; Van Cauter & Turek, 
1986; Wehr et al., 1983) and stress response (Albus et al., 1982; 
Amsterdam et al., 1983; Roy et al., 1988); highlighted here, dis-
ruptions in both systems are also known to have implications in 
substance use disorder/addiction and reward-related behaviors 
(Briand & Blendy, 2010; Falcón & McClung, 2009; Koob, 2008; 
Logan et al., 2014). While abnormal circadian and stress response 
function can independently affect reward-related behavior, under-
standing the interface of these two systems, during both typical and 
atypical functioning, may provide greater insight into the complexi-
ties of disorder etiology. This mini-review examines the interplay of 
the circadian and stress response systems, and how this interaction 
may affect addiction vulnerability.

Circadian rhythm and the molecular clock
Highly conserved across most living organisms, circadian rhythms 
facilitate the anticipation and adaptation of behavior to daily 
changes in environmental stimuli. In mammalian organisms, 
system and cellular level rhythms are maintained by a rhythm- 
generating nucleus in the hypothalamus, the suprachiasmatic 
nucleus (SCN). The SCN can be entrained by both photic and non-
photic cues called zeitgebers, or “time-keepers”, but can ultimately 
generate a ~24 hour rhythm independent of these cues. At the 
molecular level, across all cell types, circadian rhythms are upheld 
by a “molecular clock” consisting of auto-regulatory transcription-
translation feedback loops in the nucleus (see Figure 1A). The key 
proteins that make up the molecular clock are transcription factors: 
circadian locomotor output cycles kaput (CLOCK), or neuronal 
PAS domain protein 2 (NPAS2), and brain and muscle Arnt-like 
protein 1 (BMAL1). Throughout the day, CLOCK/BMAL1 (or 
NPAS2/BMAL1) heterodimerize to promote the transcription of 

Period (PER1,2,3), Cryptochrome (CRY1,2), and many other clock 
controlled genes (CCGs). The feedback loop is established when 
PER and CRY proteins accumulate in the cytoplasm, form hetero- 
and homodimers, and eventually shuttle back into the nucleus to 
inhibit their own expression. Additionally, clock regulated RAR-
related orphan receptor alpha (RORα) and reverse-ErbA alpha 
(REV-ERBα) nuclear receptors act in an auxiliary oscillatory 
feedback loop to regulate expression of Bmal1, stabilizing the core 
feedback loop (Guillaumond et al., 2005). The circadian molecular 
clock cycles on a timescale of ~24 hours and regulates the expres-
sion of many genes controlling neuronal, metabolic, endocrine, and 
immune function (Jin et al., 1999; Lowrey & Takahashi, 2000).

Circadian genes and reward
Several studies in the past two decades have shown core circadian 
genes to be important regulators of reward-related behavior in 
response to common substances of abuse, as reviewed by Parekh 
et al. (2015). One of the first studies investigating this link demon-
strated that fruit flies with mutations in the Period, Clock, and/or 
Cycle (similar to Bmal1 in mammals) genes fail to show behavioral 
sensitization to cocaine (Andretic et al., 1999). In mice, mutations 
in the mPer1 and mPer2 genes seem to produce a similar but unique 
effect on cocaine response; mutation in mPer2 increased behavioral 
sensitization to cocaine but mutation in mPer1 abolished sensiti-
zation (Abarca et al., 2002). Recently, our lab has been studying 
a similar differential regulation of reward, but with CLOCK and 
its functional homologue, NPAS2. While CLOCK is known to be 
expressed almost ubiquitously, NPAS2 is primarily expressed in 
the liver and forebrain (Bertolucci et al., 2008; Reick et al., 2001) 
and can regulate circadian transcription when CLOCK expression 
is absent or low. With notable implications for reward, NPAS2 has 
been shown to have a unique expression pattern in the mesolim-
bic pathway; NPAS2 is highly enriched in the nucleus accumbens 
(NAc), but has little to no expression in the ventral tegmental area 
(VTA) (Garcia et al., 2000).

The observation that NPAS2 is specifically enriched in the NAc 
motivated our most recent studies investigating the potential for 
CLOCK and NPAS2 to differentially regulate gene expression 
and reward-related behavior, following cocaine exposure. Interest-
ingly, in response to chronic cocaine, only NPAS2 is upregulated 
in the NAc and caudate putamen (normal rhythm abolished) and 
has increased binding activity at Period gene promoters; CLOCK 
did not show these changes in the NAc or caudate putamen (Falcón 
et al., 2013). Knock-down of CLOCK or NPAS2 in these regions 
also has different effects on the regulation of reward-related 
behavior following cocaine administration. Mice containing a glo-
bally expressed, dominant negative, single-point mutation in the 
CLOCK protein (Clock∆19) exhibit a mania-like phenotype with 
increased baseline activity, decreased anxiety- and depression-like 
behavior, and increased sensitivity to rewarding stimuli; in response 
to cocaine, Clock∆19 mice show increased conditioned place pref-
erence (CPP) and increased cocaine self-administration, relative 
to wild-type mice (McClung et al., 2005; Ozburn et al., 2012; 
Roybal et al., 2007). However, using AAV-shRNA to selectively 
knock-down CLOCK or NPAS2 in the NAc, near entire reduc-
tion of CLOCK in the NAc does not recapitulate increased prefer-
ence seen in Clock∆19; while mice with either a mutated form of 
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Figure 1. The circadian molecular clock and its interactions with the stress axis. A. The mammalian circadian molecular clock consists 
of multiple transcription and translation feedback (TTF) loops. Central to the TTF loops, the transcription factors CLOCK (or NPAS2) and 
BMAL1 heterodimerize and bind to the enhancer box (E-Box) sequence to promote transcription of many target and clock controlled genes 
(CCGs). The main TTF loop is achieved when PERIOD (PER1,2,3) and CRYPTOCHROME (CRY1,2) proteins accumulate, dimerize, undergo 
phosphorylation, and shuttle back into the nucleus to inhibit both CLOCK/BMAL1 and, as a result, their own transcription. This negative 
feedback loop cycles every ~24 hours and is crucial for regulation of circadian rhythm. Among its target genes, CLOCK/BMAL1 also 
regulates the expression of the nuclear receptors RORα and REV-ERBα, both of which can regulate BMAL1 activity via binding at a response 
element in its promoter. A recently discovered circadian protein, CHRONO, is clock-regulated and can also inhibit CLOCK/BMAL1 activity via 
interactions at the E-Box. Taken together, these proteins make up auxiliary TTF loops that work to both stabilize and reinforce rhythm. B. The 
circadian molecular clock can interact with the stress axis through regulating activity of both glucocorticoid (GCC) and its receptor (GCR). GC 
is known to be released under tight circadian regulation, with peak levels in the animal’s active phase. Additionally, several circadian proteins 
are known to rhythmically regulate GCR-dependent transcription activity. CLOCK/BMAL1 can directly attenuate GCR activity via acetylation 
(A), thereby reducing its binding ability at the Glucocorticoid Response Element (GRE). Simultaneously, CHRONO and CRY1,2 proteins can 
repress GCR activity via direct interaction in ligand-fashion. CRY proteins can also regulate GCR-dependent transcription through association 
at the GRE. (+), promote/activate; (-), repress/inhibit.

NPAS2 or a NAc specific knock-down of NPAS2 showed decreased 
cocaine CPP and self-administration (Ozburn et al., 2015).

The genes central to the circadian molecular clock may have dif-
ferential roles in the regulation of reward-related behavior depend-
ing on the time of day, brain region, and/or the drug’s effect on 
the specific protein in a particular region. Given the involve-
ment of these core circadian genes in the regulation of reward 
and behavioral response, it is likely that disruption to the normal 
functioning/activity of these circadian proteins can contribute to the 
vulnerability of developing an addiction.

HPA axis and reward
When encountering physical and/or psychological stressors, activa-
tion of the hypothalamic-pituitary-adrenal (HPA) axis is a funda-
mental, evolutionarily conserved response allowing the organism 
to adapt both physiologically and behaviorally. Regulated by the 
HPA axis, glucocorticoids (cortisol in humans and corticosterone in 
rodents) are a class of steroid hormones responsible for driving the 
changes seen in stress response. Upon activation by limbic struc-
tures, neurons in the hypothalamic paraventricular nucleus (PVN) 
release corticotropin-releasing hormone (CRH) at the median 
eminence into the hypophyseal portal system, connecting the 
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hypothalamus with the anterior pituitary. Once stimulated by CRH, 
the anterior pituitary increases secretion of adrenocorticotropic 
hormone (ACTH) into the bloodstream, where it will then travel to 
the adrenal gland. At the adrenal cortex, ACTH causes an increase 
in synthesis and release of glucocorticoids into the circulatory sys-
tem to then act on energy metabolism, protein synthesis, immune 
function, cardiovascular function, attention/arousal/vigilance, and 
even memory function. Much like the circadian molecular clock, 
the HPA axis is regulated via a negative feedback loop in which 
accumulation of glucocorticoids in the hypothalamus (PVN) and 
anterior pituitary can block the production of CRH and ACTH. 
(de Kloet et al., 2005; Johnson et al., 1992; Uchoa et al., 2014).

While the effects of the HPA axis are transient in response to acute 
stress, chronic stress and prolonged presence of glucocorticoids 
can have deleterious outcomes, ranging from neurotoxicity and 
cell death to impaired metabolic/mitochondrial function and immu-
nosuppression (de Kloet et al., 2005; Dhabhar & McEwen, 1997; 
McEwen et al., 1999; Picard et al., 2014). Considering the potential 
detrimental effects of chronic stress, recent studies have investigated 
the implications of the HPA axis and glucocorticoids in neuropsy-
chiatric disorder etiology (Herane Vives et al., 2015; Jacobson, 
2014; Sapolsky, 2000; Yehuda et al., 2015). In the context of addic-
tion, animal model studies have long demonstrated a strong asso-
ciation between chronic stress and increased behavioral response to 
drugs of abuse (Antelman et al., 1980; Deroche et al., 1995; Herman 
et al., 1984; MacLennan & Maier, 1983). This increased response 
can be seen through augmented locomotor effects and increased 
reward/preference – both of which are associated with elevated 
glucocorticoid activity (Deroche et al., 1995; Haile et al., 2001; 
Lepsch et al., 2005). Further confirming the role of glucocorti-
coids in this phenomenon, if normal stress-induced increases in 
corticosterone (in rats) are blocked (via adrenalectomy), the stress-
related increase in drug behavioral response is abolished; notably, 
the response remains intact if normal elevation of corticosterone is 
artificially maintained (Deroche et al., 1995; Prasad et al., 1998; 
Rougé-Pont et al., 1995). Corticosterone has even been shown to 
be necessary for drug-induced sensitization in general, suggest-
ing its importance in overall behavioral response and drug-seeking 
behavior, with or without stress as a factor (de Jong et al., 2009; 
Przegaliński et al., 2000).

Though it is clear that chronic stress and the biological media-
tors of stress response may alter one’s sensitivity to the behavioral 
and/or rewarding effects of drugs of abuse, further investigation 
into the cellular and molecular bases of this relationship is neces-
sary. Given that the circadian rhythm and stress response systems 
are both known to be involved in mediating behavioral responses to 
rewarding-substances, perhaps their interactions may be the key to 
understanding what drives vulnerability to addiction.

Circadian regulation of the HPA axis
Like many other processes in the body, the HPA axis and its hor-
monal components are under direct circadian regulation by both 
the SCN and a peripheral clock in the adrenal cortex (Ishida et al., 
2005; Nader et al., 2010; Oster et al., 2006; Son et al., 2008). Glu-
cocorticoids, along with the other hormones in the axis, display a 
prominent diurnal variation in which peak levels correspond with 

the organism’s active phase (reviewed in: Kalsbeek et al., 2012; 
Spiga et al., 2014). Rhythms in glucocorticoids are not only medi-
ated by both direct and indirect projections to the CRH produc-
ing PVN neurons at the fore-end of the HPA axis (Engeland & 
Arhnhold, 2005; Kalsbeek et al., 2006), but also through modula-
tion of receptors by core circadian proteins (See Figure 1B). Oster 
et al. (2006) demonstrated the importance of a functional adrenal 
molecular clock in “gating” sensitivity to ACTH (via ACTH recep-
tors) in the adrenal cortex, as means of regulating glucocorticoid 
synthesis. Moreover, the actual glucocorticoid’s effect across 
the body can also be regulated through acting on glucocorticoid 
receptor (GCR) function; multiple studies have demonstrated the 
ability for CLOCK/BMAL1 to modulate GCRs and their sen-
sitivity via circadian mediated acetylation (Charmandari et al., 
2011; Kino & Chrousos, 2011; Nader et al., 2009). Alongside 
CLOCK/BMAL1, CRY1,2 have also been shown to repress 
GCR-dependent transcription activity via association with GCRs 
and/or at the glucocorticoid responsive element (GRE) (Lamia 
et al., 2011). In recent literature, a novel circadian protein named 
CHRONO, or computationally-highlighted/ChIP-derived repressor 
of network oscillator, acts as a negative regulator of the molecu-
lar clock and may even interact with GCRs to rhythmically repress 
their function (Anafi et al., 2014; Goriki et al., 2014). While inves-
tigation into CHRONO’s function is still in its early stages, there is 
potential for this novel protein to play an even greater role in con-
necting the circadian and stress response systems.

Several circadian-gene mutant mouse studies have further verified 
the role of core molecular clock proteins in regulating the HPA axis. 
In Bmal1 null mutant mice, deficiency in BMAL1 causes a sig-
nificant reduction in glucocorticoid levels, sensitivity, and altered 
rhythmicity (Leliavski et al., 2014); similarly, Clock mutant mice 
lacking functional CLOCK protein also show altered glucocorticoid 
rhythmicity and decreased total levels (Oishi et al., 2006; Takita 
et al., 2013). Along with the core CLOCK/BMAL1 complex, null 
mutations in the Cryptochrome (CRY1,2) or Period (PER1) genes 
also yield altered rhythmicity and, unlike Clock and Bmal1 mutants, 
increased total glucocorticoid levels (Dallmann et al., 2006; 
Destici et al., 2013; Lamia et al., 2011). Even more interesting, 
cultured BMAL1 and/or PER1,2 deficient mouse embryonic fibrob-
lasts (MEFs) show altered GCR transactivation resulting in hyper-
sensitivity to glucocorticoids (Han et al., 2014). Taken together, 
these studies demonstrate the importance of the molecular clock in 
regulating both the output of the stress axis and its efficacy.

Stress effects on circadian rhythm 
Occurring simultaneously, the same components of the molecu-
lar clock that regulate HPA axis function can also be reciprocally 
affected by the stress itself. Most notably, chronic stress is known 
to affect the rhythmic expression of the core circadian genes. A 
key example can be found through glucocorticoids mediating the 
expression of Period genes. With either acute or chronic stress, lev-
els of mPer1 and PER1 are elevated in some neural and peripheral 
tissues (Al-Safadi et al., 2014; Al-Safadi et al., 2015; Takahashi 
et al., 2013). PER2 has a similar response to stress (Segall & Amir, 
2010; So et al., 2009) and even loses rhythmic expression in the 
bed nucleus of the stria terminalis (BNST) and in the amygdala, 
following adrenalectomy (Lamont et al., 2005). Additionally, 
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it was later revealed that PER2 actually requires functional GCRs 
for its rhythmic expression (Segall et al., 2009). Both Period genes 
are afforded this unique relationship with glucocorticoids due to 
the presence of GREs in their promotor regions (So et al., 2009; 
Yamamoto et al., 2005). Glucocorticoids can target genes that have 
these GREs, bind, and thus promote their expression. This stress-
induced change in gene expression, if occurring chronically, can 
even result in clock entrainment (Tahara et al., 2015).

Previous work in our lab has shown that mice exposed to chronic 
social defeat stress show increased anxiety that correlates with 
decreased mPer1/2 expression in the NAc (Spencer et al., 2012). 
While this may appear to conflict with aforementioned stress 
effects on Period genes, it is likely that region specific changes 
occur depending on the type of stressor, GCR distribution, and 
region/network involvement. Illustrating this, we recently showed 
mice subjected to the unpredictable chronic mild stress (UCMS) 
paradigm (used to model depression-like behavior) have increased 
Per2 rhythm amplitude in the NAc, but decreased rhythm amplitude 
in the SCN (Logan et al., 2015). This is likely due to GCR con-
centration being high in the NAc (Barik et al., 2010; Der-Avakian 
et al., 2006) but low/absent in the SCN (Balsalobre et al., 2000; 
Pezuk et al., 2012; Rosenfeld et al., 1988). The interaction between 
stress response and the circadian molecular clock in a region spe-
cific manner may perhaps be the basis that allows for manifestation 
of disorder specific vulnerability.

Circadian rhythm and stress interactions in 
dopaminergic transmission
As described above, a lot can be understood by just examining how 
each system not only affects each other, but also how they indi-
vidually affect behavioral response to drugs of abuse. However, in 
the framework of addiction and reward, the effects on vulnerabil-
ity may more likely arise from the two systems’ interactions while 
simultaneously regulating the same reward-related processes. Both 
systems have been show to directly regulate/affect the dopaminergic 
reward circuitry and its functions involved in addiction (reviewed 
in: Marinelli & Piazza, 2003; Parekh et al., 2014). Implemented 
in addiction, the mesolimbic pathway is a system of dopaminergic 
neurons connecting the VTA to the NAc, and is important for medi-
ating reward-related behavior. This pathway’s activity is known 
to be directly affected by both the circadian system and the stress 
response system (McClung et al., 2007; Trainor, 2011). In control-
ling dopamine synthesis, circadian molecular clock proteins and 
glucocorticoids may be working in opposing fashion to regulate 
expression of tyrosine hydroxylase (TH), a key enzyme in synthesis 
of dopamine from tyrosine (see Figure 2).

Under circadian control, recent work in our lab has demonstrated 
that CLOCK/BMAL1 acts as a time-dependent, negative regulator 
of TH transcription via binding at the TH promotor in anti-phase 
with CREB (Sidor et al., 2015). Opposite of CLOCK/BMAL1, 
glucocorticoids may positively regulate the expression and 

Figure 2. Dynamic circadian and stress interactions at the TH promoter. Important for reward-related behavior, tyrosine hydroxylase 
(TH) is an enzyme involved in the synthesis of dopamine from the amino acid L-Tyrosine. Transcription of TH is mediated by the binding 
of cAMP response element-binding protein (CREB) at its response element (CRE) in the TH promoter. Dopamine synthesis is known to be 
directly regulated by both circadian and stress-related proteins/hormones. At the TH promoter, the core circadian CLOCK/BMAL1 complex 
binds to the enhancer-box (E-Box) sequence in antiphase with CREB:CRE binding, and negatively regulates the transcription of TH in a 
time dependent manner. Additionally, the circadian nuclear receptor REV-ERBα and nuclear receptor-related 1 (NURR1) protein regulate TH 
expression via competitive binding at the REV-ERB/ROR response element (RRE)/NGF1B-response element (NBRE); while NURR1 promotes 
the expression of TH, REV-ERBα represses expression. Glucocorticoids (GCs) and its receptor (GCR) can also promote expression of TH by 
binding at the glucocorticoid response element (GRE) in the TH promoter. The above response element spacing is not shown to scale. (+), 
promote/activate; (-), repress/inhibit.
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activity of TH (Fossom et al., 1992; Kalinina et al., 2012; Núñez 
et al., 2009; Tank et al., 1986). While the exact mechanism by which 
glucocorticoids increase TH expression is still being investigated, it 
has been shown that the TH promotor contains a GRE to which 
glucocorticoids can bind and promote expression independent of 
CRE (Hagerty et al., 2001a; Hagerty et al., 2001b). An additional 
explanation may arise through glucocorticoid regulation of the cir-
cadian nuclear receptor, REV-ERBα. In a recent paper by Chung 
et al. (2014), REV-ERBα has been shown to repress TH transcription 
through competitive binding with nuclear receptor-related 1 pro-
tein (NURR1) at the TH promotor. Given that glucocorticoids have 
been shown to control REV-ERBα expression in the liver (Torra 
et al., 2000), it may be possible for glucocorticoids to increase TH 
through a disinhibition type mechanism.

In addition to regulation of TH, the two systems can simultaneously 
act on dopamine receptor (DR) expression/function (Biron et al., 
1992; Iasevoli et al., 2013; Ikeda et al., 2013; Spencer et al., 2012) 
and monoamine oxidase-A (MAO-A) expression/function, an enzyme 
responsible for degradation of dopamine (Chevillard et al., 1981; 
Cvijić et al., 1995; Hampp et al., 2008; Soliman et al., 2012). Taken 
together, these studies demonstrate the interactions of both the circa-
dian system and stress response system in regulating the same aspects 
of reward related function/behavior. With slight disruption in either of 
the systems, the negative effects of one can alter the other and result in 
a self-perpetuating consequence. It is at this level that an understand-
ing of vulnerability to addiction can be more readily obtained.

Conclusion
Reward-related behavior and sensitivity to drug response have both 
been shown to be regulated by the circadian and stress response 

systems. Described above, disruption in either of the systems indi-
vidually can have pronounced effects on the rewarding effects of 
substances of abuse. Understanding both the tight circadian regu-
lation of the stress axis and how stress/response can affect the 
molecular clock, the possibility for their interaction to drive vul-
nerability to addiction is entirely plausible. Both systems act in 
parallel regulating many aspects of reward related behavior and 
function. Slight mutations in either system causing minor func-
tional disruption may be innocuous alone, but given the interface 
of the two systems, a minor change has the potential to be ampli-
fied in a reverberating fashion. The once subtle change may even 
become deleterious with time. It is in this logic that vulnerability 
to addiction is rooted; as a biological predisposition that becomes 
exploited in the face of chronic stressors. As an outlook, future 
studies can begin to consider one or both systems as potential thera-
peutic targets to mediate drug response in addiction and combat 
vulnerability.
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