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Abstract
Background: The rate of pubertal development and weaning to estrus interval are correlated and affect
reproductive efficiency of swine. Quantitative trait loci (QTL) for age of puberty, nipple number and ovulation
rate have been identified in Meishan crosses on pig chromosome 10q (SSC10) near the telomere, which is
homologous to human chromosome 10p15 and contains an aldo-keto reductase (AKR) gene cluster with at least
six family members. AKRs are tissue-specific hydroxysteroid dehydrogenases that interconvert weak steroid
hormones to their more potent counterparts and regulate processes involved in development, homeostasis and
reproduction. Because of their location in the swine genome and their implication in reproductive physiology, this
gene cluster was characterized and evaluated for effects on reproductive traits in swine.

Results: Screening the porcine CHORI-242 BAC library with a full-length AKR1C4 cDNA identified 7 positive
clones and sample sequencing of 5 BAC clones revealed 5 distinct AKR1C genes (AKR1CL2 and AKR1C1 through
4), which mapped to 126–128 cM on SSC10. Using the IMpRH7000rad and IMNpRH212000rad radiation hybrid panels,
these 5 genes mapped between microsatellite markers SWR67 and SW2067. Comparison of sequence data with
the porcine BAC fingerprint map show that the cluster of genes resides in a 300 kb region. Twelve SNPs were
genotyped in gilts observed for age at first estrus and ovulation rate from the F8 and F10 generations of one-
quarter Meishan descendants of the USMARC resource population. Age at puberty, nipple number and ovulation
rate data were analyzed for association with genotypes by MTDFREML using an animal model. One SNP, a
phenylalanine to isoleucine substitution in AKR1C2, was associated with age of puberty (p = 0.07) and possibly
ovulation rate (p = 0.102). Two SNP in AKR1C4 were significantly associated with nipple number (p ≤ 0.03) and
another possibly associated with age at puberty (p = 0.09).

Conclusion: AKR1C genotypes were associated with nipple number as well as possible effects on age at puberty
and ovulation rate. The estimated effects of AKR1C genotypes on these traits suggest that the SNPs are in
incomplete linkage disequilibrium with the causal mutations that affect reproductive traits in swine. Further
investigations are necessary to identify these mutations and understand how these AKR1C genes affect these
important reproductive traits.

The nucleotide sequence data reported have been submitted to GenBank and assigned accession numbers 
[GenBank:DQ474064–DQ474068, GenBank:DQ494488–DQ494490 and GenBank:DQ487182–DQ487184].
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Background
In swine, the rate of pubertal development and successful
pregnancy in gilts affects the efficient management of
breeding females. Selection for growth rate and leanness
in modern commercial pigs has resulted in a delay in the
onset of puberty [1]. Age at puberty and weaning to estrus
interval (WEI) are positively correlated [2] and the pri-
mary reason for culling sows is failure to return to estrus
after weaning. Quantitative trait loci (QTL) have been
identified for age of puberty in the pig on different chro-
mosomes [3,4]. One of the QTL regions is located on the
long arm of pig chromosome 10 (SSC10q) near the tel-
omere, which is homologous to human chromosome
10p15 [5,6]. The q-arm of pig chromosome 10 also has
QTL for ovulation rate [4] and number of nipples [7-10].
In the human, an aldo-keto reductase (AKR) gene family
(AKR1C) has been identified near the telomere on chro-
mosome 10p15 that contains at least six aldo-keto reduct-
ase family 1, member C genes [11]. The homologous
region on mouse chromosome 13 contains a cluster of
eight or nine AKR1C genes [12]. These duplicated genes
maintain a high degree of sequence similarity, but differ
greatly in their substrate specificity and tissue expression
patterns.

The AKR superfamily are monomeric oxidoreductases that
catalyze the NADP(H)-dependent reduction of a wide
variety of substrates, ranging from steroids, prostagland-
ins, bile acids, carbohydrates and xenobiotics [13]. AKRs
are also thought to deactivate damaging reactive oxygen
species like carbonyl compounds from lipids and proteins
leading to their elimination [14,15]. Aldo-keto reductases
interconvert weak androgens, estrogens, progestins, min-
eralocorticoids and glucocorticoids to their more potent
counterparts by catalyzing the reduction and oxidation of
keto- and hydroxysteroids, respectively, thereby regulat-
ing a wide range of physiological processes involved in
development, homeostasis and reproduction [16]. In this
manner, AKRs regulate the occupancy and transactivation
of several steroid receptors in target tissues leading to tran-
scription of hormone-responsive genes [13]. These steroid
substrates can also act directly through "non-genomic"
effects, such as, formation of neuroactive steroids and acti-
vation of ion channels, G-protein-coupled receptors and
several kinase signalling pathways. The products of AKR
activity have been implicated in prostate disease, breast
cancer, obesity, polycystic ovary disease and delay in the
onset of puberty in humans [17-22]. Because of their loca-
tion in the swine genome and their implication in direct-
ing reproductive physiology, this gene cluster was
characterized and evaluated for affecting age at puberty in
the pig.

Results
Identification of AKR1C genes
A genomic amplicon spanning exons 4 and 5 of AKR1C4
(Genbank accession number AF473815; [5]) probed
against one third of the porcine RPCI-44 BAC library iden-
tified 3 clones (62L11, 69L21 and 125A17). A full-length
cDNA for AKR1C4 (TC200328, The Institute for Genomic
Research (TIGR) [23] probed against one third of the por-
cine CHORI-242 BAC library identified seven clones
(203C8, 204L24, 226I21, 264H20, 275P11, 315D4 and
319P22). Three of these clones (203C8, 226I21 and
264H20) are represented in contig 10007 of pig BAC fin-
gerprint map [24]. Southern analysis of a BamHI digest of
8 clones from both libraries using the same cDNA probe
showed 5–9 shared bands and dissimilar banding pat-
terns. Five of these BACs from the CHORI-242 library
(203C8, 226I21, 264H20, 315D4 and 319P22) were
digested with BamHI and HindIII and subcloned for sam-
ple sequencing. One BAC clone (CHORI-242-203C8) that
contained at least 4 AKR1C genes was nebulized and sub-
cloned into pBluescript to obtain more coverage. The
complete AKR1C4 gene was PCR cloned by amplification
using exon primers and the RPCI44-125A17 BAC clone as
template. Exon sequences for AKR1CL2, AKR1C1,
AKR1C2 and AKR1C3 were found in 4 of the 5 CHORI-
242 BAC subclone libraries (203C8, 226I21, 315D4 and
319P22) and AKR1C4 sequence was found in CHORI-
242-264H20 subclones exclusively. AKR1C2 was found in
both sets of BACs in the overlapping region. Sequences
corresponding to AKR1CL1 were not found in BAC sub-
clones. The promoter region of AKR1C4 was cloned by
probing BamHI/BglII digests of the RPCI BACs with a frag-
ment containing exon 1 and part of intron 1. The pro-
moter contained LSF (late SV40 factor), ERE (estrogen
response element) and multiple SP1 and MYC sites [Gen-
bank: DQ494489]. A 3900 bp contig from BAC clone
CHORI-242-203C8 upstream of AKR1CL2 contained pro-
moter elements CCAAT, SP1, ETS, GATA, NF-1 and ERE
[Genbank: DQ494488] [25].

Identification of cDNAs for AKR1C
TIGR contigs were identified for four of the five AKR1C
genes identified from BAC subclone sequence; only
AKR1C2 was not represented in EST libraries sequenced or
in contigs assembled by TIGR. These mRNAs were con-
firmed by RT-PCR of overlapping fragments or by com-
pletely sequencing individual clones. Amino acid and
nucleotide homologies ranged from about 50–90% and
73–93%, respectively, among the pig AKR1C transcripts
and the presence of active site residues common to aldo-
keto reductases was conserved (Figure 1). No additional
ESTs that would represent AKR1CL1 or other AKR1C
genes were identified by sequence similarity analyses.
Because of the high homology of these genes to all of the
human AKR1C genes they were named by their relative
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position and conservation of amino acid sequence with
human genes. The identity of pig AKR1CL2 could be con-
fidently assigned; pig AKR1CL2 was most similar to
human AKR1CL2 and mouse Akr1e1 (Figure 2) and had
little similarity to other human AKR1C genes. The pig
AKR1C1 followed by AKR1C2 was the most similar to
human AKR1C genes (83–85%) and to bovine AKR1C
genes; pig AKR1C4 was more closely related to human
AKR1C4 and AKR1CL1. Except for AKR1CL2, paralogues
were more similar within species than were homologues
among species.

Mapping and gene organization
SNPs identified in three of the five genes (AKR1CL2,
AKR1C2 and AKR1C4, [Genbank: BV102614, BV680543,
AF473815, respectively]) and microsatellites SB88-91
[GenBank: DQ487182-84] found in BAC subclone
sequences were linkage mapped to SSC10, positions 126–
128 cM. The resolution of the map was not great enough
to determine order of genes or markers. Four AKR1C
genes (AKR1CL2, AKR1C2, AKR1C3 and AKR1C4) and
microsatellite markers SB89, SB90 and SB91 (Table 1)
were mapped using the IMpRH7000rad and
IMNpRH212000rad radiation hybrid panels and anchored
with flanking genes (PRKCQ, GDI2 and IDI1) and micro-

satellite markers SWR67 and SW2067 (Figure 3). The res-
olution of the IMNpRH212000rad panel was nearly the same
as that of the IMpRH7000rad panel. Comparison of sample
sequence data with mRNA sequences and the porcine BAC
fingerprint map showed that the complete cluster of genes
resides in two overlapping BAC clones that were sub-
cloned, CHORI-242-203C8 and 264H20; clones 226I21,
315D4 and 319P22 completely overlap 203C8 (Figure 4).
AKR1CL2, AKR1C1, AKR1C2 and AKR1C3 were all con-
tained within CHORI-242 203C8 and microsatellite
markers SB89, SB90 and SB91 were identified from this
clone, as well. The gene order was determined to be
AKR1C4, AKR1C2, AKR1C1, AKR1C3 and AKR1CL2 from
centromere to telomere. BAC clone CHORI-242-264H20
contained AKR1C2, AKR1C4, the urocortin 3 (UCN3),
tubulin alpha-like 3 (TUBAL3) and neuroepithelial cell
transforming gene 1 (NET1) genes (Figure 4). The orien-
tation of the AKR1C genes was determined by aligning
cDNAs or BAC subclone contigs with BES on the BAC fin-
gerprint map [24]. This region corresponds to about 630
kb of human sequence (4.8–5.5 Mb on HSA10) but is
contained in only two porcine BAC clones, average insert
size of 173 kb, suggesting that this region is about half the
size in the pig. A portion of this reduction is possibly due
to the lack of a pig homologue to human AKR1CL1,

Alignment of pig AKR1C mRNAsFigure 1
Alignment of pig AKR1C mRNAs. Conserved residues T24, L54, Y55, H117, F118, W227, N306 and Y310 involved in 
substrate binding are highlighted in yellow [52] and residues highlighted in blue are invariant residues found in all AKRs [53]. 
Residues Asp274Asn in AKR1C1, Ile16Phe, Tyr216Asn, Val234Phe in AKR1C2 and Val97Phe in AKR1C3 in red are non-synony-
mous amino acid polymorphisms identified in cDNA and genomic sequence of Meishan and White composite pigs. Dashes indi-
cate residues that are absent, shading indicates identity and asterisks represent 10 bp increments.
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although it is possible that AKR1CL1 was missed in the
BAC sequence survey.

Expression of pig AKR1C genes in different adult tissues
Gene-specific cDNA for the five different AKR1C genes
was amplified from 16 tissues (Table 1). Six tissues
expressed all five genes tested (spleen, lung, ovary, adre-
nal, kidney, and endometrium) and AKR1CL2 and
AKR1C4 were the most widely expressed genes (Figure 5).
AKR1CL2 was expressed in all tissues except pancreas and
brain. Unlike human AKR1C4, pig AKR1C4 expression
was not specific to the liver but was expressed in all tissues
and AKR1C2 was the only other AKR1C gene expressed in
brain. These expression patterns were also reflected by the
number of clones and tissue source of the EST libraries
from which these cDNAs were identified [23].

Association of SNPs with phenotypic traits
Polymorphisms were identified from RT-PCR sequences
of Meishan and White composite endometrium cDNA.
SNPs identified in the coding region were genotyped
across generations F8 and F10 of the resource population.
Additional SNPs were found by sequencing genomic DNA

from animals of similar breed types and were chosen
based on their frequency and potential for being a non-
synonymous mutation (Table 2 and Additional File 1).
Twelve SNPs were genotyped for association with repro-
ductive traits. Three of these were in the AKR1C2 coding
region, one was in AKR1CL2, and eight were the AKR1C4
gene, including one in the promoter region (Table 2). One
SNP (49422_42), an isoleucine to phenylalanine substi-
tution in AKR1C2, was associated with age of puberty (p =
0.07) and possibly ovulation rate (p = 0.102). Another
SNP in AKR1C4 (49431_198) was possibly associated
with age at puberty (p = 0.093; Table 3). Two other SNP
were significantly associated with nipple number (p ≤
0.03; Table 3).

Discussion
As in other species, this gene cluster is conserved in the
pig, although individual family members have undergone
some sequence divergence and specialization of tissue
expression, possibly due to duplication of function.
Because of high sequence similarity of the genes within
species and divergence among species, it is difficult to
definitively assign homologues for all members of the
gene family and not all genes are represented in the pig
(i.e., hAKR1CL1) that are found in human or mouse. Gene
duplication usually results in tandem duplication of genes
or segments along the chromosome [26] and gene conver-
sion can result in a species paralogues being more closely
related than homologues among species [27]. Because
these genes are expressed in a multitude of tissues and the

Radiation hybrid maps of AKR1C genes on IMpRH7000rad and IMNpRH212000rad panelsFigure 3
Radiation hybrid maps of AKR1C genes on 
IMpRH7000rad and IMNpRH212000rad panels. The IMpRH 
map is aligned to human chromosome 10p15 (inverted).
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expression patterns in pig tissues do not differentiate these
genes with expression patterns described in human or
mouse, assignment of homologues is even more compli-
cated. In addition, the orientation of genes in this cluster
is not identical to human or mouse gene order, while gene
order of flanking genes (UCN3, TUBAL3, and NET1) is
conserved [11]. As more species are fully sequenced, a
clearer picture of the evolutionary process of this gene
family can be drawn.

Because this pluripotent family of enzymes regulates ster-
oid hormone action in a tissue-specific manner, they are
compelling positional candidates for regulating reproduc-
tive functions [16,28]. Steroid metabolites of AKR1C
enzymes rise at the onset of puberty [22,29] presumably
due to increased substrate and enzyme activity. The onset
of puberty is marked by hormonal changes directed by
neuronal signals that result in activation of the hypotha-
lamic-pituitary-gonadal axis and reproductive maturity
[30]. Central to behavioral and gonadal maturity is the
release of gonadotropin releasing hormone (GnRH) fol-
lowed by synthesis and secretion of luteinizing hormone

(LH) and follicle stimulating hormone (FSH). An LH
surge in turn is essential for stimulating the cascade of
events leading to ovulation [31]. The gonadal steroid
3alpha-hydroxy-4-pregnen-20-one (3 alpha HP) pro-
duced from progesterone by AKR1C inhibits GnRH activ-
ity on gonadotropes and suppresses FSH release from
pituitary cells [32]. Modulation of the GnRH pulse fre-
quency could therefore cause variation in the timing of
puberty. Furthermore, as GnRH regulates FSH and LH
release, it is possible that AKR1C activity may affect the
number of ova shed during an estrus. FSH secretion stim-
ulates the development of antral follicles and FSH levels
are greater in some lines of gilts with higher ovulation rate
[33,34].

QTL for nipple number have been identified on SSC10q
and two SNPs in AKR1C4 were significantly associated
with nipple number. Some of these QTL are more proxi-
mally located on SSC10q [8-10], but one identified in a
Meishan/Pietrain cross maps to the same location as the
AKR1C gene cluster [7]. Because androgen and antiandro-
gen treatment in rodents alters nipple development and

BAC contig map of region containing pig AKR1C genesFigure 4
BAC contig map of region containing pig AKR1C genes. Location and orientation of pig genes is shown above. BAC 
clone ends are represented as ●  for SP6 primer sequence and  as the T7 primer sequence end. Clones in dashed lined were 
not subcloned and sequenced but aligned by BAC-end sequences (BES). The human position on HSA10 is shown in megabases 
and gene order is shown below. Not all porcine BACs in this region are shown.
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retention [35], and treatment of rats with an inhibitor of
5α-reductase during gestation inhibits male nipple regres-
sion [36], a role for dihydrotestosterone (DHT) is impli-
cated in normal nipple development. AKRs convert DHT,
a preferred substrate, to the less active androgen 3α-
androstanediol, thereby regulating steroid responsiveness
in target tissues [13] such that variation in AKR1C activity
could affect nipple development in the pig. AKR1C4 is the
most catalytically active isoform for DHT reduction in
human [28] and has high expression in mammary tissue
(Figure 5). Because it is ubiquitously expressed and ESTs
have been identified in porcine embryonic libraries [23],
it is probably expressed during embryonic development
of mammary tissue.

Considerable support for an association of the AKR1C
genotypes with nipple number was detected as well as
some indication of an effect on age at puberty and possi-
bly ovulation rate. Age of puberty and ovulation rate at a
specific age are negatively correlated traits in Meishan pigs
because ovulation rate increases from puberty to later
estrus cycles [37] and animals that reach puberty earlier
will have had more cycles at the time of measurement and
greater number of ova shed; however, this increase in ovu-
lation rate is less dramatic in occidental pigs. Because
there was no selection performed on these animals and
this is an area of increased recombination, it is assumed
that recombination has greatly reduced linkage disequi-
librium in this region, facilitating fine-mapping of repro-

RT-PCR amplification of pig AKR1C genes in different tissues from a purebred Meishan sow at day 25 of gestation and mature testis using gene-specific primers (Hyp, hypothalamus; Spl, spleen; Plc, placenta; Mam, mammary tissue; Pan, pancreas; Pit, pitu-itary; Lng, lung; Lvr, liver; Ovr, ovary; Adr, adrenal; Kid, kidney; LD, longissimus dorsi muscle; End, endometrium; Brn, brain; Int, small intestine; Tst, testis)Figure 5
RT-PCR amplification of pig AKR1C genes in different tissues from a purebred Meishan sow at day 25 of gesta-
tion and mature testis using gene-specific primers (Hyp, hypothalamus; Spl, spleen; Plc, placenta; Mam, mam-
mary tissue; Pan, pancreas; Pit, pituitary; Lng, lung; Lvr, liver; Ovr, ovary; Adr, adrenal; Kid, kidney; LD, 
longissimus dorsi muscle; End, endometrium; Brn, brain; Int, small intestine; Tst, testis). Amplicon sizes are given 
in Table 1; marker is a 100 bp ladder.
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ductive traits in advanced generations (F8 and F10) of this
population. While genetic variation in this region appears
to affect reproductive traits in swine there is little evidence
that the SNP markers tested are causative. Rather, the esti-
mated effects of AKR1C genotypes show an overdominant
effect on reproductive traits suggesting that these SNPs
may be in incomplete linkage disequilibrium with the
causal mutations or possibly there are multiple causative
SNPs within this region acting in repulsion. Further inves-
tigations are necessary to identify the causal mutations
and understand the role AKR1C genes have on these
important reproductive traits.

Conclusion
Variation in the aldo-keto reductase gene cluster on pig
chromosome 10 may be associated with age of puberty,

nipple number and ovulation rate in swine. Future studies
will determine if this variation will be useful for selection
of breeding females with greater reproductive efficiency in
industry populations.

Methods
cDNA synthesis, amplification and sequencing
Porcine cDNAs for aldo-keto reductases (AKRs) were
identified from EST sequences deposited in GenBank and
assembled at The Institute for Genomic Research (TIGR)
[23] or by homology of porcine genomic BAC sequence to
human AKRs. Tissues from adult purebred and composite
breed animals were collected in RNAlater (Ambion, Aus-
tin, TX) and homogenized in Trizol (Invitrogen, Carlsbad,
CA) as the source for total RNA synthesis of RT-PCR tem-
plate for identification of sequence variation. Tissues from

Table 2: SNPs identified in AKR1C genes genotyped in 1/4 Meishan F8 and F10 population.

Allele frequencies3

Assay Gene Accession1 Location2 Polymorphism F8 & F10 MS WC Polymorphic site4

33391_261 C/T AKR1CL2 BV102614 Intron 1 T = 0.63 T = 0.21 T = 0.81 ccctgcacagYagcgcgggca
49422_42 A/T AKR1C2 BV680531 nt 179 Ile16Phe A = 0.77 A = 0.50 A = 1.00 cggtcacctcWttcctgtact
36962_196 A/T AKR1C2 DQ474066 nt 779 Tyr216Asn A = 0.62 A = 0.17 A = 0.89 tttggttgccWatgctgccct
36962_681 A/G AKR1C2 DQ474066 nt 833 Val234 Ile G = 0.85 ND ND aaaccacccaRttctcttgg
31063_1495 G/T AKR1C4 BV680526 promoter ERE site T = 0.55 T = 0.10 T = 0.94 tcagagtactKaccttgacca
31503_2415 A/G AKR1C4 BV680525 Exon 1 silent G = 0.81 G = 1.00 G = 0.67 tgagtagtggRgaagagacgt
27648_208 C/T AKR1C4 BV680527 Exon 1 silent T = 0.67 T = 0.36 T = 0.86 agctgaatgaYgggcacctca
20502_681 C/T AKR1C4 BV680537 Intron 2 C = 0.57 C = 0.17 C = 0.92 cttttagctaYtgatgtttmc
20502_722 C/T AKR1C4 BV680537 Intron 2 C = 0.78 C = 0.50 C = 1.00 aaatcayaagYcatttttaat
14984_99 G/T AKR1C4 BV680523 Intron 4 T = 0.56 ND ND aaatgtgggtKtgatccctgg
36969_772 C/T AKR1C4 BV680543 Exon 7 silent C = 0.56 C = 0.25 C = 0.94 agaaacacaaYagaagcccag
49431_198 C/T AKR1C4 BV680533 Intron 8 Splice site T = 0.58 T = 0.50 T = 0.81 ttcccttcctYycaggtttttr

1Accession numbers beginning with BV are sequences submitted to dbSTS.
2Location refers to nucleotide position in cDNA.
3Allele frequencies were calculated from F8 and F10 animals genotyped (ranging from 238–420 animals), and founder Meishan (MS) and founder 
White composite (WC) animals (7–10 animals each) in the original resource population; ND = not determined.
4Polymorphisms are identified by IUB code with flanking genomic sequence.

Table 1: Primers used for mapping and tissue-specific expression of pig AKR1C genes.

Marker GenBank Accession1 TIGR Contig Forward primer (5'→3') Reverse primer (5'→3') Application Size (bp)

AKR1CL2 DQ494488 TC204964 gcgtctattacctccttgcatc acctcgttctcattgtggtaca RH mapping 441
AKR1C1 BV677932 TC223177 ggagtgttttctctccatggtc cctatttcaatgatccacacga RH mapping 322
AKR1C2 BV680531 None atcccaaagccagtgtctg ttacatctgatctgccaaggtg RH mapping 348
AKR1C3 DQ494490 TC200330 taagggcagacacagcttgata tggaatacaaaactgaggcaga RH mapping 279
AKR1C4 BV680541 TC200328 atcatcacctagggtcaacaattc gagctcccgctcagtactcttcag RH mapping 345
SB89 microsatellite DQ487182 None ttccacaccctctccttctcta tgaaattcagttggaaagttttga RH/linkage map 150
SB90 microsatellite DQ487183 None gggaattccatatgccatgagt aagctgcagaaagagggaagta RH/linkage map 117
SB91 microsatellite DQ487184 None aaattgaggaggagggaacagt gtcaacaagatatggcctgta RH/linkage map 165
AKR1CL2 DQ474064 TC204964 acccataccttacgcagaagaa aaattctcaagaatccgctttg RT-PCR 240
AKR1C1 DQ474065 TC223177 cgatggtcacttcattcctgta agtgcttttccgttttcatctg RT-PCR 380
AKR1C2 DQ474066 None tccttcgaccagagttggtcca catttgacttgcagaaatccag RT-PCR 364
AKR1C3 DQ474067 TC200330 ccattcagatgaaaattgcaga ctcgttcttgcacttctccat RT-PCR 280
AKR1C4 DQ474068 TC200328 aagacagagtgagcccagccg cacctcctcctcgttttcatag RT-PCR 215

1Accession number is for genomic DNA for RH/linkage markers and mRNA sequence for RT-PCR.
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a purebred Meishan sow collected at day 25 of gestation
and testis from a mature boar were used for differential
expression of AKR1C transcripts. cDNA was synthesized
with M-MLV reverse transcriptase (Promega, Madison,
WI) using 2 μg of total RNA from endometrium, placenta,
testis, ovary, liver, lung, adrenal, kidney, spleen, pituitary,
hypothalamus, brain, pancreas, small intestine, skeletal
muscle and mammary tissue. These reactions were run for
35 cycles with 20 ng of template as described below.
Sequences were extended using 3'-RACE or RT-PCR from
exon sequences identified in BAC subclones. Full-length
cDNA clones were obtained by iterative screening and
self-ligation of inverse PCR (SLIP) [38] of the MARC 1PIG
and 2PIG primary libraries before normalization [39].

BAC screens and subclone libraries
Filters from the RPCI-44 and CHORI-242 porcine BAC
libraries were screened using a random-primed nearly
full-length cDNA of porcine AKR1C4 as probe. The probe
was prepared by PCR of the MARC 2PIG library using
primers in exons 1 and 9 and radioactive random-primed
labeled (Megaprime DNA Labeling System, Amersham,
Piscataway, NJ). Positive clones were grown in 100 ml cul-
tures and processed for BAC DNA using a midi-prep col-
umn (Marligen Biosciences, Ijamsville, MD). The BACs
were digested with BamHI and HindIII separately and sub-
cloned into pBluescript. One 96-well plate of clones was
processed for each BAC and enzyme combination and
sequenced with T3 and T7 primer. One CHORI-242 BAC
(203C8) was sheared with a nebulizer (Invitrogen,
Carlsbad, CA), end-repaired, then cloned into pBluescript
and four 384-well plates of clones were sequenced.

PCR and sequencing
Primer pairs for amplification of genomic DNA were
designed from porcine AKR1C cDNA sequences and
genomic sequence obtained during this study using

Primer 3; code available at the Primer 3 Software website
[40]. PCR was performed in a PTC-225 DNA engine (MJ
Research Inc, Watertown, Mass) using 0.25 U Hot Star®

Taq polymerase (Qiagen, Valencia, CA, USA), 1× of sup-
plied buffer, 1.5 mM MgCl2, 200 μM dNTPs, 0.8 μM each
primer, and 100 ng of genomic DNA in 25 μl reactions.
Five μl of the PCR reaction was electrophoresed in 1.5%
agarose gels to determine quality of amplification and the
remainder was prepared for sequencing. Chromatograms
were imported into the MARC database, bases called with
Phred, assembled into contigs with Phrap, polymor-
phisms identified using Polyphred, and assessed using
Consed [41].

SNP genotyping
SNPs were mapped using a primer extension assay on the
Sequenom MassArray™ system (San Diego, CA, USA). Ten
μl PCR reactions contained 10 ng of genomic DNA, 0.25
U HotStar Taq, 1× of supplied buffer, 1.5 mM MgCl2, 200
μM dNTPs, and 0.4 μM forward and reverse tailed prim-
ers. The primer extension reaction used 0.6 μM of probe
primer and was performed according to the manufac-
turer's recommendations for hME chemistry (Sequenom,
San Diego, CA, USA).

Radiation hybrid and linkage mapping
Genes were mapped using the 118-clone INRA-University
of Minnesota porcine Radiation Hybrid IMpRH7000rad
panel and the 90-clone IMNpRH212000rad panel [42,43].
Primers used were described above, or designed from
sequences obtained from subclone sequences. Amplifica-
tions were performed in 15 μl PCR in duplicate using 12.5
ng panel DNA, 1.5 mM MgCl2, 200 μM dNTPs, 1 μM each
primer, 0.25 U Hot Star® Taq and 1× of supplied buffer.
The PCR mixture was held at 94°C for 15 min, and cycled
40 times at 94°C for 20 sec, held at the indicated anneal-
ing temperature for 30 sec and extension at 72°C for 45–

Table 3: Tests of significance and estimated effects of AKR1C genotypes on reproductive traits in F8 and F10 animals.

Assay Gene Age at puberty1 Ovulation rate2 Number of nipples3

33391_261 AKR1CL2 p > 0.154 p > 0.15 0.148 (TT = 0; CT = 0.170; CC = -0.077)
49422_42 AKR1C2 0.070 (TT = 0; AT = 13.46; AA = 

6.21)
0.102 (TT = 0; AT = 1.54; AA = 

1.15)
p > 0.15

31063_1495 AKR1C4 p > 0.15 p > 0.15 0.064 (TT = 0; GT = 0.280; GG = 0.206)
27648_208 AKR1C4 p > 0.15 p > 0.15 0.024 (CC = 0; CT = 0.476; TT = 0.276)
20502_681 AKR1C4 p > 0.15 p > 0.15 0.030 (CC = 0; CT = 0.304; TT = 0.119)
14984_99 AKR1C4 p > 0.154 p > 0.15 0.058 (TT = 0; GT = 0.284; GG = 0.180)
36969_772 AKR1C4 p > 0.15 p > 0.15 0.106 (CC = 0; CT = 0.263; TT = 0.199)
49431_198 AKR1C4 0.093 (CC = 0; CT = 6.53; TT = -

2.17)
p > 0.15 p > 0.15

1The analysis for age at puberty contained 191 observations, mean = 195 ± 27 days (mean ± std dev), range = 135 – 266.
2233 observations for ovulation rate, mean = 13.7 ± 2.4 corpora lutea, range = 9 – 21.
31144 observations for nipple number, mean = 14.6 ± 1.06 nipples, range = 11 – 19. Genotype probabilities were calculated for all F8 and F10 
animals in the population using GenoProb [50].
4Values indicate p-value and estimated genotype effects in parentheses. The allele frequencies for F8 and F10 animals are given in Table 2.
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60 sec, followed by a final extension at 72°C for 5 min.
One half of the reaction was loaded on 2% agarose gels
and manually genotyped. Data were analyzed for two-
point and multipoint linkage with the IMpRH mapping
tool [44] and submitted to the IMpRH database [45].
Carthagene [46,47] was used to estimate multipoint
marker distance and order using all public markers on
chromosome 10 in the IMpRH database [45] for the
IMpRH7000rad panel and those developed in this study for
the IMNpRH212000rad panel to approximate position of
mapped markers. Markers run on the IMpRH7000rad panel
have been submitted to the IMpRH public database.

Linkage analyses were performed as described [48] where
TWOPOINT analyses were used to indicate the chromo-
some linkage group and the ALL, FLIPS and FIXED
options were used to determine the multipoint position
of the marker (CRIMAP v2.4). Multipoint locations for all
mapped markers are based on the latest published swine
genetic map [49].

Animals and resource population
Genomic DNA from parents of the MARC reference family
(a White composite boar and seven crossbred sows) was
used to identify SNPs. Phenotypes and genotypes were
collected from animals of generations 8 and 10 (F8 and
F10) produced from the original resource population [4]
used to identify QTL. The original animals were from
reciprocal backcrosses of 10 purebred Meishan and 10
White composite (composed of Chester White, Landrace,
Large White and Yorkshire). The half-Meishan F4 animals
were crossed with a Landrace-Large White composite
reducing the Meishan influence to one quarter. This pop-
ulation has been inter se mated since the F5 generation
and maintained at 30 litters/year. Procedures for the han-
dling of animals complied with those specified in the
Guide for the Care and Use of Agricultural Animals in Agricul-
tural Research and Teaching (1999) [1st rev. ed. Savoy, IL:
Federation of Animal Science Societies; 1999].

Phenotypic data and statistical methods
The F8 gilts were observed for first estrus beginning when
the oldest gilts reached 120 days of age as described by
Rohrer et al. [4], and ovulation rates were determined by
counting corpora lutea on the ovaries at slaughter after the
third estrus in gilts from the F8 and F10 generations. Gen-
otype probabilities were calculated for all animals using
an extended version of GenoProb [50]. Association analy-
ses between phenotypes and genotypes were conducted
using MTDFREML [51]. The model fitted included fixed
effects for contemporary group and regressions on SNP
marker genotype probabilities (i.e., probability of an ani-
mal being aa, aA, or AA). Random effects included the ani-
mal's polygenic breeding value and residual error. Each
marker was analyzed separately. No adjustments to

reported p-values were made for multiple comparisons.
Twelve SNP markers were analyzed for three traits; age of
puberty (191 observations), ovulation rate (233 observa-
tions) and nipple number (1144 observations).

Phylogenetic analysis
AKR1C peptide sequences were aligned with ClustalX, the
distance matrix constructed with the program PRODIST
using a Dayhoff PAM matrix model, and a neighbor-join-
ing tree constructed in PHYLIP (v 3.65). The tree was con-
structed with the program NEIGHBOR and rooted at a
mid-point with the program RETREE. Bootstrap values
were derived from 1000 pseudo-datasets generated in
SEQBOOT. The tree was viewed in TREEVIEW (v 1.6.6).
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