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Abstract: Inflammation involves a complex biological response of the body tissues to damaging
stimuli. When dysregulated, inflammation led by biomolecular mediators such as caspase-1 and
tumor necrosis factor-alpha (TNF-alpha) can play a detrimental role in the progression of different
medical conditions such as cancer, neurological disorders, autoimmune diseases, and cytokine storms
caused by viral infections such as COVID-19. Computational approaches can accelerate the search for
dual-target drugs able to simultaneously inhibit the aforementioned proteins, enabling the discovery
of wide-spectrum anti-inflammatory agents. This work reports the first multicondition model based
on quantitative structure–activity relationships and a multilayer perceptron neural network (mtc-
QSAR-MLP) for the virtual screening of agency-regulated chemicals as versatile anti-inflammatory
therapeutics. The mtc-QSAR-MLP model displayed accuracy higher than 88%, and was interpreted
from a physicochemical and structural point of view. When using the mtc-QSAR-MLP model as
a virtual screening tool, we could identify several agency-regulated chemicals as dual inhibitors
of caspase-1 and TNF-alpha, and the experimental information later retrieved from the scientific
literature converged with our computational results. This study supports the capabilities of our
mtc-QSAR-MLP model in anti-inflammatory therapy with direct applications to current health issues
such as the COVID-19 pandemic.

Keywords: anti-inflammatory; caspase-1; COVID-19; cytokine storm; drug repurposing; MLP; QSAR;
TNF-alpha; virtual screening

1. Introduction

Inflammation is a complex biological process in which the immune system responds to
noxious stimuli caused by pathogens, damaged cells, toxic compounds, or irradiation [1,2].
The purpose of inflammation as a defense mechanism vital for health is to act by removing
such harmful stimuli and initiating the healing process [3]. However, with the accelerated
advancements of science and technology in the context of epidemiological, diagnostic,
and clinical studies, it has become more evident that dysregulated inflammation leads to
chronic medical conditions [4,5], which include (but are not limited to) cancer, autoimmune
diseases (e.g., rheumatoid arthritis, diabetes mellitus type 1, psoriasis, rheumatoid arthritis,
and systemic lupus erythematosus), arteriosclerosis, neurodegenerative disorders, illnesses
of the liver and the kidneys, and hybrid complex diseases such as multiple sclerosis.

At the biomolecular level, caspase-1 and tumor necrosis factor-alpha (TNF-alpha)
are two key proteins involved in the development and progression of dysregulated in-
flammation. From one side, caspase-1 acts as an inflammatory response initiator, in-
ducing a proinflammatory response by cleaving (and thus activating) two inflammatory
cytokines [6–8] known as interleukin 1β (IL-1β) and interleukin 18 (IL-18) while inducing
pyroptosis (a programmed lytic cell-death pathway) [9,10] through the cleavage of the
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protein gasdermin D. On the other hand, TNF-alpha is a cytokine that has been identified
as a central player in the pathogenesis of inflammation and autoimmune diseases [11]
and can trigger several inflammation-related proteins such as caspase-1 [12], as well as
other cytokines and chemokines [13]. An important aspect to highlight here is that both
caspase-1 and TNF-alpha are essential in the development of the hyperinflammatory phys-
iological reaction known as cytokine storm, which is present in viral infections caused
by coronaviruses [14,15], including the causal agent of the current COVID-19 pandemic
(SARS-CoV-2) [14–16]. All this suggests that anti-inflammatory therapies based on dual
inhibition of caspase-1 and TNF-alpha could be an efficient option to treat a wide spectrum
of inflammation-based diseases.

The drug repurposing paradigm, which relies on finding new applications for “old”
drugs [17], can guide the discovery of versatile anti-inflammatory agents where in silico
methods could be essential to accelerate this process. However, despite the great potential
of in silico methods such as molecular docking, quantitative structure–activity relationships
(QSAR), tridimensional QSAR (3D-QSAR), pharmacophore modeling, molecular dynamics,
and network pharmacology, they have only been applied to the search for inhibitors of
either caspase-1 [18–22] or TNF-alpha [18,23–27], never both proteins. This demonstrates
the limitations of these in silico methods, which are a reflection of the current’ single-target
therapies to treat inflammation-based diseases. In addition, most of these computational
methods have focused on a series of structurally related molecules while relying on only
one assay protocol, and some of them have not provided enough information regarding
the physicochemical properties and structural requirements that are necessary for the
inhibition of caspase-1 and/or TNF-alpha.

In recent years, the methodology known as perturbation theory combined with ma-
chine learning (PTML) has been reported, overcoming the aforementioned drawbacks of
the current in silico methods. This comes from the fact that the PTML models can integrate
different kinds of chemical and biological data, and in doing so, they can simultaneously
predict multiple biological endpoints (activity, toxicity, and/or pharmacokinetic proper-
ties) against many different targets (e.g., proteins, microorganisms, cell lines, laboratory
animals, and/or humans), and by considering diverse assay protocols. As a result, PTML
models have had great success in therapeutic areas such as infectious diseases [28–35],
cancer [36–39], and neurological disorders [40–43].

Considering all the previous ideas, in this work, we have applied the PTML modeling
methodology by building a multicondition QSAR model based on a multilayer percep-
tron network (mtc-QSAR-MLP) to search for anti-inflammatory drugs able to act as dual
inhibitors of caspase-1 and TNF-alpha. In doing so, we interpreted the mtc-QSAR-MLP
model at the physicochemical and structural levels. Then, we performed in silico drug
repurposing (virtual screening) of agency-regulated chemicals, i.e., molecules with known
in vivo safety data and for which a controlled use exists according to the guidelines es-
tablished by regulatory bodies (government authorities). Examples of agency-regulated
chemicals predicted by our mtc-QSAR-MLP model included (but were not limited to) inves-
tigational and FDA-approved drugs, food components, and hazardous compounds. Some
of those chemicals were identified as versatile anti-inflammatory agents via simultaneous
inhibition of caspase-1 and TNF-alpha.

2. Materials and Methods
2.1. Characteristics of the Dataset and Calculation of the Molecular Descriptors

We retrieved all the chemical and inhibition data on caspase-1 and TNF-alpha from
the public database known as ChEMBL [44]. The activity data were expressed as the
half-maximal inhibitory concentration in nanomolar [IC50 (nM)]. During the curation of
our dataset, we eliminated row entries for which SMILES (Simplified Molecular Input
Line Entry System) codes, activity values, and/or measurement units were missing. When
different IC50 values for the same chemical tested more than one time under the same
experimental condition were found, we kept only the row entry corresponding to the lowest
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IC50 value. The dataset contained 1444 molecules, but because most of them were tested
only against at least one of the two aforementioned target proteins (tg) and by considering
at least one out of five types of experimental information (ei) related to different assay
protocols, the dataset ended up having 1476 cases. Each combination of the elements tg
and ei represents a unique experimental condition cj, which can be expressed as cj(tg, ei).
In this context, each case/molecule in the dataset was labeled as active [ACTi(cj) = 1] or
inactive [ACTi(cj) = −1], ACTi(cj) being a categorical variable that designated the inhibitory
activity of the ith case/molecule under the experimental condition cj. Such an annotation
was carried out according to the IC50 cutoff values that are depicted in Table 1 together
with the eight different experimental conditions cj reported in our dataset.

Table 1. Experimental conditions under which the molecules were assayed against caspase-1 and
TNF-alpha.

Cutoff a tg b ei c

IC50 ≤ 1100 nM Caspase-1
B (assay format)

B (single-protein format)
B (cell-based format)

IC50 ≤ 1635 nM TNF-alpha

B (single-protein format)
F (assay format)
B (assay format)

B (cell-based format)
F (cell-based format)

a Value from which a molecule was considered and annotated as active [ACTi(cj) = 1] regardless of the experi-
mental conditions under which the molecules were assayed against caspase-1 and TNF-alpha. b Protein target.
c Experimental information associated with different assay protocols. Annotations combine the columns “assay
type” (first letter) and “BioAssay Ontology” (phrase between parentheses). The aforementioned columns appear
in any ChEMBL file containing activity data.

We would like to highlight that the selected cutoff values reported in Table 1 prevent
the excessive imbalance between the number of molecules labeled as active and the number
of molecules annotated as inactive. Such cutoffs are in the very low micromolar range,
while inhibition cutoff values to search for hits by using powerful experimental techniques
such as high-throughput screening (HTS) start at around 10 µM [45]. Consequently, such a
selection of the IC50 cutoff values should make our mtc-QSAR-MLP model more rigorous
when searching for inhibitors of caspase-1 and TNF-alpha.

The SMILES codes belonging to the 1476 cases/molecules were stored in a txt file,
which was then used as the input for the software MODESLAB v1.5 [46,47] to calculate
four sets of molecular descriptors called topological indices. The first set was based on the
vertex (atom) connectivity indices [X(t)m] [48,49]:

X(t)m =
Ns

∑
q=1

m+1

∏
a=1

(δa)
−0.5
q (1)

In Equation (1), t is the type of subgraph/fragment, for instance, path (P), cluster (C),
path–cluster (PC), and chains/rings (Ch). Additionally, m is the order of the subgraph
(number of bonds) while Ns is the number of subgraphs of type t and order m. Here, δa is
the vertex (atom) degree expressed as the number of nonhydrogen atoms attached to ath
atom.

The second set of topological indices was focused on the vertex (atom)-based valence
connectivity indices [Xv(t)m] [49,50]:

Xv(t)m =
Ns

∑
q=1

m+1

∏
a=1

(δv
a )

−0.5
q (2)
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where δv
a refers to the vertex (atom) valence degree and is calculated as:

δv
a =

(Zv
a − ha)

(Za − Zv
a − 1)

(3)

Notice that in Equation (2), the symbols a, m, q, t, and Ns, have the same meanings as
in Equation (1). Additionally, in Equation (3), Zv

a is the number of valence electrons of any
vertex/atom a, ha is the number of hydrogen atoms bonded to the vertex/atom a, and Za is
the atomic number of that same atom. The same mathematical operation is used for all the
atoms in a molecule.

We calculated the third group of topological indices, named edge (bond) connectivity
indices e(t)m [51]:

e(t)m =
Ns

∑
q=1

m

∏
p=1

[
δ(e)p

]−0.5

q
(4)

where edge (bond) degree δ(e)p of the pth edge/bond is calculated as:

δ(e)p = δa + δb (5)

In Equation (4), the terms m, q, t, and Ns have been previously defined, while in
Equation (5), δa and δb are the vertex (atom) degrees of the atoms a and b, respectively (see
Equation (1)).

The last set of topological indices was based on the spectral moments of the edge
(bond) adjacency matrix SM(wa,b)k [52–54]:

SM(wa,b)k = Tr
(

Ek
)
= ∑ k[e(wa,b)] (6)

where wa,b represent the bond weight (physicochemical property) of a covalent bond
between atoms a and b:

wa,b =
PPa

δa
+

PPb
δb

(7)

In Equation (6), Tr is the trace of the edge (bond) adjacency matrix E and k[e(wa,b)]
are the diagonal entries of the kth power of E. On the other hand, in Equation (7), PPa
and PPb are the respective atomic physicochemical properties of any two atoms a and
b. The atomic physicochemical properties used in this work were hydrophobicity (Hyd),
polar surface area (Psa), refractivity (Mol), atomic weight (Ato), and the capacity to act as
a hydrogen bond donor (Ab-sumB2H). The terms δa and δb are the vertex (atom) degrees
of the aforementioned atoms; the definition of vertex (atom) degree has been given with
Equation (1).

We also calculated size-independent topological indices:

NTI =
TI
nB

(8)

In Equation (8), NTI represents a normalized topological index and TI refers to any of
the topological indices mentioned in Equations (1)–(6) while nB is the number of bonds
(without counting bond multiplicity) of a molecule.

Notice that neither TI nor NTI can discriminate the effect of the chemical structure of
a molecule if the experimental condition cj changes (e.g., different targets (tg) or assay pro-
tocols (ei)). Therefore, we calculated a series of topological indices that fused chemical and
biological information. To do so, we employed an adaptation of the Box-Jenkins approach,
which is the key of the PTML modeling philosophy and for which great successful applica-
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tions in different research areas have been reported in the scientific literature [28–43,55–57].
In the first step of this approach, we used the following mathematical formula:

avg[GTI]cj =
1

n(cj)
×

n(cj)

∑
i=1

GTIi (9)

In Equation (9), GTI is a general symbol to represent either TI or NTI. Additionally,
n(cj) is the number of cases/molecules annotated as active in the training set which were
experimentally tested by considering a defined element of the experimental condition cj.
For instance, if n(cj) = n(tg), then we are considering the number of cases/molecules labeled
as active which were tested against the same target protein (tg). The same equation was
applied to the element ei, meaning that n(ei) was the number of cases/molecules annotated
as active which were tested by considering the same experimental information regarding
the assay protocol. Consequently, avg[GTI]cj is an average of the GTI values. In the second
step of the Box–Jenkins approach:

D[GTI]cj =
(

GTI − avg[GTI]cj
SDev(GTI)

)
·
√

p(cj) (10)

In Equation (10), the terms GTI and avg[GTI]cj have already been defined (see Equa-
tion (9)). The term p(cj) is the a priori probability of finding a case/molecule tested by
considering a defined element of the experimental condition cj. Here, p(cj) is calculated
as the ratio of n(cj) to Nt (number of cases/molecules present in the training set) and,
as in the case of n(cj), its definition was applied separately to each of the elements of
the experimental condition cj (tg and ei). On the other hand, SDev(GTI) is the standard
deviation calculated from the GTI values (considering only the training set), and D[GTI]cj is
a descriptor that considers both the chemical structure of a molecule and the element of the
experimental condition cj (tg or ei) under which a molecule was assayed. We would like to
emphasize that the joint interpretation of Equations (9) and (10) indicates that by using the
D[GTI]cj descriptors as inputs, one can create a PTML model able to predict the inhibitory
activity of any molecule as many times as experimental conditions cj (combinations of
the elements tg and ei). Particularly, as depicted in Table 1, the purpose here was to build
an mtc-QSAR-MLP model to predict the inhibitory activity of a molecule under eight
different experimental conditions. As mentioned in the previous section, such a capability
of simultaneously predicting complex biological endpoints under dissimilar experimental
conditions is an intrinsic characteristic of any PTML model [28–43,55–57].

2.2. Development of the Mtc-QSAR-MLP Model

To generate the mtc-QSAR-MLP model, we followed a series of guidelines that are
depicted in Figure 1.

The 1476 cases/molecules present in our dataset appear ordered according to their
increasing IC50 values. We randomly split them into training and test series [28–43,55–57] in
such a way that the first three out of four cases/molecules were annotated to belong to the
training set while the fourth was considered to belong to the test set. This procedure was
repeated for the entire dataset. Therefore, the training set was used to search for the best
mtc-QSAR-MLP model and contained 1111 molecule/cases (75.27% of our dataset), 464
active and 647 inactive. The test set, which was employed to confirm the predictive power
of the mtc-QSAR-MLP model, comprised 365 molecules/cases (24.73% of the dataset), 153
active and 212 inactive.

In our dataset, before using the D[GTI]cj descriptors as inputs to build the mtc-QSAR-
MLP model, we computed the metric known as the information gain ratio (IGR) [58] to
rank the D[GTI]cj descriptors in terms of their potential influence/discriminatory power.
To accomplish this task, the software IMMAN v1.0 [59] was employed. While selecting the
most significant D[GTI]cj descriptors (highest IGR values), we examined the correlations
among them through the pairwise Pearson correlation coefficient (PCC) [60]; we selected
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those D[GTI]cj descriptors with −0.6 < PCC < 0.6 to avoid information redundancy as
much as possible. Notice that the present cutoff interval chosen for PCC was derived not
only from already established statistical criteria [61–63] but also from our experience in
working with topological indices.
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Our mtc-QSAR-MLP model was based on an artificial neural network with a multilayer
perceptron (MLP) architecture. The reason to directly use the MLP networks was based
on the fact that, in addition to their versatility to solve complex tasks, MLP networks have
been widely used in QSAR modeling [64–66]. On the other hand, MLP networks have
proven to be very effective in modeling extremely complex problems in the context of the
PTML philosophy [29,36,67–70]. In the process of choosing the best MLP networks (mtc-
QSAR-MLP model), we considered different global statistical indices such as sensitivity
(Sn(%)—the percentage of cases/molecules correctly classified as active), specificity (Sp(%)—
the percentage of cases/molecules correctly classified as inactive), accuracy (Acc(%)—the
percentage of correctly classified cases/molecules considering both active and inactive), and
the Matthews’ correlation coefficient (MCC) [71]. In any case, the selection of the best mtc-
QSAR-MLP model was based on the analysis of the values of the local sensitivities (Sn(%))tg
and (Sn(%))ei as well as the local specificities (Sp(%))tg and (Sp(%))ei. The values of these
local metrics were expected to be as high as possible. The computer program STATISTICA
v13.5.0.17 (Palo Alto, CA, USA) [72] was used to analyze different MLP networks in terms
of the aforementioned metrics, which led to the finding of the mtc-QSAR-MLP model.
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2.3. Assessing the Applicability Domain

We determined the applicability domain (AD) of the mtc-QSAR-MLP model according
to the bounding box (descriptors’ space) approach by using a modification reported by
Speck-Planche [73]. In this sense, local scores of applicability domain for each D[GTI]cj
descriptor were calculated (LSAD_D[GTI]cj). If for defined case/molecule, its value of a
given D[GTI]cj descriptor was between the maximum and minimum D[GTI]cj values, then,
the corresponding LSAD_D[GTI]cj was equal to one; otherwise, the LSAD_ D[GTI]cj was
zero. This analysis was carried out for each D[GTI]cj descriptor present in the mtc-QSAR-
MLP model. Then, the total score of applicability domain (TSAD) for that case/molecule
was calculated as the sum of all the LSAD_ D[GTI]cj values. When the TSAD value for the
aforementioned query molecule was equal to the number of D[GTI]cj descriptors present
in the mtc-QSAR-MLP model, the query molecule was set to belong to the AD of the
mtc-QSAR-MLP model; otherwise, the query molecule was outside the AD.

2.4. Molecular Descriptors and their Physicochemical and Structural Meanings

When interpreting the D[GTI]cj descriptors, we considered their relative significances
in the model measured by the sensitivity values (SV), which have been used to rank
molecular descriptors before [74]. In doing so, we qualitatively estimated the tendency
of variation of each in the mtc-QSAR-MLP model. This means that we could describe
how the distribution of the different atoms through their physicochemical property varied
(decreased or increased) the probability of a molecule to be active against the desired
targets [73,75], in this particular case, caspase-1 and TNF-alpha. In addition, we mentioned
a series of key molecular fragments whose presence could confer dual activity to a molecule
against caspase-1 and TNF-alpha.

2.5. Virtual Predictions of Single- and Dual-Target Inhibitors

For the case of the single-target inhibitors, to demonstrate the efficiency of our mtc-
QSAR-MLP model, we discussed different molecules in both our dataset (training and
test sets) and a virtual screening database containing 8922 chemicals reported by different
regulatory agencies (e.g., FDA). Such molecules were experimentally reported in ChEMBL
and we examined whether our mtc-QSAR-MLP model converged with the experimental
results. When searching for dual-target inhibitors which is the main purpose of this
work, we used a series of metrics recently reported by Speck-Planche and coworkers.
Such metrics were FA(%) and S(TSAD) [76]. For a query molecule, FA(%) measured the
frequency (percentage of times) in which a molecule was predicted as active by considering
the eight experimental conditions cj reported in this work (see Table 1). On the other
hand, for the same query molecule, S(TSAD) was obtained as the sum of all the TSAD
values reported for that molecule by considering the eight experimental conditions cj.
Consequently, S(TSAD) was a general score given to a query molecule which permitted
us to know whether the molecule was within the AD of the mtc-QSAR-MLP model by
considering the predictions performed under the eight experimental conditions cj.

3. Results and Discussion
3.1. The Mtc-QSAR-MLP Model: Performance and Applicability Domain

By considering all the statistical metrics mentioned above, the most appropriate mtc-
QSAR-MLP model found by us has the profile MLP 11-38-2, which means that 11 D[GTI]cj
descriptors (Table 2) were used as input nodes (input layer), 38 neurons were present in the
hidden layer, and two possible values of the categorical variable ACTi(cj) were predicted in
the output layer: active [ACTi(cj) = 1] and inactive [ACTi(cj) = −1].
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Table 2. Symbols and definitions of the D[GTI]cj descriptors used to build the mtc-QSAR-MLP
model.

Symbol Definition

D[Xv(PC)6]tg
Deviation of the Kier–Hall valence connectivity index of order six based
on path–cluster subgraphs, depending on the chemical structure and

the protein target against which each molecule was tested

D[Xv(Ch)6]tg
Deviation of the Kier–Hall valence connectivity index of order six based
on chain (ring) subgraphs, depending on the chemical structure and the

protein target against which each molecule was tested

D[e(Ch)5]tg
Deviation of the edge (bond) connectivity index of order five based on
chain (ring) subgraphs, depending on the chemical structure and the

protein target against which each molecule was tested

D[NSM(Hyd)3]tg
Deviation of the normalized edge (bond) spectral moment of order
three weighted by the hydrophobicity, depending on the chemical

structure and the protein target against which each molecule was tested

D[NX(P)6]tg
Deviation of the normalized Kier–Hall connectivity index of order six

based on path subgraphs, depending on the chemical structure and the
protein target against which each molecule was tested

D[Ne(P)2]tg
Deviation of the normalized edge (bond) connectivity index of order

two based on path subgraphs, depending on the chemical structure and
the protein target against which each molecule was tested

D[SM(Psa)7]ei
Deviation of the edge (bond) spectral moment of order seven weighted
by the polar surface area, depending on the chemical structure and the

information regarding each experimental assay

D[e(C)4]ei
Deviation of the edge (bond) connectivity index of order four based on

cluster subgraphs, depending on the chemical structure and the
information regarding each experimental assay

D[NSM(Mol)1]ei
Deviation of the normalized edge (bond) spectral moment of order one
weighted by the molar refractivity, depending on the chemical structure

and the information regarding each experimental assay

D[NSM(Ato)1]ei
Deviation of the normalized edge (bond) spectral moment of order one
weighted by the atomic weight, depending on the chemical structure

and the information regarding each experimental assay

D[NSM(Ato)5]ei
Deviation of the normalized edge (bond) spectral moment of order five
weighted by the atomic weight, depending on the chemical structure

and the information regarding each experimental assay

In terms of performance, in the training set, the mtc-QSAR-MLP model could correctly
classify 417 out of 464 active and 610 out of 647 inactive cases/molecules, which was
equivalent to Sn(%) = 89.87% and Sp(%) = 94.28%. The metric Acc(%) achieved a value of
92.44%. In the case of the test set, the mtc-QSAR-MLP model rightly classified 133 out of
153 active [Sn(%) = 86.93%] and 190 out of 212 inactive [Sp(%) = 89.62%] cases/molecules,
which translated into Acc(%) = 88.49%. In addition, the metric MCC exhibited values of
0.844 and 0.764 for training and test sets, respectively. The closeness of these MCC values
to one indicates the strong correlation/convergence between the observed (ACTi(cj)) and
the predicted (Pred[ACTi(cj)]) categorical values of inhibitory activity. All the chemical and
inhibition data are present in Supplementary Material S1 while the classification/prediction
results for each case/molecule in our dataset can be found in Supplementary Material S2.

If now we consider the values of the local sensitivities and specificities (also reported
in Supplementary Material S2), we will see that for the case of target proteins (tg), in the
training set, [Sn(%)]tg > 87% and [Sp(%)]tg > 92%. This means that in the training set,
for both caspase-1 and TNF-alpha, the mtc-QSAR-MLP model could correctly classify
at least 87% and 92% of active and inactive cases/molecules. In the test set, [Sn(%)]tg >
83% and [Sp(%)]tg > 87% were achieved. The same deductions made for the training set



Biomolecules 2021, 11, 1832 9 of 19

regarding the percentages of correctly classified active and inactive cases/molecules can
also be applied to the test set. Regarding the experimental information associated with the
different assay protocols (ei), in the training set, [Sn(%)]ei was in the interval 75–91.74%
and [Sp(%)]ei exhibited the range 88.36–100%, clearly demonstrating that, by considering
the different assay protocols, at least 75% of active and 88.36% of inactive were rightly
classified by the mtc-QSAR-MLP model. In the test set, a similar behavior was observed
since [Sn(%)]ei and [Sp(%)]ei spanned 76.92–89.74% and 80.00–100%, respectively. The
only exception was the value of [Sn(%)]ei = 0 reported for the assay protocol labeled as
“F (cell-based format)” for which only one active compound was experimentally tested,
and therefore is not enough to estimate the performance of our mtc-QSAR-MLP model
in that particular assay protocol. The joint analysis of the global and the local statistical
indices mentioned above confirms the quality and predictive power of the mtc-QSAR-MLP
model to classify/predict chemicals against caspase-1 and TNF-alpha under dissimilar
experimental conditions.

Regarding the estimation of the AD (Supplementary Material S3), we should recall
that there are 11 D[GTI]cj descriptors present in the mtc-QSAR-MLP model, which means
that only the cases/molecules for which the metric TSAD (see Section 2.3) is equal to 11 will
be within the AD of the mtc-QSAR-MLP model. In our dataset, only seven cases/molecules
were outside the AD, five of them with TSAD = 10 and the other two with TSAD = 9. In
any case, we kept these seven cases/molecules because their removal did not improve
the mtc-QSAR-MLP model. In addition, all these seven cases/molecules were correctly
classified by the mtc-QSAR-MLP model.

3.2. Physicochemical and Structural Interpretation of the Molecular Descriptors

As mentioned in Section 2.4, when interpreting the D[GTI]cj descriptors in the mtc-
QSAR-MLP model, the SVs (Figure 2) allowed us to identify the most influential.
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Figure 2. Relative importance of the D[GTI]cj descriptors in the mtc-QSAR-MLP model. The following abbreviations are
used: DD1 = D[Xv(PC)6]tg, DD2 = D[Xv(Ch)6]tg, DD3 = D[e(Ch)5]tg, DD4 = D[NSM(Hyd)3]tg, DD5 = D[NX(P)6]tg, DD6
= D[Ne(P)2]tg, DD7 = D[SM(Psa)7]ei, DD8 = D[e(C)4]ei, DD9 = D[NSM(Mol)1]ei, DD10 = D[NSM(Ato)1]ei, and DD11 =
D[NSM(Ato)5]ei.

Additionally, Table 3 contains two means calculated (using only the training set) for
each of the D[GTI]cj descriptors: one considering only active cases/molecules and the
other based on the inactive ones [73,75,76]. The tendency of variation reported in Table 3
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gives a fast insight regarding how the increase or decrease of the value of each D[GTI]cj
descriptor can improve the probability of a molecule to be active against both caspase-1
and TNF-alpha.

Table 3. The D[GTI]cj descriptors and their tendencies of variation.

Descriptors Active Molecules Inactive Molecules Tendency of
Variation a

D[Xv(PC)6]tg 9.8432 × 10−3 5.7266 × 10−2 Decrease
D[Xv(Ch)6]tg 8.8163 × 10−3 −5.2871 × 10−2 Increase
D[e(Ch)5]tg 5.2372 × 10−2 −4.5470 × 10−1 Increase

D[NSM(Hyd)3]tg −2.5230 × 10−2 3.5521 × 10−1 Decrease
D[NX(P)6]tg 2.1837 × 10−2 −1.7328 × 10−1 Increase
D[Ne(P)2]tg 3.2609 × 10−3 1.1692 × 10−1 Decrease

D[SM(Psa)7]ei 4.0458 × 10−3 −6.3587 × 10−2 Increase
D[e(C)4]ei 7.5688 × 10−3 1.0868 × 10−1 Decrease

D[NSM(Mol)1]ei −1.1431 × 10−2 3.6017 × 10−1 Decrease
D[NSM(Ato)1]ei −3.8603 × 10−2 5.0826 × 10−1 Decrease
D[NSM(Ato)5]ei −3.0209 × 10−3 9.5968 × 10−2 Decrease

a Increase (or decrease) of the value of a D[GTI]cj descriptor leading to the increase in the dual inhibitory activity
against caspase-1 and TNF-alpha.

We would like to emphasize that the D[GTI]cj descriptors are directly derived from
their corresponding counterparts calculated by using Equations (1)–(8), and therefore, from
a physicochemical and structural point of view, the D[GTI]cj descriptors contain the same in-
formation. That being said, we can see that one of the most important properties described
by our mtc-QSAR-MLP model is the molecular accessibility since this is accounted for by 3
of the 11 D[GTI]cj descriptors (see Figure 2 and Table 3): D[Xv(PC)6]tg, D[Xv(Ch)6]tg, and
D[NX(P)6]tg. These are derived from the atom-based connectivity indices, which have been
mathematically proven as measures of the molecular accessibility [77,78]. Notice that the
molecular accessibility can either measure the propensity of different regions of a molecule
to interact with the surrounding medium [77,78] (e.g., in our case, water molecules or
amino acids within the pocket of a protein) or the ability of other regions to positively (or
negatively) contribute to steric factors (e.g., fitting in the pocket of a protein).

The descriptor D[Xv(PC)6]tg involves information regarding the decrease of the molec-
ular accessibility (steric hindrance) of fragments, where functional groups such as −CX3
(X = halogen), −SO2NHR (R = any atom), or −PZ4 (Z = any atom, with the four Z atoms
being either equal or different) are attached to any ring (or an atom already bonded to
two other atoms). Therefore, the aforementioned fragments should be avoided. In the
mtc-QSAR-MLP model, D[Xv(PC)6]tg is the seventh most important. Another descrip-
tor is D[Xv(Ch)6]tg (the ninth most significant), which characterizes the increase in the
molecular accessibility in six-membered rings. Here, the number of such rings should be
increased; aromatic rings are preferred over their aliphatic counterparts while heterocycles
are preferred over cycles lacking heteroatoms. Additionally, the lower the substitution of
a six-membered ring, the higher will be its positive influence of that ring on the dual in-
hibitory activity against caspase-1 and TNF-alpha. The D[GTI]cj descriptor with the highest
significance is D[NX(P)6]tg, and it considers the increment of the molecular accessibility by
increasing the number of large fragments containing at least six bonds (without counting
bond multiplicity). This D[GTI]cj descriptor demonstrates that the binding pockets of
caspase-1 and TNF-alpha are relatively large, and therefore, a molecule should be large
enough to fit in the pocket of the proteins, with the subsequent occurrence of stronger
ligand–protein interactions.

Another important property is the volume, which is characterized by three other
D[GTI]cj descriptors: D[e(Ch)5]tg, D[Ne(P)2]tg, and D[e(C)4]ei. These D[GTI]cj descriptors
conserve the same information as their counterparts, the edge (bond)-based connectivity
indices, and therefore, they are measures of contribution to the molecular/molar volume
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of a molecule [51,79,80]. Thus, D[e(Ch)5]tg, indicates the increment of the number of five-
membered rings as a way to increase the molecular volume in the sense of fitting better in
the pocket of the proteins. Again, five-membered rings with low substitutions are preferred.
We would like to highlight that D[e(Ch)5]tg is the second most important descriptor in the
mtc-QSAR-MLP model. On the other hand, the diminution of the value of D[Ne(P)2]tg (the
eighth most influential) involves the increment of fused rings in the periphery of a molecule
as well as ramifications (involving fragments formed by two bonds) in the central part of
that molecule, making it more spheric, and therefore, more capable of effectively interacting
with the protein residues. Then, we have D[e(C)4]ei, whose decrease in value means that
the presence of moieties where an atom is bonded to more than three (e.g., quaternary
carbon, sulfur in sulfonic acids and derivatives, and most of the phosphorus-containing
functional groups) must be avoided. This happens because such moieties considerably
increase the steric hindrance and decrease the planarity of a molecule. The descriptor
D[e(C)4]ei is the sixth most significant descriptor.

In the mtc-QSAR-MLP model, there are five D[GTI]cj descriptors derived from the so-
called spectral moments of the bond adjacency matrix (see Equation (6)), which characterize
the concentration of different physicochemical properties in regions of different sizes
in a molecule [52–54,81]. Thus, D[NSM(Hyd)3]tg indicates (regardless of the size of a
molecule) the diminution of the hydrophobicity in molecular fragments such as three-
membered rings and functional groups where an atom is bonded to other two atoms.
For this reason, the presence of functional groups such as carbonyl, carboxyl and its
derivatives, moieties containing secondary alcohols, ureas, and carbamates, as well as the
three-membered heterocycles (heteroatom = N or O) is favorable for the diminution of
the value of D[NSM(Hyd)3]tg (having the fifth-highest significance) and the subsequent
increment of the probability of a molecule to exhibit dual inhibitory activity against caspase-
1 and TNF-alpha. This is because the presence of those fragments increases the propensity
for the formation of hydrogen bond interactions. The presence of polar functional groups
and three-membered heterocycles is further supported by D[SM(Psa)7]ei (the tenth most
important descriptor), which characterizes the augmentation of the polar surface area in
these molecular fragments as well as others formed by seven bonds or less, for instance,
four- and five-membered heterocycles (heteroatom = N or O). Other molecular fragments
such as pyrimidine-2-carboxylic acid (or the amide) will considerably increase the value of
D[SM(Psa)7]ei.

On the other hand, we also have D[NSM(Mol)1]ei as an indicator of the diminution
of the polarizability of a molecule, which means that nitrogen, oxygen, fluorine atoms are
preferred over the others. In our mtc-QSAR-MLP model, D[NSM(Mol)1]ei is the third most
important descriptor. Similarly, D[NSM(Ato)1]ei (the fourth most influential descriptor)
favors the aforementioned atoms since it considers the diminution of the molecular weight,
but the big difference with D[NSM(Mol)1]ei is that D[NSM(Ato)1]ei prioritizes the presence
of carbon atoms over any other atom type. Lastly, D[NSM(Ato)5]ei is the least significant
descriptor in the mtc-QSAR-MLP model, accounting for the diminution of the atomic
weight in regions formed by five bonds or less, thus favoring the presence of linear aliphatic
chains while avoiding the presence of three- and five-membered rings; if such rings are
present, then they should lack heteroatoms.

3.3. The Mtc-QSAR-MLP Model: Virtual Analysis of Single- and Dual-Target Inhibitors

As confirmed in Section 3.1, our mtc-QSAR-MLP model exhibits very good perfor-
mance in terms of correctly classifying/predicting active and inactive cases/molecules
against both caspase-1 and TNF-alpha. Here, we will show that the mtc-QSAR-MLP
model was able to correctly identify the privileged chemical structures belonging to
drugs/chemicals that are reported as inhibitors of caspase-1 and/or TNF-alpha.

In the sense of correctly predicting selective caspase-1 inhibitors (Figure 3), our mtc-
QSAR-MLP could identify drugs such as VRT-18858, VRT-043198, and sulfasalazine, in
addition to the chemical Ac-DEVD-CHO.
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In the case of the TNF-alpha inhibitors (Figure 4), the mtc-QSAR-MLP model correctly
classified/predicted the chemicals Thioflavin T and pentoxifylline.
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Figure 4. Chemicals correctly classified by the mtc-QSAR-MLP model as TNF-alpha inhibitors.

The predictions performed by the mtc-QSAR-MLP model for all the aforementioned
inhibitors can be found in Table 4.

The results of the predictions from Table 4 demonstrate several important aspects
regarding the mtc-QSAR-MLP model. From one side, by inspecting the chemical structures
of the different molecules in Figures 3 and 4, it is clear that the mtc-QSAR-MLP model
can predict chemicals belonging to a great chemical heterogenicity. On the other hand,
the mtc-QSAR-MLP model is very sensitive to changes in the experimental information
regarding the assay protocols. This is the case of the chemical Ac-DEVD-CHO, which, for
two different assay protocols, exhibited two different IC50 values against caspase-1. In any
case, both times, Ac-DEVD-CHO was correctly predicted by the mtc-QSAR-MLP model,
in one assay protocol as active, and in the other as inactive. The predictions performed
by the mtc-QSAR-MLP model for Ac-DEVD-CHO are even more compelling since this
chemical was reported in one assay protocol to belong to the training set, and in the other
assay protocol to be part of the test set.
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Table 4. Different drugs or drug-derived chemicals correctly predicted by the mtc-QSAR-MLP model as protein inhibitors
according to their experimental IC50 values reported in the ChEMBL database.

ChEMBL ID Name IC50
(nM) a tg b ei c Series d Observation e Prob.(%) f

CHEMBL437105 VRT-18858 3.4

Caspase-1

B (single-protein
format) Train Active 100

CHEMBL437105 VRT-18858 670 B (cell-based
format) Train Active 100

CHEMBL4217577 VRT-043198 5 B (assay format) Train Active 80.96

CHEMBL417149 Ac-DEVD-CHO 190 B (single-protein
format) Test Active 98.99

CHEMBL417149 Ac-DEVD-CHO 70,000 B (cell-based
format) Train Inactive 72.97

CHEMBL421 Sulfasalazine 28,812 Eight experimental
conditions VS Inactive 93.13

CHEMBL57267 Thioflavin T 762

TNF-alpha

F (assay format) Train Active 59.64

CHEMBL628 Pentoxifylline 85,000 Eight experimental
conditions VS Inactive 80.74

a Experimental IC50 values, which have been retrieved from the ChEMBL database. b Target protein against which the assay was carried
out. c Experimental information associated with different assay protocols as depicted in Table 1, which also contains the eight experimental
conditions cj under which the molecules were tested. d The notations “Train.” and “VS” stands for training and virtual screening,
respectively. The molecules in the “Test” and “VS” sets were never used to build the mtc-QSAR-MLP model. e Annotating the molecules
as active [ACTi(cj) = 1] or inactive [ACTi(cj) = −1] was realized by comparing the IC50 value of each molecule with the IC50 cutoffs (see
Table 1). f Probability of belonging to a defined class (active or inactive) according to the observed value of ACTi(cj); the probabilities
reported for sulfasalazine and pentoxifylline are average probabilities.

We should highlight that the molecules from Table 4 belonging to the “virtual screen-
ing” set were predicted eight times because of the eight experimental conditions cj reported
in our dataset. Therefore, their probability values are averages calculated from the pre-
dicted probabilities assessed in each of the eight experimental conditions cj. In the end,
the great success of the mtc-QSAR-MLP model in identifying protein inhibitors is due
to the high information content of the D[GTI]cj descriptors (see Section 3.2) in terms of
the physicochemical properties and structural features that they consider. The high pre-
dicted probabilities shown in Table 4 indicate how accurately these D[GTI]cj descriptors
characterize the chemical diversity and complexity.

The main purpose of building the present mtc-QSAR-MLP model was to use it as a
tool to perform in silico drug repurposing by virtually screening large databases for the
detection of potential dual inhibitors against caspase-1 and TNF-alpha (see Section 2.5).
Since an external database formed by 8922 agency-regulated chemicals (Supplementary
Material S4) was predicted by considering the eight experimental conditions cj analyzed
in this work, we performed a total of 71,376 predictions (Supplementary Material S5). In
this sense, Table 5 contains the top 20 ranked agency-regulated chemicals for which ideal
values of FA(%) = 100% and S(TSAD) = 88 were achieved.

We ran a search in the scientific literature using the keywords “caspase-1” and “TNF-
alpha”, combining each of them with the names of the 20 agency-regulated chemicals
depicted in Table 5. In doing so, we found experimental evidence on two of those chemicals
(Figure 5) that suggests their potential to inhibit both caspase-1 and TNF-alpha.
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Table 5. Top 20 ranked agency-regulatory chemicals predicted by the mtc-QSAR-MLP model as dual
inhibitors of caspase-1 and TNF-alpha.

Molecule ChEMBL ID Name Avg (Prob.%) a

CHEMBL237500 Linagliptin 100.00
CHEMBL3138665 Euquinine 100.00

CHEMBL170 Quinine 100.00
CHEMBL553204 Icariin 100.00

CHEMBL4297455 AT-001 100.00

CHEMBL548228 Ethylhydrocupreine 100.00
CHEMBL2079611 Hydroquinine 100.00
CHEMBL2104401 Detorubicin 99.99
CHEMBL2106451 Galarubicin 99.99
CHEMBL485980 Bucladesine 99.99

CHEMBL3989596 Leurubicin 99.98
CHEMBL226335 Rutin 99.97
CHEMBL169896 OSI-7904 99.97
CHEMBL277062 Bromazepam 99.96

CHEMBL2107085 Tocladesine 99.95
CHEMBL1697854 Zorubicin 99.95
CHEMBL3793226 GSK-945237 99.93
CHEMBL298734 Lonafarnib 99.93

CHEMBL2110953 Nantradol 99.91
CHEMBL4210847 PF-00489791 99.90

a This is the probability of a molecule to be a dual inhibitor of caspase-1 and TNF-alpha; this probability is
calculated as the average of eight probability values, each of them associated with each of the eight experimental
conditions reported in the dataset used to build the mtc-QSAR-MLP model.
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First, we have linagliptin, a medication used to treat diabetes mellitus type 2. In
addition to its FDA-approved use, experimental evidence indicates that the kidneys of
rats injected with the drug doxorubicin underwent nephropathy showing a remarkable
upregulation of the components of the NLRP3 inflammasome, including caspase-1 [82].
Such upregulation of caspase-1 was effectively suppressed by linagliptin. Regarding
the inhibition of TNF-alpha, a recent study reported a quantitative sandwich enzyme
immunoassay technique involving an antibody specific to quantify this protein [83]. In this
sense, treatment of human U937 monocytes with linagliptin diminished the TNF-alpha
levels, suggesting the anti-TNF-alpha activity of the drug [83].

The second chemical, icariin, is a prenylated flavonol glycoside, which has been
studied in clinical trials for the treatment of bipolar disorder, depression, and alcohol
consumption [84]. In a recent preclinical in vivo study carried out on Wistar rats used as
models of osteoarthritis, icariin was demonstrated to exhibit notable anti-inflammatory
effects through the inhibition (in a dose-dependent manner) of pyroptosis [85], the classical
and highly inflammatory form of lytic programmed cell death that is mediated by caspase-1.
In addition, icariin decreased the levels of IL-1β and IL-18, the two cytokines which are
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the results of protein cleavage caused by caspase-1 [85]. In another report using human
keratinocytes, it was shown that icariin inhibited the inflammatory response mediated by
several proteins, which included TNF-alpha [86].

Altogether, the experimental results on linagliptin and icariin suggest that these two
chemicals could be further studied as dual inhibitors of caspase-1 and TNF-alpha. A fast
search performed on the ChEMBL database allowed us to know that linagliptin and icariin
inhibit dipeptidyl peptidase 4 (DPP4) and cGMP-specific phosphodiesterase type 5 (PDE5),
respectively. Therefore, we investigated if other agency-regulated chemicals acting as
inhibitors of DPP-4 and PDE5 (and other proteins belonging to the same family) could
also inhibit caspase-1 and TNF-alpha. By maintaining the ideal value of 88 for the metric
S(TSAD) while setting FA(%) to an acceptable cutoff value of 75%, we found out that other
DPP-4 inhibitors such as anagliptin [FA(%) = 87.5%] and omarigliptin [FA(%) = 75%] and
PDE5 blockers such as mirodenafil [FA(%) = 75%] were also identified as dual inhibitors
of caspase-1 and TNF-alpha, and therefore they should be considered for future studies.
However, a surprising finding was the case of rolipram (Figure 6), a phosphodiesterase-4
(PDE4) inhibitor indicated as an antidepressant drug.
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Figure 6. Rolipram: a promising drug computationally predicted and experimentally reported as a
dual inhibitor of caspase-1 and TNF-alpha.

From one side, rolipram potently inhibits TNF-alpha in the nanomolar range, with
IC50 = 100–550 nM [87,88]. At the same time, in a recent investigation involving the use of
salivary acinar and ductal cells, it was confirmed that the well-established inflammasome
component caspase-1 was inhibited by rolipram [89]. In the end, the remarkable inhibition
of caspase-1 and TNF-alpha reported for linagliptin, icariin, and rolipram by considering
in vitro and/or in vivo assays confirm that these agency-regulated chemicals can act as
dual inhibitors of the aforementioned proteins.

4. Conclusions

The key roles of the proteins caspase-1 and TNF-alpha in inflammation make them
suitable targets for a wide range of therapeutic applications. Dual inhibitors of these two
proteins represent an encouraging horizon in anti-inflammatory research. The development
of the present mtc-QSAR-MLP model has been an attempt to accelerate the search for
wide-spectrum anti-inflammatory agents via dual inhibition of caspase-1 and TNF-alpha,
which has led to the identification of three agency-regulated chemicals as versatile anti-
inflammatory drugs. In this context, linagliptin, icariin, and rolipram deserve further
studies, which could pave the way to the use of these chemicals for the treatment of
autoimmune diseases, cancers, and even severe COVID-19 cases, since the latter medical
condition is characterized by hyperinflammation (cytokine storm) where simultaneous
inhibition of caspase-1 and TNF-alpha could be essential for an efficacious treatment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biom11121832/s1. Supplementary Material S1: Topological indices, averages, and standard
deviation values, Supplementary Material S2: D[GTI]cj descriptors, classification results, and local
metrics, Supplementary Material S3: Applicability domain of the cases/molecules in the dataset
used to build the mtc-QSAR-MLP model, Supplementary Material S4: Topological indices for the
8922 agency-regulated molecules, Supplementary Material S5: D[GTI]cj descriptors of the 8922
agency-regulated molecules, virtual screening results, and assessment of the applicability domain,
Supplementary Material S6: Metrics FA(%) and S(TSAD).
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