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Abstract: This paper puts forward a new method of landscape recognition and evaluation by using
aerial video and EEG technology. In this study, seven typical landscape types (forest, wetland, grass-
land, desert, water, farmland, and city) were selected. Different electroencephalogram (EEG) signals
were generated through different inner experiences and feelings felt by people watching video stimuli
of the different landscape types. The electroencephalogram (EEG) features were extracted to obtain
the mean amplitude spectrum (MAS), power spectrum density (PSD), differential entropy (DE),
differential asymmetry (DASM), rational asymmetry (RASM), and differential caudality (DCAU) in
the five frequency bands of delta, theta, alpha, beta, and gamma. According to electroencephalo-
gram (EEG) features, four classifiers including the back propagation (BP) neural network, k-nearest
neighbor classification (KNN), random forest (RF), and support vector machine (SVM) were used to
classify the landscape types. The results showed that the support vector machine (SVM) classifier and
the random forest (RF) classifier had the highest accuracy of landscape recognition, which reached
98.24% and 96.72%, respectively. Among the six classification features selected, the classification
accuracy of MAS, PSD, and DE with frequency domain features were higher than those of the spatial
domain features of DASM, RASM and DCAU. In different wave bands, the average classification
accuracy of all subjects was 98.24% in the gamma band, 94.62% in the beta band, and 97.29% in the
total band. This study identifies and classifies landscape perception based on multi-channel EEG
signals, which provides a new idea and method for the quantification of human perception.

Keywords: unmanned aerial vehicle (UAV); electroencephalogram (EEG) features; landscape perception;
machine learning

1. Introduction

Traditionally, landscape classification has always been concerned with descriptive
analysis involving the physical characteristics of a landscape based on basic surveys and
specifications. However, the combination of the subjective, visual appreciation of scenery
and the more objectively describable physical elements seems to have been strong resistance
to the idea of landscape classification [1,2]. Yet there seems to be no classification problems
if we restrict ourselves to the more limited physical (namely landform and land-use) con-
cept of landscape. Recent studies have evaluated the consistency of the existing manually
constructed natural landscape classification with a machine learning-based approach in
order to explain the variable importance of the differentiation between natural landscape
types [3]. Landscape classification of Central Europe was based on the cluster analysis of
principal components, which would be used for further assessment of ecosystem services
within the focus region [4]. The later 3S technology also provides a strong driving force for
landscape classification research. The idea of using GEOBIA and a supervised classifier to
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classify ground features and extract landscape information from UAV images has been rec-
ognized by most researchers [5]. At present, multi temporal remote sensing images, which
have been widely applied, can effectively improve the accuracy of feature information
extraction because they can provide spectral information on different time phases [6–8]. In
the field of remote sensing, various depth learning technologies and high-resolution images
have made indelible contributions to landscape classification. However, these are classified
based on the objective feature attributes of the landscape itself, and there are relatively few
studies on objective measurement and recognition based on landscape perception.

The traditional research methods of landscape perception mainly focus on scenic
beauty evaluation (SBE) [9–11], the semantic differential method (SD) [12,13], and the
analytic hierarchy process (AHP) [14]. The landscape is displayed through photos or field
observation. For example, the aesthetic appearance of photographic images are used as
a monitoring tool for coral reefs [15]. In addition, subjective perception judgments have
been used on different types of pictures to quantify 47 sites along the Colorado River in the
Grand Canyon National Park [16]. Qualitative and semi-quantitative research is conducted
on the landscape by the fuzzy evaluation method of landscape description and overall
perception [17]. However, from the perspective of psychology, Smith believes that the color
of the plant itself can help us relieve stress [18]. The human eyes are particularly sensitive
to green. The body will automatically reduce excitement when it sees green. At the same
time, the “savanna hypothesis”, the “refuge theory” [19], and the “biological theory” [20]
all show that there is a genetic basis for the human preference for landscape. Evolutionary
psychology also shows that people’s pro naturalness is associated with basic survival
needs, such as seeking refuge [15,21,22]. From the perspective of human perception, these
notions suggest that people will produce different physiological responses in different
environments or landscapes, which are related to the unique pattern of brain activity.
Therefore, based on physiological electroencephalography (EEG), we can provide a new
view of landscape analysis. The above shows that people will have different physiological
reactions when they see different landscapes or when they are in different environments.

The measurement of brain activity is an objective way of assessing the physiological
perception of engagement with the landscape, environment, or other objects [23–25]. Brain
imaging is helpful to measure the effects of unconscious stimuli [26,27]. EEG frequency
features have commonly been used in EEG signals. Generally, the frequency range of high
amplitude signals observed is different when subjects are in calm state and when they
are in a stimulated state [28,29]. EEG features (frequency domain features, time domain
features, and spatial domain features) in EEG signals represent the brain region activities.
With the continuous development of neuroscience and the trend of interdisciplinarity, thus
far, there have been many studies using EEG technology and machine learning for recogni-
tion with good classification accuracy, e.g., emotion recognition [30–33], object structure
recognition [34,35], color recognition [36], landscape and animal image recognition [37].
Some studies have gradually applied EEG technology to different fields, including envi-
ronmental perception and landscape assessment [38–41], while others have also explored
the impact of specific environmental characteristics on the natural environment [42–44].
Therefore, this study combines the experimental technology of neurology and UAV aerial
video to identify and classify the landscape types from the perspective of human perception
and compares the advantages and disadvantages of different classification features and
classification methods.

2. Materials and Methods
2.1. Materials

Five landscape videos were selected for each landscape type. Seven professors with
more than five years of experience in landscape design were asked to rate each landscape
video on a scale of 1–10. The highest-scoring landscape videos were chosen to become the
experimental materials according to the cumulative scores. The stimuli included seven high-
definition videos, mainly including different landscape types (forest, wetland, grassland,
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desert, water, farmland, and city) (Figure 1). The subjects were stimulated through video
experience. During the experiment, conductive paste was used to reduce scalp resistance
below 5 KΩ. In the laboratory, the room was completely closed and without noise. A
15-inch display device was put in front of the subjects. There were seven different videos,
each of which remained on screen for about 40 s (2 repeats for each stimuli video). After a
video was displayed, the volunteers had a minute to rest, mainly to calm their emotions
and to not affect the next video. Then the next landscape video was played, followed by a
rest, and so on until the end of the whole experiment. The whole process lasted for about
25 min. The sequence in which the videos played during the experiment is random.
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Figure 1. Experimental video materials.

2.2. Subjects

A total of 20 volunteers aged between 25 and 55, 12 women and 8 men, participated
in the experimental procedure. The participants had varied employment situations, such
as university staff, social workers of various industries, and university graduates. We
described the purpose of the experiment before beginning, and participants were asked
to be right-handed, with no color blindness, and in good physical health, without any
history of a mental disorder. Additionally, a video was played in the lab, during which the
participants were asked to stay as still as possible so that interferences such as EMG did not
increase. If they met the requirements and agreed to continue the experiment, they then
signed an informed consent form before testing. The study was approved by the school’s
ethics committee.

2.3. Method

In this study, the Active System produced by Brain Products (LiveAmp) with 32 chan-
nels was used to obtain the signals of the brain activity (Figure 2). The experiment used
the international 10–20 system and a 32-channel electrode cap. The video stimuli were
displayed in random order, and each landscape type was repeated twice for a total of
14 short videos. The original EEG data were analyzed by the EEGlab, which is a toolbox for
processing continuous EEG signals.

2.4. Statistical Analysis

In this study, frequency domain features and spatial domain features are selected as
important indicators of landscape recognition. The frequency domain features include:
mean amplitude spectrum (MAS) [45], power spectrum density (PSD), and Differential
Entropy (DE) [33,46,47], and spatial domain features include: differential asymmetry
(DASM) and rational asymmetry (RASM) [48], and differential caudality (DCAU) [33].
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Figure 2. Brain Products (LiveAmp) in the experiment. (a) Brain Products (LiveAmp) with
32 channels; (b) The electrode position of international 10–20 system with 32 channels.

The EEG signals were detrended using the average of left and right mastoids as a
reference. Then, 250 Hz downsampling and 0.5–70 Hz filtering were performed to obtain
the preprocessed EEG datasets. Third, the eye electrical, electromyography, electrocardio-
graphy, power frequency interference, and other disturbance artefacts were removed by
independent component analysis (ICA) [49–52]. Next, the EEG signals were segmented into
contiguous 2 s windows, and any segments which retained artefacts were rejected [53,54].
Therefore, a total of 5600 (7 × 2 × 20 × 20) data samples were generated. In other words,
there were a total of 7 landscape categories, and each video stimulus was repeated twice.
Each subject could get 20 segments for 2 s of each video stimulus, with a total of 20 sub-
jects. Then, Fast Fourier transform was used to extract frequency band information. The
frequency-domain features were extracted to obtain the logarithmic frequency energy
values of the waves in five frequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz),
beta (13–30 Hz), and gamma (30–70 Hz) [55]. The sample size of each subject in each
frequency band is 280 characteristic data. Each frequency band contains the data of 29 elec-
trode channels, and the total frequency band contains 145 electrode channels, that is, the
samples of 5 frequency bands have a structure of 29 × 280, the sample structure of the total
frequency band is 145 × 280 (Table 1).

Table 1. Dimensions of each EEG feature.

Feature Delta Theta Alpha Beta Gamma Total

MAS 29 29 29 29 29 145
PSD 29 29 29 29 29 145
DE 29 29 29 29 29 145

DASM 13 13 13 13 13 65
RASM 13 13 13 13 13 65
DCAU 11 11 11 11 11 55

Firstly, four classifiers including the back propagation (BP) neural network algorithm
(BP), k-nearest neighbor classification algorithm (KNN), random forest algorithm (RF), and
support vector machine algorithm (SVM) were used to classify different landscape types of
brain waves after the pretreatment of the EEG signals. Then, the recognition accuracy in
different situations was obtained, and the accuracy of different classification methods for
landscape type recognition was compared, in order to reflect the differences in people’s
perceptions of different landscape types.

The EEG data were randomly divided into training (80%) and test (20%) data. For our
purposes, we have used 10-fold cross-validation to train and test extracted features for all
classifiers. For KNN, we used k = 5 for a baseline in comparison with other classifiers. For
random forest, we constructed the tree number with 500. We used LIBSVM software [56] to
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implement the SVM classifier and employ linear kernel, the back propagation (BP) neural
network algorithm was also used.

Statistical analysis and data processing were mainly completed using MATLAB and R
language. Figure 3 displays the experimental process.
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Figure 3. Flow chart of the experiment.

3. Results
3.1. The Classification Effect of Different Classifiers

The classification accuracy of the four classifiers for different landscape types are
displayed in Table 2 and Figure 4. For all EEG features, the SVM classifier and RF classifier
had the highest landscape recognition accuracy, followed by KNN, and BP had the lowest
classification accuracy among the four classifiers. Meanwhile, Figure 5 shows the highest
classification accuracy of different classifiers in 20 groups of subjects in all bands of brain
waves, and also shows that the classification accuracy of SVM and RF was higher than that
of KNN and BP.

Table 2. The accuracy of landscape perception and recognition based on different EEG features and
different classifiers.

Feature Classifier Delta (%) Theta (%) Alpha (%) Beta (%) Gamma (%) Total (%)

MAS

BP 20.38 ± 5.74 19.08 ± 5.82 22.67 ± 7.18 51.45 ± 11.49 69.2 ± 11.15 48.69 ± 10.25
KNN 40.07 ± 11.85 33.39 ± 11.2 44.79 ± 15.1 83.91 ± 11.98 95.28 ± 4.17 69.54 ± 18.81

RF 47.13 ± 10.54 40.27 ± 12.56 52.63 ± 14.69 90.33 ± 6.77 96.36 ± 3.32 96.51 ± 3.33
SVM 53.02 ± 11.51 45.96 ± 12.74 62.62 ± 15.82 94.62 ± 4.95 97.63 ± 2.82 96.13 ± 4.38

PSD

BP 19.08 ± 5.41 21.09 ± 6.09 24.55 ± 8.11 52.01 ± 12.16 69.36 ± 11.39 47.12 ± 12.28
KNN 40.21 ± 10.63 42.1 ± 12.61 48.63 ± 17.1 81.28 ± 14.66 94.13 ± 5.48 60.47 ± 18.52

RF 48.02 ± 11.85 51.07 ± 14.58 57.64 ± 16.24 88.84 ± 8.12 96.72 ± 3.10 96.52 ± 3.34
SVM 49.47 ± 8.95 58.23 ± 12.38 67.62 ± 14.36 92.55 ± 6.63 96.90 ± 3.13 93.98 ± 6.79

DE

BP 19.86 ± 5.93 21.84 ± 6.79 24.14 ± 8.27 51.41 ± 12.22 69.65 ± 11.51 50.71 ± 9.21
KNN 39.36 ± 11.32 41.29 ± 15.24 49.2 ± 17.41 83.13 ± 12.83 94.62 ± 4.71 86.14 ± 11.32

RF 48.21 ± 10.84 50.71 ± 13.91 57.73 ± 15.94 89.03 ± 8.67 96.51 ± 3.15 96.61 ± 3.33
SVM 55.56 ± 9.72 60.17 ± 14.13 69.04 ± 14.76 94.83 ± 4.7 98.24 ± 2.31 97.29 ± 3.09

DASM

BP 18.41 ± 4.83 19.39 ± 6.12 22.24 ± 7.46 38.82 ± 11.99 56.13 ± 13.26 37.74 ± 10.63
KNN 33.09 ± 8.71 33.64 ± 13.03 40.80 ± 18.19 75.36 ± 14.15 89.93 ± 8.53 81.32 ± 11.64

RF 42.57 ± 8.2 40.87 ± 12.86 47.01 ± 16.3 80.59 ± 9.46 92.08 ± 5.86 93.45 ± 5.52
SVM 42.44 ± 8.12 45.82 ± 12.67 55.14 ± 15.99 83.88 ± 9.49 93.26 ± 6.29 92.08 ± 7.04

RASM

BP 14.83 ± 3.78 14.54 ± 3.29 14.54 ± 3.87 24.93 ± 10.84 41.38 ± 14.35 26.71 ± 10.20
KNN 24.23 ± 6.90 23.78 ± 8.03 27.62 ± 10.12 70.59 ± 13.21 85.46 ± 8.79 41.49 ± 13.01

RF 37.99 ± 8.42 34.66 ± 10.43 41.42 ± 14.73 80.02 ± 11.95 91.35 ± 6.59 93.49 ± 5.70
SVM 26.42 ± 6.63 20.43 ± 6.72 23.19 ± 10.37 65.88 ± 14.20 96.52 ± 3.35 75.27 ± 12.52

DCAU

BP 14.22 ± 2.72 14.88 ± 3.16 14.54 ± 2.99 24.23 ± 9.06 39.96 ± 13.42 26.37 ± 10.53
KNN 25.25 ± 9.00 25.13 ± 8.56 27.39 ± 8.04 54.62 ± 16.93 80.01 ± 8.11 38.36 ± 18.20

RF 31.81 ± 11.14 33.64 ± 11.57 38.60 ± 10.90 71.76 ± 13.07 85.86 ± 9.42 86.16 ± 10.63
SVM 20.71 ± 6.28 20.81 ± 7.49 19.96 ± 6.81 66.71 ± 10.82 87.46 ± 7.29 79.09 ± 8.97

Notes: Mean ± SD.
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Specifically, in all wave bands of delta, theta, alpha, beta, and gamma and EEG features
including ES, PSD and DE, the SVM classifier had the highest classification accuracy,
followed by the RF classifier. In the total band of EEG features such as MAS and PSD, the
RF classifier had a slightly higher classification accuracy than the SVM classifier, then the
accuracy of the SVM classifier and the RF classifier was significantly higher than the KNN
classifier and the BP classifier.

Among the delta, theta, alpha, and beta wave bands of EEG features including RASM
and DCAU, the RF classifier had the best classification effect, followed by the SVM classifier.
Only in the gamma band, the SVM classifier had a higher classification accuracy than the
RF classifier, the KNN classifier, and the BP classifier.

In the delta and total waves of EEG features DASM, the classification accuracy of the
RF classifier was higher than that of the SVM classifier, while in the theta, alpha, beta, and
gamma bands, the classification accuracy of the SVM classifier was higher than that of the
KNN classifier and the BP classifier.

Using the different classifiers, the trend of landscape recognition accuracy was SVM
and RF > KNN > BP, while similar trends were confirmed using both the goodness of fit
and sensitivity (Table S1).

3.2. The Classification Effect of Different EEG Features

In general, for the same brain waves and the same classifier (Table 2 and Figure 6),
the classification accuracy of frequency domain features including MAS, PSD and DE
was higher than that of spatial domain features including DASM, RASM and DCAU
indicators among the six EEG features selected. Furthermore, Figure 7 shows the maximum
classification accuracy of different EEG features in 20 subjects in different waves, and also
demonstrates that the classification accuracy of frequency domain features is higher than
that of spatial domain features.
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For the BP classifier, the DE feature had the highest classification accuracy in the delta,
theta, gamma, and total wave bands, then PSD was the highest in the alpha band and MAS
was the highest in the beta band.

For the KNN classifier, the highest classification accuracy was the PSD feature in the
delta and theta wave bands, the DE feature had the highest accuracy in the alpha and total
wave bands, and the MAS feature had the highest accuracy in the beta and gamma bands.

For the RF classifier, the classification accuracy of the PSD feature was the highest
in the delta, theta, alpha and gamma wave bands, the classification accuracy of the MAS
feature was the highest in the beta band, and the accuracy of the DE feature was the highest
in the total band.

3.3. The Classification Effect of Different Brainwave Bands

With the same selection of classifier and EEG features (Figures 4 and 6), the classifica-
tion accuracy was highest in the gamma, beta and total bands, and was relatively lower
in the delta, theta and alpha bands. Therefore, the recognition of landscape perception by
high-frequency waves was more effective than that of low-frequency waves. In all wave
bands, the mean classification accuracy of all subjects was 98.24% in the gamma band,
97.29% in the total band, and 94.83% in the beta band. The classification accuracy of the
delta band, theta band and alpha band was 55.56%, 60.17% and 69.04%, respectively. This
indicates that the classification accuracy of high-frequency waves was higher than that of
low-frequency waves in landscape perception recognition and classification. The difference
in classification accuracy of different subjects may be related to the subjects’ landscape
preference (Figures 5 and 7).
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In the BP, KNN and SVM classifiers, the classification accuracy of the gamma band
and beta band was higher than that of the total band based on EEG features such as MAS
and PSD. The classification accuracy of the gamma band was higher than that of the total
band based on EEG features including DE, DASM, RASM, and DCAU. In the RF classifier,
there was little difference between the classification accuracy of the gamma band and the
total band.

4. Discussion

The power of EEG signals in the frequency domain is one of the most commonly used
EEG features for emotion analysis. Generally, when the subject is in a calm state, the high
amplitude signals in the low frequency range will be more obvious, while in a stimulus state,
the high amplitude signals in the high frequency range will be more obvious [28,29]. EEG
features (e.g., frequency domain features, features, and spatial domain features) in an EEG
signal represent the activities in each brain region. At present, research on recognition and
classification based on EEG technology and machine learning have achieved good results.

This study showed that the SVM classifier has the highest classification accuracy in
this study. This has been well established in many application fields of EEG technology.
In emotion recognition analysis, the frequency domain features that power the spectral
density (PSD) of the EEG signals and the asymmetry indexes of the 12 electrode pairs
were used to classify discrete emotional states (disgust, happiness, neutrality, sadness,
and tenseness) induced by watching a video. A previous study obtained results on the
classification accuracy of within-stimulus and found 93.3% accuracy in the PSD feature,
and 85.4% accuracy in asymmetry features [30]. Shahabi et al. distinguished emotional
states (happy, neutral, and melancholy) based on EEG features, and concluded that the
classification accuracy between happy and neutral was 93.7%, while the classification
accuracy between happy and melancholy was 80.4% using the SVM classifier [32]. Rasheed
et al. classified the EEG signals as red, green, and blue colors and successfully classified the
three visual conditions having accuracies of 84%, 89% and 98% with linear, polynomial,
and radial basis function kernels, respectively, within all the groups of data among all the
subjects [36]. The extracted PSD features were classified using two-level SVM classifiers in
corresponding object-shape classes (including cone, cube, cylinder, sphere, prism, hemi-
sphere, pyramid (square base), hexagonal base cylinder, lock, and mouse) for the three
experimental phases. The recognition accuracy was 88.34% for pure touch and 81.1% for
pure vision, the recognition accuracy of the mixture of tactile and auditory was 82.2%, and
the average classification accuracy of the three target recognition modes was 83.89% [34].
Based on the EEG of prefrontal brain area, SVM was used as a classifier to detect driver
fatigue, and the accuracy was 85% [57]. The recognition of three human stress levels was
characterized based on the relative difference between beta and alpha in EEG signals using
SVM as classifier, with a recognition accuracy of 75% [58].

The results show that DE features had the highest classification accuracy in all waves
including delta, theta, alpha, beta and gamma and total waves for the SVM classifier.
Therefore, DE is an important indicator of landscape perception classification based on EEG
technology. Similarly, in the experiment on emotion recognition, using DE as a feature proxy
achieves higher recognition accuracy than other features. Zheng et.al used differential
entropy, which is a measure of the amount of information included in EEG signals, as
the input of deep belief networks, they also used SVM and KNN for the classification
of emotional states (positive, neutral, and negative). The classification accuracy was
respectively 86.08%, 83.99%, and 72.60% [33]. Differential entropy was also employed to
distinguish the positive, neutral, and negative emotional states induced by videos, where
the CNN received input as the classifier. The classification accuracy was 83.8% [31].

This study also showed that the classification accuracy of high-frequency waves
was higher than that of low-frequency waves in landscape perception recognition and
classification. Moreover, there was similar research suggesting that the gamma band
(roughly 30–100 Hz) was suitable for EEG-based emotion classification [59]. The similarity
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with the classification of people’s emotions shows that different landscapes do cause
subtle changes in people’s emotions. At the same time, it also proves that it is feasible
to identify people’s perception of different landscapes through multi-dimensional EEG
features [60]. This result is of great significance for evaluating the impact of landscapes
on people, which also has important reference value for the quantification of ecosystem
cultural services [44,61].

When the total band of 145 dimensions was used for landscape perception recognition,
it did not show the highest accuracy, as it was even lower than the accuracy of landscape
perception recognition in the beta band and gamma band. Therefore, more dimensions were
not always better [59,62]. In this study, the highest classification accuracy of a landscape
video was 98.24% in the gamma band using the SVM classifier. Rus et al. also confirmed
that the EEG features of the gamma band are more suitable for object recognition. The
classification accuracy of three different classifiers (SVM, KNN and ANN) was 89.5%, 89.5%
and 83%, respectively [35], which is consistent with the conclusion that the classification
accuracy of the gamma band is the highest of all bands in this study. There are relatively
few studies on the recognition of landscape types based on EEG technology. Although Lam
et al. implemented the single-layer neural network to recognize and classify landscape
and animal pictures based on EEG data, the average accuracy was 91.15%, in which the
average recognition accuracy of landscape pictures was 89.69% and that of animal pictures
was 92.34% [37]. However, Lam’s research only identified landscape pictures and animal
pictures, and did not further identify and classify landscape type pictures.

Compared with the traditional recognition research based on the attribute characteris-
tics of the landscape, this research identifies and classifies landscape perception based on
the characteristics of UAV aerial video and EEG features, which provides a certain reference
value for the objective quantification of landscape perception evaluation in the future. At
the same time, it also provides new ideas and methods for landscape evaluation research,
which is worthy of more comprehensive and in-depth research. Future research should
focus on the differences in individual perception of landscape physiology, including an
increase in sample size and age range and the change of working conditions, as well as
further differences in gender, education level, residence, property income and other social
attributes. Further research also needs to expand the scope of landscape types. At the same
time, more experimental case studies are also necessary. It is very necessary to confirm the
conclusions of this study in more complex situations and make them more robust. This
study also provides a reference for cultural services of ecosystem services. Compared
with the traditional landscape perception evaluation of landscape ecosystems based on
questionnaire surveys, more objective multi-dimensional EEG features may be used as a
reference in the future.

With the application of brain computer interface technology becoming more and more
developed and market-oriented, it is believed that there will be many successful case
studies in landscape evaluation and tourism evaluation in the future. There is a need for
further research on the relationship between brain activity and landscapes with different
characteristics since it is still in the exploratory stage, and there are few relevant studies
and generally accepted theoretical basis to explain it. Therefore, it is still a great challenge
to verify these relationships with more extensive experimental cases.

5. Conclusions

This study identifies and classifies landscape types based on multi-channel and multi-
dimensional EEG features, explores algorithms suitable for landscape perception recogni-
tion and classification, preliminarily defines the most suitable frequency band for landscape
perception recognition and classification, and compares EEG features with better effects of
landscape perception knowledge. It provides a certain reference for landscape perception
evaluation in the future.

The results confirmed the following points. For all EEG features, the SVM and RF
classifiers have the highest classification accuracy. When the bands are the same and the
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classifiers are the same, the classification accuracy of frequency domain features, MAS,
PSD and DE are relatively higher than those of spatial domain features DASM, RASM
and DCAU. The DE feature is the most effective among all of the classifiers. For the
same classifier and the same EEG feature, the classification accuracy of the beta band and
the gamma band is the highest, while the classification accuracy of the delta, theta and
alpha bands is relatively lower. Therefore, the high frequency signals are more effective in
landscape perception recognition.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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