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Abstract: Focusing on defining metabolite-based inter-tumoral heterogeneity in ovarian cancer, we
investigated the metabolic diversity of a panel of high-grade serous ovarian carcinoma (HGSOC)
cell-lines using a metabolomics platform that interrogate 731 compounds. Metabolic fingerprinting
followed by 2-dimensional and 3-dimensional principal component analysis established the het-
erogeneity of the HGSOC cells by clustering them into five distinct metabolic groups compared to
the fallopian tube epithelial cell line control. An overall increase in the metabolites associated with
aerobic glycolysis and phospholipid metabolism were observed in the majority of the cancer cells. A
preponderant increase in the levels of metabolites involved in trans-sulphuration and glutathione
synthesis was also observed. More significantly, subsets of HGSOC cells showed an increase in the
levels of 5-Hydroxytryptamine, γ-aminobutyrate, or glutamate. Additionally, 5-hydroxytryptamin
synthesis inhibitor as well as antagonists of γ-aminobutyrate and glutamate receptors prohibited
the proliferation of HGSOC cells, pointing to their potential roles as oncometabolites and ligands for
receptor-mediated autocrine signaling in cancer cells. Consistent with this role, 5-Hydroxytryptamine
synthesis inhibitor as well as receptor antagonists of γ-aminobutyrate and Glutamate-receptors in-
hibited the proliferation of HGSOC cells. These antagonists also inhibited the three-dimensional
spheroid growth of TYKNU cells, a representative HGSOC cell-line. These results identify 5-HT,
GABA, and Glutamate as putative oncometabolites in ovarian cancer metabolic sub-type and point
to them as therapeutic targets in a metabolomic fingerprinting-based therapeutic strategy.

Keywords: ovarian cancer; metabolomics; oncometabolite; glutamate; GABA; 5-HT

1. Introduction

Ovarian cancer is the eighth most common cancer in women and ranks fifth in cancer
deaths [1,2]. The high mortality rate is largely due to the heterogeneous nature of the
disease along with the lack of an efficacious targeted therapy [3,4]. The heterogeneity in
ovarian cancer is contributed by histological subtypes of the disease as well as genetic
and epigenetic diversity among the tumor cells [5,6]. Recent studies have shown that
the intra- and inter tumor differences in metabolic profile also contribute significantly
to the heterogeneity of the disease [7]. Metabolic reprogramming is long recognized as
one of the hallmarks of cancers and altered cancer metabolome has been associated with
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aggressive cancer growth and progression [8,9]. Cancer cell metabolome, represented
by the net changes in the cancer cell metabolites, is the final iterative outcome from
the diverse genomic, transcriptomic and proteomic interactions of the cancer cell [10].
Metabolomics, defined by the “metabolic fingerprinting” of cancer cells, is emerging as one
of the central components of precision cancer medicine. It is being increasingly realized that
metabolic fingerprinting could provide deeper insights into the metabolic derangements
and causative factors, in addition to facilitating the discovery of novel oncometabolites
that could serve as new therapeutic targets or prognostic and diagnostic biomarkers in
cancer [11–15].

With the focus on developing optimal modalities for personalized medicine in ovar-
ian cancer and to identify any oncometabolites that could be targeted for therapy, we
carried out metabolic fingerprinting for a panel of high-grade serous ovarian carcinoma
(HGSOC) cell lines. The metabolic profiles of fourteen different, commonly used ovarian
cancer cell lines, along with control cells represented by normal fallopian tube derived
epithelial cells, were obtained using a metabolomic analysis platform that interrogated
731 compounds. Metabolite identification by Mass spectrometry, followed by unsuper-
vised principal component analysis indicated the clustering of the HGSOC cells into five
groups. Hierarchical analysis of the results revealed both metabolic convergence and
metabolic divergence in the tested cell-lines. Metabolites derived from energy metabolism
including aerobic glycolysis and phospholipid metabolisms formed the major basis for
convergent commonality among the cancer cells. Convergence towards similarity was also
seen in thiol-disulfide redox metabolism as indicated by the increased levels of cysteine
metabolites including glutathione. A subset of ovarian cancer cells showed an increase
in the levels of glutamate (Glu), γ-aminobutyric acid (GABA), or 5-hydroxytryptamine
(5-HT), derived from amino acid metabolism. More importantly, treatment of HGSOC cells
with the receptor antagonists or 5-HT synthesis inhibitor attenuated the proliferation of
ovarian cancer cells, along with disruption of spheroid formation of these cells. In addition
to establishing a metabolome-based sub-classification of HGSOC cells, our results iden-
tify Glu, GABA, and 5-HT as oncometabolites that can be effectively targeted by specific
receptor- or synthesis-antagonists for therapy in ovarian cancer subtypes.

2. Materials and Methods
2.1. Cell Lines and Culture

All the cell lines used in this study have been previously described [16,17]. HGSOC
cell lines used in this study were obtained from various sources: OVCAR4 cell line was ob-
tained from Dr. Thomas Hamilton (Fox Chase Cancer Center, Philadelphia, PA, USA) and
OVCAR8 cells were from National Cancer Institute (NCI). Kuramochi, TYKNU, OVKATE
and OVSAHO cell lines were from the JCRB Cell Bank, Tokyo, Japan. SNU119, SNU251,
ES-2, OVCAR3, CAOV3 and OV90 cells were from Seoul National University, Seoul, Korea,
and COV362, OAW28 and COV318 cells were purchased from Sigma-Aldrich (St. Louis,
MO, USA). All cell lines were authenticated by short tandem repeat analysis [16]. OVCAR3,
OVCAR8, OVKATE, SNU119, SNU251, OVCAR4, OVSAHO, and Kuramochi cells were
maintained in Roswell Park Memorial Institute (RPMI) 1640 medium (Cellgro, Manassas,
VA, USA); COV362, COV318, OAW28 and CAOV3 cells were maintained in Dulbecco’s
modified Eagle’s (DMEM) Medium (Cellgro, Manassas, VA, USA); OV90 cells were main-
tained in MCDB105:M199 (1:1) Medium (Thermo Fisher Scientific, Waltham, MA, USA);
TYKNU cells were maintained in Minimum Essential Medium (MEM) (Cellgro, Manas-
sas, VA, USA); and ES-2 cells were maintained in McCoy’s 5A medium (Sigma-Aldrich,
St. Louis, MO, USA). All cells were maintained at 37 ◦C in a 5% CO2 incubator. All media
were supplemented with 10% FBS (Gemini Bio-Products, West Sacramento, CA, USA),
50 U/mL penicillin, 50 µg/mL streptomycin (Cellgro, Manassas, VA, USA). Glutamate-
receptor antagonist, MK801 (Cat # S2876) and GABAA-receptor antagonist, Bicuculline
(Cat # S7071) were obtained from Selleckchem (Houston, TX, USA). GABAB-receptor antag-
onist, CGP55845 (Cat # 1248) was procured from Tocris Bioscience (Minneapolis, MN, USA)
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whereas tryptophan hydroxylase inhibitor, LX-1031 (Cat # ab269814) was purchased from
Abcam (Waltham, MA, USA). Glutamate-receptor antagonist, MK801, GABAA-receptor
antagonist, Bicuculline, GABAB-receptor antagonist, CGP55845, and tryptophan hydroxy-
lase inhibitor, LX-1031 were dissolved and stored in DMSO as 10 mM, 50 mM, 50 mM, and
25 mM stock, respectively, until use.

2.2. Metabolomic Analysis

Cells were synchronized by serum starvation for 18 h following our previously pub-
lished methods [18] and stimulated to proliferate with the addition of serum. Actively
growing cells at 14 h following serum stimulation were pelleted. Cells were grown in
triplicates per cell line. Two of the triplicate cell pellets (per each cell line) represent-
ing 14 HGSOC cell lines along with FTE188 control cells were subjected to metabolomic
analysis. Frozen pellets were transferred to Metabolon, Inc. (Morrisville, NC, USA) for
metabolomic analysis. Non-targeted metabolomic analysis was carried out by Metabolon,
Inc. (Morrisville, NC, USA) as described previously [19]. Sample preparation, extraction,
liquid chromatography, and mass spectrometry were carried out following the methods
established by Metabolon, Inc. as presented under “Supplemental Methods”. Briefly, global
metabolic profiles were determined using a Waters ACQUITY ultra-performance liquid
chromatography (UPLC) and a Thermo Scientific Q-Exactive high resolution/accurate
mass spectrometer interfaced with a heated electrospray ionization (HESI-II) source and
Orbitrap mass analyzer operated at 35,000 mass resolution. Appropriate quality control
samples (Table S1) and quality control stndarads (Table S2) were used to ascertain instru-
ment variability and total process variability (Table S3). Compounds were detected and
identified by comparison to library entries of purified standards or recurrent unknown
entities using Metabolon’s proprietary hardware and software. The data were normalized
with respect to protein concentration of the respective cell pellets.

2.3. Data Processing

Raw data were extracted, peak-identified and QC processed using Peaks were quan-
tified using area-under-the-curve method utilizing ion counts for relative quantification.
Metabolites that did not register in >80% of the samples were removed. The remainder
missing values were imputed with the value equivalent to 50% of the minimal value in
the raw data and considered as missing data below the detection limit. The values of the
metabolites in the raw data that registered below 25% in the interquartile scale were consid-
ered near constant and removed. The present dataset comprises a total of 731 compounds
of known identity (Supplementary Table S4). Total number of metabolites examined and
their unique chemical class identifier are presented in Supplementary Table S5. Detailed
methodology including statistical and bioinformatic analyses of the data are included in
the supplemental material (Supplemental Methods).

2.4. Statistical Analysis

For cell line-based in vitro analyses, two-way ANOVA was carried out to determine
the interaction effects of inhibitor and incubation period on the cell proliferation. Further,
a Dunnett’s multiple comparison post-hoc test between the control and each concen-
tration of the inhibitor at each time point was performed. Results were presented as
bara graphs of percent inhibition over control with the significance represented using
the p-values from the post-hoc test. For metabolomic analysis, two types of statistical
analysis were carried out: (1) significance tests and (2) classification analysis. Standard
statistical analyses were performed in ArrayStudio version 7.2 (Qiagen OmicSoft, Cary,
NC, USA) on log transformed data. The data from the experimental groups were com-
pared using Multivariate ANOVA. For the analyses not standard in ArrayStudio, the
programs R (http://cran.r-project.org/; accessed on 13 January 2020) or JMP software
(JMP Inc., Cary, NC, USA) were used. Post-hoc p-values and false discovery rates were
calculated by determining the p- and q-values using Storey’s method [20]. Only the data
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with the p-value of <0.05 were considered significant. Quality control samples, quality
control standards, FDR values of <0.05 were considered significant. Complete dataset
with p- and q-values are deposited at the NIH Common Fund’s National Metabolomics
Data Repository (https://www.metabolomicsworkbench.org/data/DRCCMetadata.php?
Mode=Project&ProjectID=PR001259; accessed on 13 January 2020).

2.5. Principal Component Analysis and Hierarchical Clustering

Principal component analysis (PCA) for high dimension and multivariate data was
carried out with two or three principal components. Each principal component is a linear
combination of every metabolite and the principal components are uncorrelated. The
first component was computed by determining the coefficients of the metabolites that
maximizes the variance of the linear combination. The second principal component is
computed by determining the coefficient that maximized the variance in which the second
component is orthogonal to the first. The third component is defined by the coefficient of
variance, but orthogonal to the first two components. Unsupervised hierarchical clustering
was carried out by hierarchical clustering using Euclidean distance methods. Each cell line
sample is considered as a vector with all of the metabolic values.

2.6. Cell Proliferation and InhibitorAnalysis

Kuramochi, SNU119, TYKNU, COV362, or OV90 cells were seeded into 96-well
plates (1 × 104 cells/well) in appropriate growth media and incubated in Sartorious
IncuCyte® S3 Live-Cell Analysis System (37 ◦C; 5% CO2). At 24 h, the cells were treated
with varying concentrations of each of the inhibitors (10 µM and 25 µM) or the vehicle,
DMSO (0.05% final concentration/well). The doses of the inhibitors were ascertained based
on initial dose optimizations. Their effects on cell proliferation were monitored by imaging
the cells at 12 h intervals. At each time point, images were taken from eight random
wells (4 imgaes/well/group) in the phase bright-field channel at 10× magnification. Cell
proliferation was monitored by analyzing the occupied area (Confluence %) of cell images
over time, using Cell-by-Cell Analysis Software Module of the IncuCyte® GUI 2020A
software using Adherent Cell-by-Cell Analysis methodology.

2.7. 3D-Spheroid Analysis

The 3D spheroid growth analysis was carried out following the previously published
methods [21]. Cells were plated at the density of 7 × 103 cells/200 µl per well in 96-well
Corning Round bottom ULA plates (Corning, Corning, NY, USA) and incubated in In-
cuCyte S3 Live-Cell Analysis system. At 24 h, the cells were treated with the vehicle
or the antagonists (10 µM) and spheroid growth was monitored by imaging the cells at
12 h-intervals for 6 days. Images were acquired at 4x magnification. Spheroid forma-
tion was quantified in terms of total spheroid area (µm2) using Incucyte S3 Spheroid
Software Module.

3. Results
3.1. Metabolomic Heterogeneity and Clustering of HGSOC Cell Lines

A total of 731 metabolites of known identity was analyzed for their presence in four-
teen HGSOC cell lines and the control Fallopian Tube-derived epithelial cell line, FTE188.
Lysates from these cells were subjected to Ultrahigh Performance Liquid Chromatography-
Tandem Mass Spectroscopy. The high-dimensional dataset for each of the cell lines was
obtained following metabolite identification, metabolite quantification, and data normal-
ization. An unsupervised principal component analysis (PCA) was carried out using all
the samples to determine whether the ovarian cancer cell lines can be segregated from
the FTE188 control and from each other, based on differences in their overall metabolite
signature. Two-dimensional (2D-PCA) as well as three-dimensional principal component
analysis (3D-PCA) was carried out. Both the PCA plots indicated that the global metabolite
profiles of the cancer cells differed widely from the control cells (Figure 1A,B).

https://www.metabolomicsworkbench.org/data/DRCCMetadata.php?Mode=Project&ProjectID=PR001259
https://www.metabolomicsworkbench.org/data/DRCCMetadata.php?Mode=Project&ProjectID=PR001259
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tabolite profile of SNU251 cancer cells appeared to be very similar to the FTE188 control. 
Whereas, ES-2, OVCAR3, and OAW28 cell lines displayed the greatest differences from 
the control cell line (Figure 1A). These results also indicated the potential similarities in 
the metabolomic profiles of COV318, COV362, and OVCAR4 cell lines, which formed a 
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Figure 1. PCA analysis of metabolites in HGSOC cell lines. Two-dimensional (A) as well as three-
dimensional PCA (B) score plot of the metabolomic profiles of the HGSOC cell lines along with the
control cell line FTE188 is presented. (A). X and Y axis of the plot denotes the percentile variations
defined by principal component-1 and principal component-2, respectively. (B). Percentile variations
defined by principal component-1, principal component-2, and principal component-3 are indicated
in the X, Y, and Z axis of the plot. Numbered and color-coded dots represent the individual cell lines
as indicated in the side panel. Clustering of the HGSOC cells based on the metabolomic profiles is
circled. Solid circles indicate closely related clusters whereas dotted circles indicate distantly related
clusters. Cell lines that constitute the respective clusters are indicated.

It is pertinent to note here that the reproducibility among the biologically duplicate
samples was indicated by the tight clustering between the duplicates. More significantly,
the PCA results indicated the substantial differences in the metabolite profiles of the
different cell lines. The simplest analysis using 2D-PCA clearly indicated that the global
metabolite profile of SNU251 cancer cells appeared to be very similar to the FTE188 control.
Whereas, ES-2, OVCAR3, and OAW28 cell lines displayed the greatest differences from
the control cell line (Figure 1A). These results also indicated the potential similarities in
the metabolomic profiles of COV318, COV362, and OVCAR4 cell lines, which formed
a metabolically-related cluster of HGSOC cells (Figure 1A). This overall metabolomic
clustering of HGSOC cell lines, was further corroborated by the plots derived from 3D-PCA
analysis (Figure 1B).

To gain more granular details on the similarities and differences in the metabolomic
profiles of the HGSOC cells, the dataset was analyzed by unsupervised hierarchical cluster-
ing (Figure 2).
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Figure 2. Heatmap of differential metabolites in HGSOC cell lines. Similarities and differences
between metabolite profiles were analyzed by hierarchical clustering using Euclidean distances
derived from the group means. Reproducibility of the duplicate samples is indicated by the tight
clustering of the duplicate samples. The color scale from green to red corresponds to low to high
concentrations in log scale. The clustering of the HGSOC into six clusters is denoted by numbers in
the clades of the dendrogram.

Results from hierarchical clustering validated the PCA results to a large extent. As
observed in the results from PCA analyses (Figure 1A,B), replicate sample pairs were tightly
clustered. The dendrogram from the dataset clustered the HGSOC cells into two major
branches or clades. OVSAHO, Kuramochi, SNU119, OVKATE, OV90, COV318, CAOV3,
SNU25, OAW28, and OVCAR3 clustered into one clade, whereas COV362, OVCAR4,
TYKNU, and ES2cells clustered into the second clade. The first clade branched out into four
minor clades whereas the second clade bifurcated into two minor clades (Figure 2). Similar
to the results from PCA analysis, SNU251 cell clustered next to the FTE188 control. Thus,
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based on the dendrogram structure, the HGSOC cells can be grouped into six metabolic
sub-types as depicted in Figure 3.
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Figure 3. Metabolome-based Clustering of HGSOC Cells. Based on PCA and hierarchical analysis of the metabolomic
profiles, fourteen different HGSOC cell lines are clustered into six metabolomic clusters. Known mutational profiles are
indicated by differently colored squares: Yellow, Deletion or loss of function mutation; Pink, Heterozygous loss; Red,
amplification or gain of function mutation; and Green, loss of function mutation. The column labeled CP-R refers to
cisplatin-resistance with R and S indicating the resistance and sensitive phenotypes of the cells.

3.2. Glycolysis and TCA Metabolism Profile in Ovarian Cancer Cells

Cancer cells derive energy for their survival and growth through the stimulation of
both oxidative phosphorylation and aerobic glycolysis. This involves the uptake of glucose
and subsequent breakdown of glucose into two molecules of pyruvate, with the release of
2 molecules of ATP. Consistent with this metabolic framework, glucose levels were found to
be higher in all cancer cells, relative to control, to different degrees (Figure S1). In addition,
increased levels of Glucose 6-phosphate, hexose diphosphate, and phosphoenolpyruvate
were seen in most of the cancer cells (Figure S1). Pyruvate, thus formed, is rapidly utilized
for the synthesis of lactate, acetyl CoA, or Alanine through different mechanisms. Our
results, as presented in Figure 4, validates such metabolic rewiring that favors aerobic
glycolysis. Pyruvate levels were observed to be lower in all the cancer cell lines relative
to control, indicating its rapid turnover (Figure 4A). More interestingly, lactate levels
were elevated in COV362, OVSAHO, TYKNU, OAW28, OVCAR4, ES2, and CAOV3 cells
(Figure 4B). Increased lactate levels typically represent increased glycolysis or reduced
conversion of pyruvate to acetyl-CoA for entry into the TCA cycle. Citrate, which is formed
from the condensation of oxaloacetate and acetyl-CoA was lower in a majority of the
tumor lines, excepting OVCAR3 and OV90 (Figure 4C). Succinate, which is downstream of
citrate in the TCA cycle showed such a decrease in the majority of the cancer cells, with
the exception of TYKNU and OVCAR4 (Figure 4D). Thus, the glycolysis and TCA cycle
metabolite data suggest that the oxidative phosphorylation in suppressed in majority of
the ovarian cancer cells in favor of aerobic glycolysis.
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Figure 4. Profiles of central energy metabolism metabolites in HGSOC cells. Changes in key
metabolites that serve as branching points in central energy metabolism are profiled. Relative
contents of the respective metabolites are expressed as scaled intensity in the y-axis and the cell types
are presented in the x-axis. Scaled intensity is an arbitrary unit relative to the overall median of 1
for the test metabolite. Data points are presented as boxes in the box plot in which the center line in
boxes in denotes the median value. The upper and lower borders define the two measurements of
scaled intensity as described under Supplemental Methods. (A). Changes in the levels of pyruvate
that could enter into aerobic glycolysis as well as TCA cycle pathways were quantified. (B). Increased
levels of lactate typically indicating increased glycolysis, and/or reduced conversion of pyruvate to
acetyl-CoA, for entry into the TCA cycle were determined. (C). Changes in the TCA-cycle metabolites,
represented by citrate (C) and succinate (D), were also monitored.

3.3. Increased Synthesis and Turnover of Phospholipids in HGSOC Cells

Phospholipids formed another group of metabolites that showed deviation from the
non-malignant control cells (Figure 4). Phospholipids are synthesized by conjugating
choline or ethanolamine head groups to diacylglycerols with the generation of cytidine
diphosphocholine (CDP-choline) or cytidine diphosphoethanolamine (CDP-ethanolamine).
While the individual phospholipid levels were not consistently changed in each of the
cancer cells, the precursors to phospholipid synthesis such as CDP-Choline and CDP-
ethanolamine, were sharply elevated in many of the cancer lines (Figure 5A,B). In ad-
dition, higher levels of glycerophosphoethanolamine and glycerophosphocholine were
determined in a majority of cancer cells (KURAMOCHI, OVSAHO, COV362, COV318,
OAW28, TYKNU, OVKATE, OVCAR4, OVCAR3, OV90, SNU119, CAOV3) excepting
ES2 and SNU251 cells, indicating an increased turnover of phospholipids in these cells
(Figure 5C,D).



Biomedicines 2021, 9, 1927 9 of 24
Biomedicines 2021, 9, x FOR PEER REVIEW 9 of 24 
 

 
Figure 5. Higher Phospholipid Synthesis and Turnover in HGSOC Cells. Phospholipid synthesis 
and turnover are indicated by levels of the key branch-point metabolites. Relative contents of the 
respective metabolites are expressed as scaled intensity in the y-axis against the cell types presented 
in the x-axis. Data points are presented as boxes in the box plot in which the center line in boxes in 
denotes the median value. The upper and lower borders define the two measurements of scaled 
intensity. Changes in overall phospholipid synthesis was monitored by CDP-Choline (A) and CDP-
ethanolamine levels (B). Changes in phospholipid degradation was monitored by glycerophospho-
choline (C) and glycerophosphoethanolamine (D) levels. 

3.4. Increased Amino Acid Metabolism in HGSOC Cells 
Results from the metabolic fingerprinting of ovarian cancer cells also indicated an 

upregulation in the metabolic pathways involving the metabolism of several amino acids 
(Figure 5). An increase in the levels of intermediary compounds in the methionine-cyste-
ine-glutathione synthetic pathway was observed. Levels of cystathionine, a precursor of 
cysteine (Cys), was found to be higher in most of the cancer cells excepting Kuramochi, 
OV90, ES-2, and SNU251 cells (Figure 6A). A similar increase in the levels of Cys was also 
observed in these cells (Figure 6B). Correlating with the precursor role of Cys in glutathi-
one synthesis, reduced-glutathione (GSH) also showed increased levels in many of the 
cancer cells (Figure 6C). Relative increase in the levels of glutathione-GSH over oxidized-
glutathione (GSSG) was detected in COV362, TYKNU, and CAOV3 cells (Figure 5C,D). 
Increase in the levels of both glutathione-GSH and glutathione-GSSG was observed in 
OV90 cells (Figure 6C,D). 

In addition to Cys metabolism, cancer cells showed perturbations in glutamine (Gln) 
and glutamate/glutamic acid (Glu) metabolism. All of the HGSOC cells—barring ES2 
cells—showed an increase in Gln levels (Figure 6E). Gln has been known to play a key 
role in cancer cell growth and energy metabolism. Gln utilization by the cells involve the 
conversion of Gln into Glu by glutaminases. Although increased Glu levels were not seen 
in many of the HGSOC cells, excepting Kuramochi and TYKNU cells (Figure 6F), it should 
be noted that Glu is rapidly metabolized in the cell and utilized as a substrate in multiple 
pathways involved in energy metabolism and macromolecular synthesis [22]. One such 

Figure 5. Higher Phospholipid Synthesis and Turnover in HGSOC Cells. Phospholipid synthesis
and turnover are indicated by levels of the key branch-point metabolites. Relative contents of
the respective metabolites are expressed as scaled intensity in the y-axis against the cell types
presented in the x-axis. Data points are presented as boxes in the box plot in which the center line
in boxes in denotes the median value. The upper and lower borders define the two measurements
of scaled intensity. Changes in overall phospholipid synthesis was monitored by CDP-Choline
(A) and CDP-ethanolamine levels (B). Changes in phospholipid degradation was monitored by
glycerophosphocholine (C) and glycerophosphoethanolamine (D) levels.

3.4. Increased Amino Acid Metabolism in HGSOC Cells

Results from the metabolic fingerprinting of ovarian cancer cells also indicated an
upregulation in the metabolic pathways involving the metabolism of several amino acids
(Figure 5). An increase in the levels of intermediary compounds in the methionine-cysteine-
glutathione synthetic pathway was observed. Levels of cystathionine, a precursor of
cysteine (Cys), was found to be higher in most of the cancer cells excepting Kuramochi,
OV90, ES-2, and SNU251 cells (Figure 6A). A similar increase in the levels of Cys was
also observed in these cells (Figure 6B). Correlating with the precursor role of Cys in
glutathione synthesis, reduced-glutathione (GSH) also showed increased levels in many of
the cancer cells (Figure 6C). Relative increase in the levels of glutathione-GSH over oxidized-
glutathione (GSSG) was detected in COV362, TYKNU, and CAOV3 cells (Figure 5C,D).
Increase in the levels of both glutathione-GSH and glutathione-GSSG was observed in
OV90 cells (Figure 6C,D).
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Figure 6. Changes in Amino Acid Metabolism. Changes in the metabolomic profile involving
Cysteine, Glutamine, and Tryptophan were monitored. Relative contents of the respective metabolites,
expressed as scaled intensity, were plotted in the y-axis against the cell types plotted in the x-axis.
Data points are presented as boxes in the box plot in which the center line in boxes in denotes the
median value. The upper and lower borders define the two measurements of scaled intensity. Levels
of cystathionine (A) that acts as precursor for cysteine and cysteine (B) were monitored. Changes
in the profiles of reduced glutathione (C) and its oxidized GSSG (D) counterpart were quantified.
Differences in the levels of Glutamine (E). and Glutamate (F) were also profiled. Levels of GABA
(G) and 5-HT (H) in different HGSOC cells were also determined.



Biomedicines 2021, 9, 1927 11 of 24

In addition to Cys metabolism, cancer cells showed perturbations in glutamine (Gln)
and glutamate/glutamic acid (Glu) metabolism. All of the HGSOC cells—barring ES2
cells—showed an increase in Gln levels (Figure 6E). Gln has been known to play a key
role in cancer cell growth and energy metabolism. Gln utilization by the cells involve the
conversion of Gln into Glu by glutaminases. Although increased Glu levels were not seen
in many of the HGSOC cells, excepting Kuramochi and TYKNU cells (Figure 6F), it should
be noted that Glu is rapidly metabolized in the cell and utilized as a substrate in multiple
pathways involved in energy metabolism and macromolecular synthesis [22]. One such
major pathway involves the conversion of Glu into the neurotransmitter γ-aminobutyrate
or γ-aminobutyric acid (GABA) by glutamic acid decarboxylase. Interestingly, HGSOC
cells showed an increase in the levels of GABA (Figure 6G).

Majority of the ovarian cancer cells also showed an increase in the levels of tryptophan,
suggesting an enhanced uptake of this amino acid by the cancer cells (Figure S1). Trypto-
phan can be readily metabolized into 5-hydroxytryptamine, kynurenine, or indole pyruvate
by three different enzymatic processes. While a few of the cells exhibited increased levels of
kynurenine (Figure S1), 9 out of 14 cell lines showed an increase in 5-HT levels (Figure 6H).

GABA, or 5-HT (Figure 6E–H). GABA, Glu, and 5-HT have been well characterized as
neurotransmitters as well as neurotrophic factors that activate intracellular signaling path-
way via the stimulation of specific sets of cell surface receptors. Evidence is emerging that
they can elicit diverse non-neuronal response by stimulating their receptors in non-neuronal
tissues and recent studies have shown that the extra-neuronal synthesis and release of
neurotransmitters cells into the TME by the cancer cells promote tumorigenesis and tumor
progression in many cancers [23,24]. Based on previously reported pro-tumorigenic sig-
naling roles of 5-HT [23,25–27], GABA [23,28,29], and Glutamate [22,23,30] in many other
cancer cells, we sought to test their potential role as oncometabolites in HGSOC cells.

3.5. Targeting the Potential GABA-Mediated Autocrine Signaling in HGSOC Cells

It is of interest to note here that GABA levels have been shown to be elevated in the
urine of ovarian cancer patients suggesting a pathological role for increased GABA levels
in ovarian cancers [31]. GABA has been shown to promote the proliferation of diverse
cancer cells including those of gastric cancer and pancreatic adenocarcinoma through the
activation of ionotropic GABAA receptors [28,32]. Therefore, a panel of ovarian cancer
cells—Kuramochi, TYKNU, and SNU119—that showed increased levels of GABA were
treated with two different concentrations of bicuculline, a GABAA-receptor antagonist.
Proliferation of the cells were monitored using Incucyte live cell kinetic proliferation assay.
Treatment of cells with bicuculline drastically inhibited the proliferation of the HGSOC
cells in a dose-dependent manner (Figure 7).

It has also been shown that GABA can stimulate the proliferation of prostate cancer
cells via the activation of metabotropic GABAB receptors [33]. Therefore, the panel of
HGSOC cells mentioned above were also tested for their sensitivity to GABAB-receptor
antagonist, CGP-55845. Cells were treated with two different concentrations of CGP-55845
and the proliferation of the cells was monitored. As shown in Figure 8, treatment of
cells with CGP-55845 potently inhibited the proliferation of the HGSOC cells in a dose-
dependent manner similar to GABAA-receptor antagonist.

3.6. Targeting the Potential Glu-Mediated Autocrine Signaling in HGSOC Cells

Potential role of glutamate as an oncogenic growth factor has been demonstrated
using breast, lung, or pancreatic cancer cells [34]. However, its role in ovarian cancer is far
from clear. Among the different metabotropic- (mGluR) and ionotropic- (iGluR) glutamate
receptors (GluR), the iGluRs belonging to N-methyl-D-aspartate receptor (NMDAR) family
are gaining importance as targets in cancer, primarily due to their ability to stimulate
mTOR- and ERK-signaling pathways that could be correlated with cell survival and
proliferation [35–37]. Previous studies have demonstrated the increased expression of
NMDAR subunits in ovarian cancer tissues and the ability of NMDAR-antagonists to
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inhibit the proliferation of non-serous ovarian cancer cell lines [38]. Therefore, we sought to
test whether the growth of HGSOC cells that show increased levels of Glu could be inhibited
by an antagonist of NMDAR. A panel of HGSOC cells consisting of Kuramochi, SNU119,
and TYKNU cells were treated with MK801, a potent antagonist of NMDAR [39]. As shown
in Figure 9, the inhibitor attenuated the proliferation of these cells in a dependent manner.
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Figure 7. Inhibition of Ovarian Cancer Cell Proliferation by Bicuculline, GABAA-receptor Antagonist. Kuramochi, SNU119,
and TYKNU cells were treated with vehicle control or Bicuculline at the concentrations of 10 µM and 25 µM and monitored
for 48 h in IncuCyte S3 Live-Cell Analysis system for cell proliferation at 12 h-intervals for 48 h, as described under Methods.
(A,D,G). Cell proliferation is expressed as confluence % of the cells. (B,E,H). Representative phase contrast bright field
micrographs of cells with cell masks (yellow) at 48 h (10× magnification) are presented. (C,F,I). Percent inhibitions over
the untreated control levels were quantified and presented. The experiments were repeated three times and the results are
from a representative experiment. Error bars represent mean ± SEM (n = 8). Statistical significance between the inhibitor
treated groups and the untreated control at each time pint was determined by two-way ANOVA and Dunnett’s multiple
comparison post-hoc test (*, p < 0.05; **, p < 0.005; ***, p < 0.0005; ****, p < 0.0001).

3.7. Evaluating 5-HT-Mediated Autocrine Signaling in HGSOC Cells

Similar to Glu and GABA receptors, 5-HT or serotonin receptors (5-HT-R) show exten-
sive heterogeneity and at least four different isoforms of the receptor have been reported
to be expressed in ovarian cancer [40,41]. There is some evidence that methiothepin, a
pan-antagonist of 5-HT-R could inhibit the growth of HGSOC cell lines, ES2 and OV90 [39].
However, the contributory role of cancer cell-derived 5-HT in triggering an oncogenic



Biomedicines 2021, 9, 1927 13 of 24

autocrine signaling loop in ovarian cancer has not been defined yet. We tested this using
LX-1031, an inhibitor of tryptophan hydroxylase 1, which has been widely used to inhibit
the synthesis of 5-HT [42,43]. HGSOC cells that showed higher levels of 5-HT, namely,
TYKNU, COV362, and OV90, were treated with the two different doses of LX-1031. Results
indicated that the inhibition of 5-HT synthesis by LX301 attenuated the proliferation of the
HGSOC cell lines in a dose-dependent manner (Figure 10).
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Figure 8. Inhibition of Ovarian Cancer Cell Proliferation by CGP-55845, GABAB-receptor Antagonist. Kuramochi, SNU119,
and TYKNU, ovarian cancer cells were treated with vehicle control or CGP-55845 at concentrations of 10 µM and 25 µM.
Cell proliferation was monitored for 48 h in IncuCyte S3 Live-Cell Analysis System. (A,D,G). Cell proliferation is expressed
as confluence % of the cells; (B,E,H). Phase contrast bright field micrographs of cells with cell masks (yellow), at 48 h,
10× magnification are presented; and (C,F,I). Percent inhibitions over the vehicle control were quantified and presented.
The experiments were repeated three times, and the results are from a representative experiment. Error bars represent mean
± SEM. Statistical significance between the inhibitor treated groups and the vehicle treated control at each time point was
determined by two-way ANOVA and Dunnett’s multiple comparison post-hoc test (*, p < 0.05; **, p < 0.005; ***, p < 0.0005;
****, p < 0.0001).
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thepin, a pan-antagonist of 5-HT-R could inhibit the growth of HGSOC cell lines, ES2 and 
OV90 [39]. However, the contributory role of cancer cell-derived 5-HT in triggering an 
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Figure 9. Inhibition of Ovarian Cancer Cell Proliferation by MK-801, Glu/NMDA-receptor Antagonist. Kuramochi, SNU119,
and TYKNU, cells were seeded treated with vehicle control or MK-801, a Glu/NMDA receptor antagonist, at concentrations
of 10 µM and 25 µM and cell proliferation was monitored for 48 h in IncuCyte S3 Live-Cell Analysis System. (A,D,G). Cell
proliferation was expressed in terms of total confluence % of the cells; (B,E,H). 48 h-Phase contrast bright field micrographs
of cells with cell masks (yellow), at 10× magnification are presented; (C,F,I). Percent inhibitions over the untreated control
were quantified. Presented results are from a typical experiment (n = 3). Error bars represent mean ± SEM. Statistical
significance between the inhibitor treated groups and the untreated control at each time point was determined by two-way
ANOVA and Dunnett’s multiple comparison post-hoc test (*, p < 0.05; **, p < 0.005; ***, p < 0.0005; ****, p < 0.0001).

3.8. Inhibition of Ovarian Cancer Cell Spheroid Growth by GluR-, GABA-R, and 5-HT Antagonists

Cells grown as three-dimensional spheroids have been shown to mimic in vivo cellular
responses to a variety of therapeutic agents [44,45]. Therefore, we tested the efficacy of
these pharmacological agents on the 3D spheroid growth of HGSOC cells. Spheroid growth
was initiated with TYKNU cells, a consensus cell line that showed increased levels of
GABA, Glu, and 5-HT (Figure 11A). Treatment of spheroids with CGP-55845, MK-801, or
LX-1031 potently inhibited the spheroid tumor growth (Figure 11B). Quantification of the
results indicated that the spheroid growth, as represented by the area of the spheroid, was
reduced by 40–50% (Figure 11C).
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Cells grown as three-dimensional spheroids have been shown to mimic in vivo cellu-
lar responses to a variety of therapeutic agents [44,45]. Therefore, we tested the efficacy of 
these pharmacological agents on the 3D spheroid growth of HGSOC cells. Spheroid 
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Figure 10. Inhibition of Ovarian Cancer Cell Proliferation by LX-1031, an antagonist of 5-HT synthesis. TYKNU, COV362
and OV90, cells were treated with vehicle control or LX-1031at concentrations of 10 µM and 25 µM. Cell proliferation was
monitored for 48 h in IncuCyte S3 Live-Cell Analysis system as detailed under Materials and Methods. (A,D,G). Cell prolif-
eration are expressed in terms of total confluence % of the cells; (B,E,H). Phase contrast bright field micrographs of cells with
cell masks (yellow) at 10× magnification are presented. (C,F,I) Percent inhibitions over the untreated control are presented.
Results are from a typical experiment (n = 3) and the error bars represent mean ± SEM. Statistical significance, determined
by two-way ANOVA and Dunnett’s multiple comparison post-hoc test, are denoted by ***, p < 0.0005; ****, p < 0.0001.
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Figure 11. LX-1031, MK-801, and CGP-55845 treatment inhibits spheroid formation in ovarian cancer cell lines. (A) TYKNU
cell line, which was identified as the single cell line that showed increased levels of all the three oncometabolites, was opted
for the 3D spheroid assay. TYKNU cells were culture as 3D spheroids as described under methods. Effect of vehicle control
and inhibitors on spheroid formation was monitored for 6 days in IncuCyte S3 Live-Cell Analysis system; (B) Phase contrast
micrographs of each well at 4× magnification (144 h). Vehicle (DMSO) control is denoted by “–”; (C) Spheroid growth was
quantified by quantifying the total spheroid area (µm2). Results from a representative experiment is presented (n = 3; Mean
± SEM). Statistical significance was determined by Student’s t-test (***, p < 0.0005; ****, p < 0.0001).

4. Discussion

Ovarian cancer is a heterogenous disease, characterized by several molecular subtypes
with underlying genetic, epigenetic, and metabolic abnormalities [46–49]. A multilayered
analysis, utilizing transcriptomic, proteomic, and epigenetic data, has identified nine molec-
ular subtypes in ovarian cancer [46]. Mutational analyses have classified ovarian cancer
into nine sub-groups [47]. Epigenetic analysis, specifically, DNA-methylation profiling has
discerned 3–4 molecular subtypes [46,48,50]. An in silico analysis of the expression pro-
files of the genes involved in metabolic pathways has indicated three molecular subtypes
although only one subtype, C2, is characterized by metabolism related genetic signa-
tures [49]. In light of these extensive molecular heterogeneity in ovarian cancer, molecular
profiling of cancer cells is one of the primary criteria to assess the closeness of the cells to
each other and more importantly, to tumor samples. This is especially true with cancer
cell lines that are being used as in vitro surrogates of tumor tissues. Utilizing genomic
profiling, previous studies have contributed significantly in identifying ovarian cancer
cell lines that closely resemble ovarian cancer tissues [51,52]. All of the 14 cells tested
here were identified as HGSOC cells. However, metabolic fingerprinting of these cells, as
presented here, has revealed the presence of five metabolic sub-types among these cell
lines (Figures 1–3). A case in point is that the mutational profiling has placed SNU119,
OVCAR4, Kuramochi, OVSAHO, COV318, and COV362 cell-lines closer to each other
than to others [51]. However, the metabolic fingerprinting, presented here, segregates this
group further into three sub-groups comprised of (1) SNU119, Kuramochi, and OVSAHO;
(2) COV362 and OVCAR4; and (3) COV318 (Figure 3). One of the limitations of the present
study is the use of duplicate experimental samples of each cell line for the metabolomic
analysis. However, the tightness of the duplicate samples in the box plots for each of
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the metabolites (Figures 4–6) strongly supports our conclusion on metabolic clustering
of the HGSOC cells. Although our results need to be strengthened by a greater number
of samples, the finer classification of HGSOC cells as presented here, could be utilized
for the development of effective metabolomics-based targeted therapy for ovarian cancer.
At present, the genomic, epigenetic, mutational or transcriptomic basis that define the
metabolic heterogeneity remains to be clarified. Further multiomics-based characterization
of these cell lines should define the etiological basis metabolic diversity, resultant clustering
of the cells into subgroups, and their relationship to the known molecular sub-types of
ovarian cancer. Since cell lines are invariably used as surrogates in vitro tumor models,
insights into the metabolic heterogeneity reported here would be of critical importance for
precision cancer medicine strategies.

Cancer metabolism has been described to be comprised of both convergent and di-
vergent metabolic pathways [7]. It has also been surmised that metabolic convergence
involves metabolic pathways underlying energy metabolism, metabolite biosynthesis, and
redox regulation [7]. Our results agree with the general paradigm in which the pathways
involved in energy metabolism, amino acid, and lipid biosynthesis and glutathione syn-
thesis show overall commonality in majority of the tested HGSOC cells. However, our
results also indicate specific differences in these pathways among these cell lines that can
be leveraged for sub-type specific targeted therapy. One such difference is observed in
sub-type specific differences in TCA cycle metabolites. Tumor cells often reduce mitochon-
drial oxidative phosphorylation and TCA cycle throughput and this is evident in the lower
TCA cycle metabolites such as citrate and/or succinate in HGSOC cell lines, relative to
the FTE188 control cells (Figure 4). Increased aerobic glycolytic activity (Warburg effect)
is frequently observed in tumor cells and most of the HGSOC cell lines showed evidence
of elevated glycolysis as indicated by the increase in the levels of lactate (Figure 3). It is
significant to note that the changes to energy metabolism are not uniform across all cell
lines. It is possible that the PTEN/PI3K/Akt pathway status play a determinant role in the
energy homeostasis and resultant dependency of cancer cells to oxidative phosphorylation
versus aerobic glycolysis [53]. In many instances, the PTEN/PI3K/Akt/mTOR pathway
has been associated with the upregulation of oxidative phosphorylation involving TCA
cycle. A recent study has shown the differential sensitivity of low-grade serous ovarian
carcinoma cells and HGSOC cells to mTOR inhibitors [54]. Previous studies from several
laboratories including ours have demonstrated the role of atypical signaling pathways
such as those regulated by LPA and BCL20 in modulating the glucose metabolism in cancer
cells [16,55,56]. Further interrogation of these signaling pathways in relation to specific
metabolites should identify the mechanism(s) involved in the differential modulation of
TCA cycle and aerobic glycolysis in these cell lines. Our results indicate that even within
HGSOC group of cells, there is a wide variation in the metabolic pathways involving the
utilization of glucose and the metabolic signature of lactate versus citrate/succinate, which
can be used to determine whether the subtype of cancer cells would respond to glycolysis
inhibitors [57] or TCA-cycle inhibitors [58].

In contrast to glucose metabolism, all the tested cell lines excepting SNU119 and
ES2 showed increased phospholipid metabolism suggesting metabolic convergence in
these cells (Figure 5). Phospholipids are critically involved in the pathophysiology of
the cancer cells [59]. In addition to serving as the cellular energy storage depot and
building blocks of cell membrane, they are also involved in oncogenic signaling, membrane
fluidity, and inter cellular communications that underlie cancer growth, progression, and
metastasis [60–63]. Thus, the observed increase in phospholipids correlates well with
the known tumor promoting roles of phospholipids. More importantly, these findings
suggest that the tested HGSOC cells share common vulnerability in phospholipid synthesis
and enzyme involved in phospholipid metabolism could be targeted for therapy. This is
consistent with the findings that inhibitors of general lipid metabolism could attenuate
the proliferation of ovarian cancer cell lines [64,65]. Our results extend this further by
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demonstrating that targeting phospholipid metabolism would be a better therapeutic
strategy for HGSOC cancer cells.

Increased amino acid metabolism involving cysteine, glutamine, glutamate/glutamic
acid, and tryptophan is seen in several of the tested HGSOC cell (Figure 6). Increased levels
of cystathionine and cysteine along with glutathione synthesis form another integrated locus
of metabolic convergence (Figure 6A–D). Although cell line to cell line variability was ob-
served for metabolites in the glutathione synthesis pathway, all of the tested cells—excepting
ES2—showed increased levels of GSH. GSH is primarily involved in the stringent reg-
ulation of redox state of the cells with its anti-oxidant activity. Increased levels of GSH
contributes to therapy resistance by quenching therapy-induced reactive oxygen species
involved in cell death [66,67]. Thus, our results further validate the targeting of glutathione
and glutathione synthetic pathway as a therapeutic strategy in ovarian cancer. Increased
amino acid metabolism involves the overexpression of proteins associated with amino
acid synthesis or their uptake in many other cancers including ovarian cancer [68–72].
Although such overexpression of critical proteins involved in amino acid metabolism
remains to be established in HGSOC cells, our findings identify amino acid metabolism
as a potential therapeutic target in ovarian cancer. These results are highly significant in
light of the emerging role of amino acid metabolic pathways as therapeutic targets in many
cancers [70,73,74].

A highly significant observation is that a subset of cells showed higher levels of Gluta-
mate, GABA, or 5-HT (Figure 6). GABA, Glu, and 5-HT have been well characterized as
neurotransmitters as well as neurotrophic factors that activate intracellular signaling path-
way via the stimulation of specific sets of cell surface receptors [23–25,75–82]. Evidence is
emerging that they can elicit diverse non-neuronal response by stimulating their receptors
in non-neuronal tissues and recent studies have shown that the extra-neuronal synthesis
and release of neurotransmitters cells into the TME by the cancer cells promote tumori-
genesis and tumor progression in many cancers [23]. While these transmitters have been
shown to stimulate cell proliferation in different cancers [75–82], identification of them as
potential oncometabolites or their role as mediators of autocrine signaling in ovarian cancer
is hitherto unreported. Our results, presented here indicate that the antagonists of these
metabolism-derived ligands can effectively disrupt the autocrine signaling loop and inhibit
ovarian cancer cell proliferation (Figures 7–11). In this context, it should be noted here that
baclofen, a selective agonist for GABAB receptor [83], has been shown to inhibit cell prolif-
eration in SKOV3 cells [84], a cell line that represent clear cell carcinoma of the ovary [51].
Contrary to this observation, our studies indicate that the GABAB-antagonist inhibit cell
proliferation in multiple ovarian cancer cell lines representing HGSOC (Figure 7). It is
possible that GABAB receptors are differentially coupled to a growth-inhibitory response
in SKOV3 cells, compared to HGSOC cells. The differential effects seen between clear cell
carcinoma-derived SKOV3 cells and HGSOC cells studied here, further underscores the im-
portance of considering inter-tumoral metabolic heterogeneity in precision cancer medicine.
Our results are further substantiated by the previous findings that Glutamate, GABA,
and 5-HT stimulate pro-tumorigenic pathways through autocrine as well as paracrine
mechanism in many different cancers. Additionally, 5-HT has been shown to be involved in
oncogenic signaling and anti-tumor immunity in multiple cancers [25,26]. Similarly, GABA
has been shown to promote the proliferation of pancreatic, prostate, and hepatocellular
carcinoma cells [28,29]. Glutamate has also shown to stimulate the proliferation of multiple
cancer cells including breast cancer through its cognate receptors [22,30]. In fact, GABA as
an oncometabolite in breast [85] and prostate cancer cells [86] whereas the glutamate as an
oncometabolite in thyroid cancer [87]. Oncometabolites are defined as “metabolites whose
great quantity were elevated noticeably in tumors compared with normal cells” [30,31] as
well as metabolites that drive “critical epigenetic changes and signaling pathway activation
that affect the biological properties of cancer cells” [88]. Based on these criteria, our studies
define glutamate, GABA, and 5-HT as oncometabolites that promote cell proliferation in
ovarian cancer cells.
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In addition to the categorizing the HGSOC cells into distinct metabolic sub-groups,
our results have identified GABA, Glu, and 5-HT as oncometabolites that promote cell
proliferation in ovarian cancer cells through an autocrine signaling loop (Figure 12).
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Figure 12. Schematic Representation of Putative Autocrine and Paracrine Signaling by GABA, Glu, and 5-HT. GABA, Glu,
and 5-HT, which are synthesized within the cancer cells, are secreted into the tumor microenvironment and can bind to
their specific receptors, either through autocrine or paracrine pathways in the tumor microenvironment to initiate the
intracellular signaling. While autocrine signaling involves the cancer cells in which the metabolites are synthesized and
released, paracrine signaling could involve the activation of tumor-promoting pathways in the TME resident stromal
fibroblasts, endothelial cells and immune cells such as microglia, macrophages, and lymphocytes.

The paradigm presented here also indicate the possibility that the metabolite derived
from the cancer cells can also act upon other cell types in the tumor microenvironment
such as cancer associated fibroblasts, endothelial cells, and immune cells to promote cancer
progression. Although there is no direct evidence is presented for paracrine signaling in
the present study, multiple lines of evidence from other cancers support for such a dual
signaling—autocrine and paracrine—role for Glu, GABA, and 5-HT [89]. Potential role for
such signaling in ovarian cancer is evidenced by the increased expression of Glu, GABA,
and 5-HT receptors in ovarian cancer cells as well as tissues [38,40,90,91]. In fact, MK801
and ifenprodil, the antagonists of NMDA-family of Glu-receptor, have been shown to
inhibit the proliferation of non-serous ovarian cancer cell lines SKOV3 and A2780 [38]. More
interestingly, methiothepin, an antagonist of 5-HT receptors has been shown to suppress the
proliferation and viability of HGSOC cell lines, ES2 and OV90 [91]. Demonstration of the
paracrine signaling by fallopian tube-derived norepinephrine, yet another neurotransmitter
with non-neuronal function, in ovarian cancer genesis and progression adds further support
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to such a dual role for Glutamate, GABA, and 5-HT in ovarian cancer progression [92].
Considering the fact that HGSOC represents the most aggressive and predominant sub-type
of ovarian cancer, our results derived from HGSOC cells are highly significant in identifying
metabolic subtype-specific potential therapeutic targets in ovarian cancer. Future studies
comparing the metabolic fingerprints of the HGSOC cell lines with those of patient-derived
cancer cells and devising methodologies for the targeted delivery of GABA, Glu, and 5-HT
antagonists to ovarian cancer tissue should pave the way for novel metabolic fingerprinting-
based targeted therapy in ovarian cancer.
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