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Abstract

Background: Peripheral blood biomarkers might improve diagnostic accuracy for idiopathic pulmonary fibrosis (IPF).

Results: Gene expression profiles were obtained from 89 patients with IPF and 26 normal controls. Samples were
stratified according to severity of disease based on pulmonary function. The stratified dataset was split into subsets;
two-thirds of the samples were selected to comprise the training set, while one-third was reserved for the validation
set. Bayesian probit regression was used on the training set to develop a gene expression model for IPF versus normal.
The gene expression model was tested by using it on the validation set to perform class prediction. Unsupervised
clustering failed to discriminate between samples of different severity. Therefore, samples of all severities were included
in the training and validation sets, in equal proportions. A gene signature model was developed from the training set.
The model was built in an iterative fashion with the number of gene features selected to minimize the misclassification
error in cross validation. The final model was based on the top 108 discriminating genes in the training set. The
signature was successfully applied to the validation set, ROC area under the curve = 0.893, p < 0.0001. Using the optimal
threshold (0.74) accurate class predictions were made for 77% of the test cases with sensitivity = 0.70, specificity = 1.00.

Conclusions: By using Bayesian probit regression to develop a model, we show that it is entirely possible to make a
diagnosis of IPF from the peripheral blood with gene signatures.

Keywords: IPF, FIP, gene signature, Bayesian probit regression

Background

While IPF is a significant cause of morbidity and mortality
worldwide, the standard approach to diagnosing IPF can
be quite challenging [1-3]. It requires integration of clin-
ical, pathological and radiological data. A multidisciplinary
discussion among expert clinician, radiologist and path-
ologist is required for high diagnostic accuracy [4]. It can
be difficult to replicate that type of diagnostic approach
outside of the academic setting [5]. In addition, the recent
IPF guidelines warn that, even among experts, the diag-
nostic confidence of IPF must be qualified. In other words,
the diagnosis of IPF must carry a modifier: definitive,
probable or merely possible [1]. Given these conditions, at
least 10% of all cases of interstitial lung disease (ILD) re-
main unclassified [6-9].
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Meanwhile, there are families impacted by familial inter-
stitial pneumonia (FIP) in which some family members
are affected and others are unaffected [10]. Unaffected
family members are at risk for eventually developing the
disease; but, other than genetic testing which has not been
standardized, there are no means for predicting this out-
come. When an unaffected family member develops re-
spiratory symptoms, a radiographic test or surgical lung
biopsy must be performed to secure the diagnosis similar
to the diagnostic approach in IPF. A blood-based diagnos-
tic test would be useful in this context, to avoid unneces-
sary radiation or surgery, and to screen at risk family
members for FIP. Currently, no blood tests exist for this
purpose.

We hypothesize that an accurate diagnosis of IPF can
be obtained from the peripheral blood by leveraging the
transcriptome with a functional gene signature.

Here, it is important to distinguish between functional
gene signatures and simple gene lists. The concept is that a
functional gene signature is akin to a multiplex biomarker,
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in that a functional gene signature can be used to query
unknown samples for the purpose of class prediction.
Functional gene signatures can be specifically designed to
predict diagnosis or prognosis. There are several compo-
nents to any functional gene signature: (1) a set of training
samples; (2) a specified feature list (select genes), upon
which the model is built; and (3) the actual expression
values of the selected genes, values that are specific to the
training set. The final product is a regression equation
(with intercept and coefficients for each genetic feature).

By contrast, a gene list is nothing more than an inven-
tory of differentially-expressed genes. Gene lists serve a
different purpose. They are designed to generate novel hy-
potheses or identify novel molecular targets and pathways;
but gene lists cannot be used to make class predictions.

Few functional gene signatures have been published in
the field of interstitial lung disease. Selman et al. pub-
lished a gene signature, based on whole lung tissue,
which distinguished IPF from hypersensitivity pneumon-
itis [11]. We recently published a whole lung tissue-
based gene signature that distinguished IPF from normal
controls by using Bayesian probit regression (BPR) to
develop the signature [12].

Although it can be difficult to diagnose idiopathic pul-
monary fibrosis (IPF), molecular biomarkers hold the
promise of making IPF diagnoses more accurate. Here,
we present an independently validated, peripheral blood-
based, BPR-derived diagnostic gene signature for IPF.

Methods

Study population

One hundred thirty subjects were recruited through
the Interstitial Lung Disease and Familial Pulmonary
Fibrosis Programs at National Jewish Health and Duke
University. This cohort has been previously described
[13]. In brief, all subjects met the modified criteria of
the ATS/ERS/JRS/ALAT for the diagnosis of IPF. [1] In
familial cases, only one subject per family was included
in this cohort. All subjects had no current tobacco use,
no current use of prednisone, azathioprine, or other
immune-modulating drugs, and provided written IRB-
approved informed consent.

One hundred twenty three samples passed strict tests
of RNA quality assurance [13]. Clinical annotation was
not available for 8 subjects due to discrepancies between
the genomic and quality control databases. Therefore,
only 115 samples were included in this analysis; these
115 samples are a subset of the complete dataset (raw
and processed data) that is available through the Gene
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/;
accession number GSE33566).

Samples were assigned to the training cohort or the
validation cohort by a stratified systematic method. First,
samples were stratified by pulmonary function and
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disease severity (see the next section). Then, for each
group by severity, every third patient was assigned to the
validation cohort.

Pulmonary function measures and categories of disease
severity

Forced vital capacity (FVC) and diffusion capacity for
carbon monoxide (DLCO) measurements were obtained
in accordance with standard guidelines [14,15]. When
both measurements (FVC and DLCO) were available,
mild disease was defined as having both the percent pre-
dicted FVC>75% and percent predicted DLCO > 65%.
Severe disease was defined as both FVC<50% and
DLCO < 35%. All other combinations of pulmonary func-
tion measurements were classified as moderate disease.
When some of the pulmonary function data was missing,
either FVC or DLCO alone was used to classify the sever-
ity. In eight cases, no pulmonary function data was avail-
able and disease severity remained unknown.

Sample processing and expression profiling

Peripheral blood collection and RNA isolation

The collection of samples was previously described [13].
Briefly, peripheral blood was collected in PAXgene RNA
tubes (PreAnalytiX, 762165). RNA extraction and purifica-
tion was performed manually utilizing the PAXgene Blood
RNA kit (PreAnalytiX, 762164) according to the manufac-
turer’s protocol. Quantification of total RNA was measured
via the Nanodrop ND-1000 spectrophotometer (NanoDrop
Technologies, Wilmington, DE). RNA quality was assessed
with a RNA 6000 NanoChip (Agilent, Palo Alto, CA) on
the 2100 Bioanalyzer (Agilent, Palo Alto, CA) by ratio
comparison of the 18 S and 28 S rRNA bands.

Microarrays

Generation of the expression profiles from peripheral
blood samples was previously described [13]. In sum-
mary, Agilent Whole Human Genome Oligonucleotide
Microarrays (Agilent, Palo Alto, CA), were used to de-
termine gene expression levels in peripheral blood.
Total RNA was used as a template for synthesis of
¢DNA utilizing the One Color Low Input Agilent Quick
Amp Labeling Kit and the Spike-In Kit to provide posi-
tive controls. The Agilent one-color microarray based
gene expression analysis was followed per manufacturer’s
instructions, and passed Agilent’s recommended quality
control tests. Samples were run in batches (batch 1
through batch 6).

Statistical analysis

Data processing

Expression estimates were normalized with the Agi44x4
package in the R computing environment as previously
described [13]. Both the raw and processed datasets
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are available through the Gene Expression Omnibus
(GSE33566).

Unsupervised analyses

Global gene expression profiles were filtered for the top
90th percentile by coefficient of variation, and samples
were evaluated by principal component analysis (PCA),
and genes and samples by agglomerative hierarchical
clustering using average linkage and Pearson correlation
coefficients.

Bayesian probit regression

Predictive models of IPF versus normal were derived by
an established method [12]. Briefly, top differentially
expressed features were selected using Student t-statistics
and expression values were summarized by the first two
eigenvalues from a singular value decomposition of the
training samples. Summarized expression values were
applied to a Bayesian probit regression model with
non-informative priors for the parameters pertaining to
the linear model and variance term. A Monte Carlo
Markov Chain (MCMC) was used to obtain the poster-
ior distribution for the linear predictor and regularized
probabilities for each decomposed data set. The model
was evaluated (internal validation) by leave-one-out
cross-validation (LOOCYV), whereby feature selection
was repeated for each sample and the expected pre-
dicted probability was taken as the average value from the
posterior distribution derived from the MCMC. External
validation of performance was assessed using receiver op-
erator characteristic (ROC) analyses and the Youden index
to identify optimal thresholds for differentiation.

All analyses were performed in the R/Bioconductor
environment [16] making use of workflows created in
the Duke instance of GenePattern (Broad Institute, MIT,
Cambridge, MA).

Overview of the statistical analysis plan

Prior to developing a gene signature model, the dataset
was explored as a whole — to see if there were any global
differences in gene expression that might be attributed
to batch effects, differences in clinical severity, or family
history. This exploratory analysis was performed with an
unsupervised method, PCA (Figures 1 and 2). Prior to
PCA, the dataset was filtered in an unsupervised fashion
using the coefficient of variation (CoV). Filtering was
done to improve the signal-to-noise ratio and resulted in
a filtered dataset containing only the top 90™ percentile
by CoV (2208 genes).

The training dataset (two-thirds of the samples) and
the validation dataset (remaining one-third) were hier-
archically clustered as a means to visually inspect the
data for outliers, prior to developing and validating the
gene signature model. A 90™ percentile CoV filter was
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applied to both the training dataset and validation data-
set prior to hierarchical clustering; again, a filter was ap-
plied to improve the signal-to-noise ratio.

Finally, a gene signature model was developed from
the training dataset by building consecutive models, over
a range of 50-250 genes. Each model was built by using
Bayesian probit regression (BPR). Each model was tested
for internal validity by using LOOCV. The model with
108 genes had the best internal performance characteris-
tics, measured by area-under-the-curve for misclassifica-
tion errors, and sum of deviance.

The regression equation from the 108-gene functional
gene signature model was used to query each sample in
the validation dataset. Posterior probability of IPF was
determined for each sample in the validation set. Posterior
probability of IPF versus the true diagnosis was used to
construct a contingency table and evaluate the perform-
ance characteristics of the functional gene signature as a
diagnostic test.

Results

Study subjects

Of the 115 samples in this cohort, 48 were obtained from
subjects with sporadic IPF; 41 samples were obtained from
cases of familial IPF; and 26 samples were obtained from
non-diseased healthy controls (Table 1). Forced vital cap-
acity (FVC) and diffusing capacity for carbon monoxide
(DLCO) were used to stratify the cases into mild, moder-
ate and severe disease categories. In each stratum, two-
thirds of the samples were selected for the training cohort;
one-third was reserved for independent validation.

Global analysis of gene expression

All samples

The complete dataset (gene expression profile with
22078 Agilent features, Additional file 1) was analyzed
to explore relationships among the samples. The dataset
was first filtered by ranking genes based on their coeffi-
cient of variation. This was done to remove background
noise and to enrich the dataset for the most informative
genes with the most variation. The top 90th percentile
(by coefficient of variation) was retained, resulting in a
dataset with 2208 genes.

Then, the filtered dataset was transformed by PCA and
the samples were plotted according to expression of the first
two principal components. The first two principal compo-
nents captured 60% of the variation within the filtered data-
set (45% is captured by the 1% PC; 15% is captured by the
2" PC). PCA plots were visually inspected to ascertain the
relationship between samples, based on microarray batch,
severity of disease and family history (Figure 1).

PCA plots of the complete (filtered) dataset could not
distinguish between samples from different batches
(Figure 1A). Nor could PCA plots distinguish between
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Figure 1 Principal component analysis of the entire dataset (115 subjects). First, the data is filtered for genes with a Coefficient of
Variation >90th percentile. Then, all samples are plotted according to expression of the first two Principal Components. (A) Samples are identified
by batch: batch 1 (black), batch 2 (red), batch 3 (green), batch 4 (blue), batch 5 (cyan), and batch 6 (magenta). (B) Samples are identified by severity of
disease (FVC%, see text): normal (black), mild disease (blue), moderate disease (green), severe disease (red), unknown (magenta); and the analytic subset:
training set (open circles), validation set (closed squares). (C) Samples are identified, again, by the severity of disease (DLCO%): color code is the same as
in panel B. (D) Samples are identified by family history: normal (black), familial idiopathic pulmonary fibrosis (cyan), sporadic idiopathic pulmonary
fibrosis (magenta).

samples of different disease severity (Figures 1B and C).
(Since there is no consensus as to which pulmonary func-
tion parameter is the best, one plot examines gene expres-
sion differences across severity defined by FVC while the
other plot examines gene expression differences across dif-
ferences in DLCO). Nor could PCA plots distinguish be-
tween samples with different family histories (Figure 1D).

PCA plots were also used to confirm that samples
from the training set and validation were essentially in-
distinguishable (results not shown).

Selected samples
The mild cases and the severe cases were picked out and
analyzed separately (to reduce background noise) to

determine if there were global differences in their gene
expression. With severity of disease defined by FVC,
there were 31 cases that fit the definition of mild disease
and 10 cases that fit the definition of severe disease.
PCA plots could not distinguish between the mild and
severe cases, as defined by FVC (Figure 2A). With sever-
ity of disease defined by DLCO, there were 14 cases that
fit the definition of mild disease and 18 cases that fit the
definition of severe disease. PCA plots could not distin-
guish between the mild and severe cases, as defined by
DLCO (Figure 2B). Since PCA could not distinguish be-
tween sample batches, disease severity defined by either
FVC or DLCO, or familial or sporadic cases, the filtered
dataset was further analyzed in aggregate.
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Figure 2 Principal component analysis of select samples. Data is filtered by the Coefficient of Variation. Samples are plotted by expression of
the first two Principal Components. Key: mild disease (blue); severe disease (red); training set (open circles), validation set (closed squares). (A) Severity of
disease is assessed by FVC% (see text): identified 31 cases with mild disease and 10 cases with severe disease. (B) Severity of disease is assessed by
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Table 1 Demographics of the study population
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Disease severity

N Control (%) Spoaradic (%) Familial (%) Age-yrs. (mean+sd) Gender (%omale) Mild Moderate Severe Unknown
Total 115 26 (23%) 48 (42%) 41 (36%) 662+ 12.1 62 23 (26%) 44 (49%) 14 (16%) 8 (9%)
Training 76 17 (22%) 33 (43%) 26 (34%) 663+ 134 58 15 (26%) 29 (49%) 9 (15%) 6 (10%)
Validate 39 9 (23%) 15 (38%) 15 (38%) 66.1+£94 69 8Q27%) 15(50%) 5 (17%) 2 (7%)

Hierarchical clustering and heatmap of the training set
The training dataset was examined with hierarchical
clustering. The training dataset consisted of 59 sam-
ples obtained from the peripheral blood of IPF subjects
(including both sporadic and familial cases) and 17
samples obtained from the peripheral blood of normal
subjects (Additional file 2). The training dataset was
filtered for the top 90th percentile of coefficient of
variation (resulting in a dataset with 2208 genes). Vis-
ual inspection of the hierarchical cluster could not dis-
tinguish between IPF patients and normal subjects
(Figure 3).

Iterative model building

Model tuning by leave-one-out cross validation

In developing a Bayesian Probit Regression model for
IPF versus normal, one of the first steps is to select the op-
timal number of features (genes) to include in the func-
tional gene signature. This was accomplished through an
iterative data-driven process, whereby consecutive models
were constructed, through a range of features from 50—

Figure 3 The training set. An unsupervised hierarchical cluster of
peripheral blood gene expression from 17 normal subjects (blue)
and 59 IPF subjects (red).

250 genes (the practical limits of computational power).
For each consecutive model, internal validity was mea-
sured with leave-one-out cross validation (LOOCYV) and
two parameters were examined: (a) the rate of phenotype
misclassifications, calculated by measuring the area under
the receiver operating characteristic curve (ROC statistic);
and (b) the sum of deviance (SOD), an aggregate of devi-
ances between the predicted posterior probability and the
expected posterior probability of the true phenotype for
each sample. The ROC statistic identified five potential
models (with maximal performance on the LOOVC test):
functional gene signatures containing 105, 107, 108, 109
and 111 features all attained ROC statistic = 0.814. Among
these potential signatures, the optimal functional gene
signature was chosen by examining the SOD. The func-
tional gene signature with 108 gene features had the
least SOD =21.461; signatures containing 107 and 109
genes were close, with SOD =21.469 and SOD = 21.467
respectively. The 108 gene signature was considered
most valid, by a combination of ROC and SOD criteria
(Figure 4).

The diagnostic gene signature

It was determined that 108 genes provide the optimal
number of features for a functional gene signature de-
rived from this particular training set, using the internal
validation procedures described above.

The gene signature is visualized with a heatmap that
highlights the necessary components of any functional
gene signature: training samples (across the columns),
gene features (across the rows) and the actual expression
values (upon which the model is constructed) that are
unique to this dataset (Figure 5). The complete regres-
sion equation (with intercept and gene coefficients) is
provided in the online supplement (Additional file 3).
This regression equation can be used to predict the
phenotype in any unknown sample. Thus, the diagnostic
gene signature presented herein can be used to inform
the diagnosis of IPF versus normal in any patient, using
the gene expression profile derived from peripheral
blood.

A partial list of the genes (features) that comprise this
gene signature is shown in Figure 5. The complete list
of 108 features is included in the online supplement
(Additional file 4).
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Figure 4 Selection of features for the model. Leave-one-out cross validation (LOOCV) is performed on all possible gene signatures,
ranging from 50-250 features. Then, the performance characteristics of this bootstrap test are used to select an optimal number of genes
(features) with which to build the signature. (A) Maximum area under the curve is achieved with signatures containing 105, 107, 108,
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Independent validation

Validation dataset

Figure 6A shows hierarchical clustering of the valid-
ation dataset. The validation dataset includes 30 sam-
ples from IPF subjects (familial and sporadic) and 9
samples from normal subjects (Additional file 5). The
validation dataset was filtered by coefficient of variation.

Visual inspection shows that hierarchical clustering of the
complete (filtered) validation dataset does not distinguish
IPF from normal.

Validation test
Each sample in the validation set was fed into the gene
signature model which produces a predicted probability

T

-
i

transmembrane and immunoglobulin domain containing 2
BTB and CNC homology 1, basic leucine zipper transcription factor 2
taste receptor, type 2, member 45
granulin
huntingtin interacting protein 1 related

unannotated
taste receptor, type 2, member 31
taste receptor, type 2, member 14

TXK tyrosine kinase
unannotated

(See Supplemental Table for complete Gene List)

Figure 5 The peripheral blood gene signature. A heatmap displays the normalized expression values of 108 genes that comprise the model,
derived from the peripheral blood of 17 normal controls and 59 subjects with IPF. A partial gene list (top ten genes) is displayed alongside the
heatmap. The complete gene list (all 108 genes) is provided in the online supplement.
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Samples are fed
through the gene
signature model

1 A
T

Figure 6 Validation testing. (A) Unsupervised hierarchical clustering of the validation set, includes 9 peripheral blood samples from normal
subjects (black) and 30 samples from IPF subjects (red). (B) Each sample from the validation set is assigned a probability of IPF, and a credible
interval to that value (solid bars), by Bayesian modeling to the gene signature. Normal subjects (blue) tend to receive low probability scores while
IPF subjects (red) tend to receive high probability scores. The optimal threshold for this test was determined by the Youden index (dotted line).

(the likelihood of an IPF diagnosis for this particular
sample). Predicted probabilities of all samples are
shown in Figure 6B. Predicted probabilities are com-
pared against the true phenotype. In general, normal
samples receive a low or moderate predicted probabil-
ity; while true IPF samples are assigned high predicted
probabilities.

An ROC curve (Figure 7) and a contingency table
(Additional file 6) are used to analyze the performance
characteristics of this gene signature, based on results of
the validation test. The Youden index was used to com-
pute the optimal threshold of predictive probability that
maximizes sensitivity and specificity. The Wilcoxon rank
sum was performed to test the general association be-
tween predicted probability and true phenotype (p <
0.0001). Complete performance characteristics (Table 2)
show a sensitivity of 70%, specificity of 100%, positive
predictive value of 100%, negative predictive value of
50%, and overall accuracy of 77%.

Discussion
We compared peripheral blood transcriptomes from pa-
tients with IPF and normal controls; and we derived and
validated a blood-based functional gene signature that
distinguishes IPF from normal. In a tertiary care popula-
tion such as the one included in our study, our gene signa-
ture is 77% accurate; with sensitivity estimated at 70% and
specificity estimated at 100% (area under the ROC curve
is 0.893). Wilcoxon rank sum demonstrates the general
discriminative ability of our gene signature (p < 0.0001).

Previously, we showed how BPR-methods could be
used to derive a functional gene signature from whole
lung tissue. Now, we present a validated, diagnostic IPF
gene signature derived from the peripheral blood tran-
scriptome. This tool has the potential to improve diag-
nostic accuracy while offering a less invasive approach to
the diagnosis of IPF.

In the course of these experiments, we also explored
the relationship between gene expression profiling and
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Figure 7 ROC curve, based on results of the validation testing.
The optimal cutoff point (as indicated) was determined by the
Youden index. See Table 2 for a numerical summary of the operating
characteristics.

disease severity (as measured by FVC or DLCO). We
found that global expression profiles could not suffi-
ciently discriminate between mild, moderate, and severe
disease. Therefore, we decided to ignore these factors in
developing our predictive model.

This report is a secondary analysis of data previously
reported by Yang et al [13]. While the analysis per-
formed by Yang et al. was focused on describing differ-
entially expressed genes in this cohort, our goal was
quite different. We aimed to develop and validate a pre-
dictive classification model for the diagnosis of IPF.
Interestingly, both our analysis and the Yang analysis
suggest that granulin (GRN) and matrix metalloprotease
9 (MMP-9) play an important role in the biology of IPF.
GRN and MMP-9 expression are both increased in IPF as
compared to normal controls. MMP-9 is a well-known
gene; its protein product has already been implicated in
the pathogenesis of IPF. [17] GRN has never before been
described in IPF; its product, progranulin, is a growth
factor that plays important roles in cancer biology, tis-
sue remodeling, neurodegenerative disease and hepatic
fibrosis [18,19].

Excessive fibroproliferation in the lung leading to ex-
cessive collagen deposition is characteristic of IPF, and
several of the genes in our 108 gene signature may play
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a role in this process. 1-Acylglycerol-3-phospate O-
acyltransferas 9 (AGPATY) is a member of the lysopho-
sphatidic acid aceyltransferase protein family, an enzyme
which catalyzes the conversion of glycerol-3-phosphage
into lysophosphatidic acid (LPA) in the synthesis of tri-
acylglycerol. LPA is increased in bronchoalveolar lavage
fluid following lung injury in the bleomycin model of
pulmonary fibrosis, and mice lacking of its receptors,
LPA1, are protected from injury [20]. Currently, a LPA1
receptor antagonist is in clinical trial as a potential treat-
ment for IPF. In this study, AGPAT9 is up-regulated in
the blood of patients with IPF, and it is possible that cir-
culating mononuclear cells maybe an important source
of LPA promoting lung fibrosis. There are several lines
of evidence that indicate alveolar epithelial integrity and
dysfunction are important in the pathobiology of IPF.
[21] There is particular interest in the role of chronic
herpesvirus infection may play in promoting alveolar
epithelial cell dysfunction in IPF [22], and it is of interest
that CD79B, a component of the B lymphocyte antigen
receptor, is up-regulated gene in our signature. Peripheral
blood cells migrating through the lung releasing profibro-
tic proteins such as MMP9, granulin, or AGPAT9, or lym-
phocytes interacting with herpesvirus in the lung, shows
how a blood-based RNA signature could reflect disease
processes in the lung. It is also important to remember
that 98-99% of the cardiac output circulates through the
lung whereas most organs only receive much smaller frac-
tion, therefore processes in the circulation may have a
greater impact on the lung. Similarly, cross-talk between
circulating cells and the lung may be greater than in other
organs.

We acknowledge several limitations of this study. For
instance, our gene signature has so far only been vali-
dated on independent samples. Though independent,
these samples came from the same population as the
training samples. Our gene signature is yet to be vali-
dated on an external population. Thus, performance
characteristics in the general population remain un-
known. It will also be important to test the gene signa-
ture on a greater number and wider variety of patient
samples to determine if confounders such as presence of
infection, disease severity or disease stability influence
performance of the signature.

Nevertheless, we have demonstrated the possibility of
diagnosing IPF from the peripheral blood. We plan to
validate our current gene signature in large external
populations to determine if the signature retains its pre-
dictive capacity in heterogeneous IPF populations. This

Table 2 Operating characteristics of the peripheral blood gene signature

Area under Optimal Sensitivity Specificity Positive predictive value Negative predictive value Overall accuracy Wilcoxon rank-sum

the curve cutoff

(p-value)

0.893 0.74 70% 100% 100%

50% 77% < 0.0001
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test may be of great value in identifying and diagnosing
early disease in our familial pulmonary fibrosis cohort
that contains over 800 families collected across the U.S.,
many with incomplete phenotype information. We also
propose the feasibility to develop other blood-based gene
signatures that may improve diagnostic accuracy across
the entire spectrum of ILD from nonspecific interstitial
pneumonia to hypersensitivity pneumonitis and so forth.
In addition, blood-based gene signatures could be used
in conjunction with information about IPF gene risk
variants [23].

Ethics

All research involving human subjects, human material,
and human data has been performed in accordance with
the Declaration of Helsinki, and with approval of ethics
committees at Duke University Medical Center, National
Jewish Health, and University of Colorado Denver Health
Sciences Center.

Conclusions

We derived and validated a blood-based functional gene
signature that distinguishes IPF from normal. In a tertiary
care population such as the one included in our study, our
gene signature is 77% accurate; with sensitivity estimated
at 70% and specificity estimated at 100% (area under the
ROC curve is 0.893). Wilcoxon rank sum demonstrates
the general discriminative ability of our gene signature
(p < 0.0001).
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