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Abstract

Currently, the population dynamics of preclonal cancer cells before clonal expansion of

tumors has not been sufficiently addressed thus far. By focusing on preclonal cancer cell

population as a Darwinian evolutionary system, we formulated and analyzed the observed

mutation frequency among tumors (MFaT) as a proxy for the hypothesized sequence read

frequency and beneficial fitness effect of a cancer driver mutation. Analogous to intestinal

crypts, we assumed that sample donor patients are separate culture tanks where proliferat-

ing cells follow certain population dynamics described by extreme value theory (EVT). To

validate this, we analyzed three large-scale cancer genome datasets, each harboring >
10000 tumor samples and in total involving > 177898 observed mutation sites. We clarified

the necessary premises for the application of EVT in the strong selection and weak mutation

(SSWM) regime in relation to cancer genome sequences at scale. We also confirmed that

the stochastic distribution of MFaT is likely of the Fréchet type, which challenges the well-

known Gumbel hypothesis of beneficial fitness effects. Based on statistical data analysis,

we demonstrated the potential of EVT as a population genetics framework to understand

and explain the stochastic behavior of driver-mutation frequency in cancer genomes as well

as its applicability in real cancer genome sequence data.

Introduction

The “Big Bang” model of cancer development and population genetics of

cancer cells

To deconvolve complex biology of cancer, it is useful to trace the temporal order of population

dynamics events of cancer cells as well as the underlying somatic genetic events [1]. In cancer,

a long mutation and selection process precedes a rapid population increase that results in a

clonal expansion which will be observed as formation of a tumor. This model is called the “Big
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Bang” model of cancer development (Fig 1A) and first proposed for the colorectal cancer

growth [2].

Unlike population genetics theories of familial human cancers [3], the population genetics

of cancer cells focuses solely on dividing somatic cells within a human individual. Those cells

reproduce themselves by asexual somatic cell division and thus are not Mendelian population

[4]. However, population genetics models such as SSWM [5], Moran process [6], and branch-

ing process [7] are powerful tools for describing population dynamics of cancer cells.

Mutation and selection are two driving forces of cancer evolution. The mutation-selection

balance (MSB) model [8–11] assumes infinite population, presence of epistasis [12] and domi-

nance effect. Implication of this model to cancer evolution is enormous [13, 14]. In this model,

the loss of genetic variation by selection is equal to the gain of it by mutation. The increase in

fitness (i.e., fitness effect) that a mutation confers to the organism is defined as a selection coef-

ficient which may be affected by several types of epistasis [8–10, 15]. In addition, the domi-

nance effect in diploid organisms such as human cancer cells is quantified as dominance

coefficient (Fig 1C) [8, 9, 15–17].

According to the “Big Bang” model, the “Big Bang” event separates the cancer development

process into two parts: the clonal expansion phase and the preclonal evolution phase. In the

clonal expansion phase, multiple tumor subclones are formed with a single expansion of cell

population at an early stage of tumor growth (Fig 1A) [2]. In this model, these cells not only

acquire clonal lesions that are shared among many cells within the tumor but also acquire sub-

clonal lesions that are observed only in a fraction of the tumor cells at almost the same time.

These subclonal lesions are not subjected to stringent selection in cancer evolution (i.e., neutral

evolution), thus leading to a state of intra-tumor-heterogeneity (ITH). However, it is known

that cancer as a whole is a Darwinian evolutionary system, in which driver mutations undergo

selective evolution and passenger mutations undergo neutral evolution [18]. Population genet-

ics studies on cancer evolution in this period have been performed elsewhere, typically with

emphasis on neutral evolution, ITH and an increasing population size [7, 19–21]. In contrast,

in the tumor initiation step, the preclonal evolution of cancer cells before the population

expansion, where the rate of such increase is so small that it is unobservable, has not been suffi-

ciently addressed thus far.

Preclonal evolution of cancer cells precedes the “Big Bang”

Preclonal evolution before the expansion of the cell population is thought to be selective, with

cancer cells acquiring driver mutations that extremely increase cellular fitness [22]. All cancer

driver mutations are beneficial for the survival of cancer cells, and acquisition of these muta-

tions brings fitness gain to cancer cells [23]. Among population genetics theories that are able

to describe such behavior of the fitness effects of beneficial mutations, the SSWM foundation

provides a first-approximation fitness landscape of beneficial mutations [24, 25]. As a speciali-

zation of the MSB model for asexual population such as human cancer cells [26, 27], this

model assumes that beneficial mutations are introduced and fixed in the population succes-

sionally [11, 28, 29] and have independent fitness effects: no epistasis [30] and no dominance

(i.e., epistasis and dominance effects are “additive”)(Fig 1C, S1B Fig) [31]. In this framework,

all beneficial mutations that occur in the population will increase fitness monotonically: i.e.,

they are on “selectively accessible” paths [25]. Thus, their adaptive walk is typically short.

The SSWM foundation is mainly characterized by two key assumptions: strong selection

and weak mutation (Fig 1D) [5]. Here, “strong selection” is equivalent to excluding neutral

mutations from consideration. Because all cancer driver mutations are beneficial, the strong
selection assumption holds for these mutations. In contrast, “weak mutation” means excluding
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Fig 1. Extreme value theory is applied to modeling the fitness landscape of preclonal cancer cells. (A) Overview of cancer evolution. According to the Big

Bang model of colorectal tumor growth, a tumor originates from a single clonal expansion. Clonal evolution proceeds after a Big Bang that produces a single

clone and multiple subclones. The majority of the subclones are generated at the Big Bang, and only a fraction of them are generated later. These subclones do

not experience stringent selection. The period before the Big Bang, on the other hand, is called preclonal evolution. We assume a small and constant

population size on cancer precursor cells at this stage. We model population dynamics at this stage with the SSWM regime. The transition from the preclonal

dynamics to the Big Bang is modeled with greedy adaptation. The triangles in the siphon indicate subclones in the tumor cell population. The rectangles and

circles indicate normal and malignant cells. In the schematic, mutation A, for example, is at position i in gene X. Similarly, mutation B can be either at position

j in gene Y, or at position i’ in gene X. (B) In the schematic, the dotted lines indicate fitness thresholds that allow cells to cause a clonal expansion in the given
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cases in which multiple mutations exist simultaneously within the population. In this assump-

tion, we consider only a genotype that is made by introducing a single mutation to a single

wild-type genome. We model population adaptation as a repetition of this step, in which a

genotype that is selected from such genotypes becomes a new wild type in the population.

Although this assumption always holds true for a microscopic landscape with a small popula-

tion size, it will be violated if multiple clones interact and multiple mutations compete against

each other during their fixation process (clonal interference) [32]. In the preclonal evolution

of cancer cells, the weak mutation assumption holds because we assume a small, genetically

homogenous ancestral cell population of the tumor sample of interest.

An additional but fundamental component of the SSWM foundation is the additive domi-
nance assumption (Fig 1D). Here we refer to dominance as non-additive effect of mutations at

a single locus in a diploid genome, separating it from epistasis [33] that involves multiple geno-

mic loci such as different genes on the same pathway. Human cancer cells are often assimilated

to a population of asexual dividing diploid organisms and thus can have dominance effect at

any genomic loci (Fig 1C). In the MSB model, the degree of the non-additivity in this context

is quantified by dominance coefficient that describes fitness effect of the heterozygous mutant

allele on an additive scale (S1B Fig) [34]. In this study, the dominance of a beneficial mutation

is assumed additive as long as its fitness effect is small [31, 35, 36].

In the preclonal evolution of cancer, a non-silent mutation within a driver gene can have

small fitness effect due to the complexity of cancer pathology. Even within a single cancer type,

tumor micro-environments of each tumor sample are sometimes greatly different from each

other [37, 38]. As a result, it is possible that a driver mutation which has caused a Big Bang in

one tumor sample remains to have only limited fitness effect in another. In addition, elements

of tumor micro-environments including resource availability may differ depending on loca-

tion and change over time [39–43]. This will partly explain the genetic diversity of cancer

including difference in necessary driver genes among tumors. And fundamentally, a clonal

expansion of the cell population which is the direct cause of the Big Bang is expected to occur

only once in the Big Bang model [2]. This means that the fitness effects of beneficial mutations

induced before the Big Bang are relatively small in comparison with the driver mutation which

is the direct cause of the single clonal expansion. Therefore, we assume that the dominance

effect of beneficial mutations including those in driver genes in a preclonal cancer cell popula-

tion is small and to remain approximately additive before the Big Bang (the additive domi-
nance assumption).

In contrast, driver mutations which are causative of the Big Bang are often characterized by

non-additive fitness effects in the event. These “causative” driver mutations are each a direct

cause of the Big Bang in the tumor sample of interest, and thus likely to have non-additive

interaction such as dominance and recessiveness (S1A and S1B Fig). Of the two categories

of cancer driver genes (i.e., oncogenes (OGs) and tumor suppressor genes (TSGs)) [44], the

former such as NRAS and KRAS is likely to have dominant driver mutations [45], while the

latter such as Rb and TP53 is likely to have recessive driver mutations [46–48]. These events

environment. We assume that the cell which had reached the threshold and started the clonal expansion has the highest fitness level among the preclonal

mutant cells. (C) Non-additive mutation effects in diploid genetics. Fitness effects of mutant alleles at the same locus and at different genomic loci can interact

resulting in non-additive mutation fitness effects. A heterozygous mutant locus contains a mutant allele and a wildtype allele. A homozygous mutant locus

contains two mutant alleles whose fitness effects can interact. In the mutation-selection balance (MSB) model, such fitness effect interaction is called

dominance effect. In contrast, fitness effect interaction at any different genomic loci is called epistasis. We distinguish dominance effect from epistasis. Stars

indicate mutations. The circle indicates a cell. The vertical bars indicate a copy of the cell’s genome. (D) Dependence relations among the ten assumptions. In

the schematic, A! B means A is a prerequisite for B. For example, the Additive Dominance Assumption is necessary for the Proportionality Assumption. Only

a subset of all dependence relationships is shown.

https://doi.org/10.1371/journal.pone.0243595.g001
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represent not only breaking of the additive dominance assumption, but also breaking of the

weak mutation assumption since they cause a rapid population expansion. Similarly, any such

expansion-causing oncogenic events including chromosomal missegregation [49–52], epige-

netic lesion [53], copy number alteration [54], mutant driver homozygosity [55], and loss-of-

heterozygosity [48, 56, 57] are all assumed to break the weak mutation assumption.

Breaking of SSWM dynamics primes clonal expansion of cancer cell

population

An expansion of the cancer cell population size generates multiple clones with multiple differ-

ent beneficial mutations, thus causing clonal evolution [20, 58] of the newer cells. Here, the

weak mutation assumption is violated and the population dynamics of the cells is thought to

shift from SSWM to greedy adaptation (Fig 1A) [59, 60]. A phenomenon wherein mutations

with greater fitness effects are certainly fixed in the population, resulting in increased repeat-

ability of the fitness trajectory of cells in such a situation [61], has been confirmed by an

Escherischia coli experiment [62]. The fact that a limited number of driver mutations has been

observed repeatedly in multiple cancer samples suggests not only the repeatability of the onco-

genic process, but also the underlying evolutionary structure itself.

An increase in population size not only strengthens the deterministic traits [61] of the pop-

ulation by clonal interference but also enables its fitness valley crossing [25, 63]. This gives rise

to an escape genotype that is not on the selectively accessible paths in SSWM, thereby counter-

acting the deterministic traits of the population. Stochastic tunneling, a critical element in the

valley-crossing mechanism, enables fixation of deleterious mutations as well as neutral evolu-

tion [20, 64]. These theoretical aspects of cell population behavior have been validated by E.
coli experiments [65]. In cancer, such population dynamics corresponds to the subclonal evo-

lution of passenger mutations that enhances ITH.

Importantly, an increase in population size also introduces another complexity in popula-

tion dynamics of cancer cells. Since the weak mutation assumption is violated, a newer muta-

tion can arise when an older mutation has not been fixed. With multiple mutations in a single

cell present, the effects of those mutations can interact resulting in a non-additive fitness effect

at different loci (i.e., epistasis) [33, 66]. The effect of epistasis on fitness landscape on a practical

time scale has been analytically and computationally examined in relation to the weak-muta-

tion limit and the distribution of fitness effects [67]. Roles of epistasis in cancer initiation are

highlighted elsewhere [68, 69].

Epistatic effect introduced by violation of the weak mutation assumption changes fitness

landscape of each cell in the population. This may result in a rugged fitness landscape [33, 70,

71] in which previously “beneficial” driver mutations become no longer beneficial. For exam-

ple, in a tumor with an already activated driver pathway, an activating mutation in a driver

gene on that pathway no longer contributes to tumorigenesis. This corresponds to violation of

the strong selection assumption that contributes to the neutral evolution [20] of cancer driver

genes. This in combination with the increasing population size reinforces the basis of applica-

bility of the Moran process [6, 20] and, if the increase is exponential, the branching process [7,

33, 44, 47, 68, 72]. Neutral evolution itself enhances ITH [19].

Extreme value theory as a framework for explaining mutant sample

frequency distributions of cancer driver mutations

Among the evolutionary models mentioned above, this manuscript focuses on SSWM (and

the ten assumptions: see Discussion and Fig 1D) to explain the acquisition of driver mutations

by cancer cells. According to the mutational landscape by Gillespie, the fitness of a wild type
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allele at a given gene locus tends to lie on the right side of a distribution because this fitness is

usually high, and the fitness of beneficial mutations lie further to the right [5, 31]. In this set-

ting, the fitness values are extreme, and thus their statistical behavior is described by EVT

[73, 74].

The first application of EVT to cancer preclonal evolution examined the proliferation of

stem cells in intestinal crypts [75]. Within the internal space of an individual crypt, the adapta-

tion and evolution of the cell population will be completely independent of the states of differ-

ent crypts. In our analysis, we employ an analogy that compares an intestinal crypt and a

tumor sample. Similar to a single crypt in the colon, a tumor sample has multiple cells that are

each independent evolutionary players.

In cancer genomics, “mutation frequency” in general refers to the variant allele frequency

(VAF) which is defined as a fraction of mutant reads to total reads at a given genomic site.

VAF ¼ #fmutated readsg = #ftotal readsg ð1Þ

This is approximately proportional to the mutant cells contained in a single sample if the

tumor sample purity is assumed constant. Recent studies have shown that the neutral evolu-

tion of the cancer genome results in a power law distribution of tumor bulk-sample VAFs

reported by a next-generation sequencer [76, 77].

In contrast, we define MFaT as a normalized frequency of mutant samples within a single

dataset.

MFaT ¼ #fmutated tumorsg = #ftotal tumorsg ð2Þ

This measure is proportional to patient/sample frequency in the dataset, and thus focuses

more on the repeatability instead of the clonality of a mutation. In this study, we adopt MFaT

as a proxy for expectation of VAF and fitness effect of a beneficial mutation (the proportional-
ity assumption). Since beneficial mutations experience selective evolution in carcinogenesis,

the distribution of MFaTs will be different from those of VAFs of neutral mutations. It should

be noted that this formulation is valid only with driver mutations in the Big Bang model [2].

Materials and methods

Study design

The overall analysis consists of two parts: total tumor analysis and tumor type-specific analysis.

The former contains two categories of cancer driver definitions: “driver-gene definition” and

“driver-site definition”. The “driver-gene definition” refers to a list of gene symbols which are

experimentally or computationally identified driver genes. The “driver-site definition” speci-

fies nucleotide positions as well as their gene symbols. In the tumor type-specific analysis, only

driver-gene definitions are used. An intersection set is calculated for every combination of a

large-scale cancer genomic dataset and a cancer driver definition. Taking intersection of a

given dataset with a “driver-gene definition” equals to applying filtering by gene symbols (sym-

bol-based filtering). On the other hand, taking intersection of a given dataset with a “driver-

site definition” equals to applying filtering by genomic positions (position-based filtering).

Throughout the analyses, different mutations in the same gene but at different nucleotide

positions are counted separately. For example, if a gene G contained only non-silent mutations

at positions P and Q, the gene G has two mutations. Sample frequencies in each dataset are cal-

culated based on combinations of G and P, distinguishing post-substitution nucleotides (e.g.,

an A-to-C mutation and an A-to-G mutation at P are distinguished).
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Datasets

In total, we used unique doubleton protein-altering single nucleotide variations (SNVs)

that numbered 68 973 from 15 285 patients in the ICGC Release 27 dataset [78], 325 244

from 24 355 tumors in the COSMIC Version 85 dataset [79], and 91 312 from 11 089 sam-

ples in the Chang dataset [80]. These groups of unique mutations respectively correspond to

groups of unique genomic sites: 68 613 in the ICGC dataset, 322 962 in the COSMIC dataset,

and 90 885 in the Chang dataset. These mutations were annotated as being either in the

“missense variant,” “initiator codon variant,” “stop gained,” or “stop lost” mutation class.

In all datasets, the reference genome version is GRCh37, and the annotation is based on

Ensembl v75.

In addition, we used the RTCGA mutations dataset (https://rtcga.github.io/RTCGA/) to

enable a tumor-type-specific analysis over cancer clonal mutations identified in an identical

sequencing strategy. This dataset includes 178 701 unique somatic protein-altering SNVs from

2 732 samples and corresponding 177 898 unique genomic sites. The samples are collected

from eight cancer types: BLCA (127), BRCA (949), HNSC (266), LIHC (191), LUAD (225),

PRAD (268), SKCM (340), and THCA (366) (sample sizes indicated in parentheses). The

sequencing strategy is whole exome sequencing (WXS) performed with two platforms (Illu-

mina GAIIx, Illumina HiSeq) at six centers (broad.mit.edu, genome.wustl.edu, hgsc.bcm.edu,

ucsc.edu, mdanderson.org, and bcgsc.ca). All mutations are annotated as being in either the

“missense mutation,” “nonsense mutation,” “translation start site,” or “nonstop mutation”

class. We defined mutations with VAFs in the range of [0.25, 1.00] as clonal after a pioneering

study in the field [76].

We used the following cancer driver-gene definitions in our analysis: the Mutational Driver

definition in the IntOgen Cancer Drivers Database (2014.12) dataset [81], the COSMIC Can-

cer Gene Census [79], and the Tokheim Oncogenes and Tumor Suppressor Genes [82]. Also,

we used the following data as cancer driver mutation site definitions: SNVs whose driver activ-

ity is “known” in the IntOgen 2016.5 Driver Mutations Catalog Mutation Analysis dataset

[83], SNVs in the DoCM database [84], and amino acid substitution information per gene in a

recent study (S4 Table in [85]).

Data processing

For the RTCGA dataset, mutations were filtered based on the VAF threshold described in the

previous section. For the rest of the data, mutations were filtered based on the criteria as in

[78–80].

MFaT values for each nucleotide mutation were calculated on the basis of the fraction of

mutated sample/patient count in the total samples/patients (for details, see Supplementary

Materials in S1 Appendix). In brief, the calculation was performed with special attention to

minimize the effect of artificial manipulation to data that would possibly be affecting observed

MFaT distributions. To filter out potentially low-confidence mutations, we selected mutations

that appeared at least twice in a dataset (total sample/patient counts are based only on

sequences containing such mutations). This would have ameliorated the problem of the origi-

nal datasets which are lacking correction or control of tumor sample purity. Protein-altering

mutations were selected based on all possible annotations to avoid unintentionally omitting

mutations that are synonymous in one annotation and at the same time protein-altering in

another (the strong selection assumption). Sample/patient counts were calculated in a manner

sensitive to reference/alternate allele combinations (e.g., a T to C mutation and a T to A muta-

tion at the same genomic site are distinguished throughout the analysis).
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The definition and calculation of MFaT

We defined mutant allele frequency among tumors (MFaT) as a frequency of samples within a

cancer genome dataset that have a given mutation at a given genomic site (see Eq 2). The

MFaT value is defined at any genomic sites corresponding to individual mutations recorded in

the dataset. In this formulation, the count of samples having a mutation is normalized by the

number of total samples within the dataset, permitting a comparison of mutated sample fre-

quencies between different datasets.

To practically and approximately calculate continuous MFaT values, we utilized multiple

total-tumor cancer genome datasets. In general, observed MFaT values will be discrete in any

dataset with a sample size less than 2 000. The total-tumor datasets, which typically have thou-

sands of sequencing samples, will provide enough resolution in MFaT values to satisfy the con-
tinuity assumption. With the aims of ensuring individual mutation observations and reducing

computational cost, we restricted our analysis with doubleton (i.e., observed at least twice in

each dataset) somatic protein-altering SNVs. A protein-altering mutation in our study is

defined as a mutation that changes the protein sequence in either of the annotated transcripts.

On mutations that do not satisfy this condition, or non-protein-altering mutations, one can

define MFaTs although the proportionality assumption does not hold over the values (for

details, see Discussion).

To exclude mutations with smaller fitness effects, we restricted our analysis to the mutation

sites with MFaT values ranked in the top 200 in the case of total-tumor analysis and top 50 in

the case of type-specific analysis. Here, we assigned smaller ranks to greater MFaT values. For

tied MFaT observations, we assigned the maximum rank (e.g., for MFaT observations {0.1, 0.3,

0.3, 0.5}, ranks {4, 3, 3, 1} will be assigned). The number of plotted MFaT values after the filter-

ing is shown in the figures as “b,” and the effective threshold “th” is shown where relevant.

The maximization of MFaT

In practice for large-scale cancer genome analysis, it is common to observe multiple mutations

on a single genomic site. This is due to the phenomenon that a single site is recurrently

mutated to differing bases (substitution) in a set of samples. Since we consider only simple sub-

stitutions at this time, three alternate sequences of a given genomic site are possible (e.g., {A,

T, C} against a reference base G). This could result in, at maximum, three different MFaT val-

ues for one site (e.g., MFaT for G to A, MFaT for G to T, and G to C).

In general, the number of cases of possible cancer cell environments that dominate cancer

evolution via selective pressure is unlimited. Thus, the number of possible selective coefficients

(i.e., the fitness effect) at a given genomic site is well approximated by positive infinity (the infi-
nite micro-environments assumption). This is equivalent to the case where the number of possi-

ble alternate sequences of a given genomic site is infinite.

In addition, we assume that the mutational selection coefficient of a given site is maximized

among possible alternate values after evolutionary selection (the maximization assumption).

Si ¼ maxðSi;1; Si;2; . . . ; Si;nÞ ðn !1Þ ð3Þ

where S denotes a mutational selection coefficient, i is the index for genomic sites, and n is the

number of possible values, respectively. This is consistent with the selectionist idea of the sur-

vival of the fittest, and the block maxima model in the extreme value theory.

To suffice for the maximization assumption of MFaT observations, we selected the maxima

of MFaT values in each genomic site, and excluded the rest from our analysis. As a result, the

counts of MFaT values, mutations, and sites will all be equal. Here, we define this process as

“maximization” of MFaTs, which will enable more exact and reliable data processing in future
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analyses. In the case of a tumor-type-specific analysis, we performed this maximization process

for the respective tumor types.

Parameter estimation

We estimated the generalized extreme value distribution (GEV) and generalized Pareto distri-

bution (GPD) parameters by the maximum likelihood (Nelder-Mead optimization) method

using the “evd” R package (i.e., evd::fgev, evd::fpot functions). Initial values for the optimiza-

tion are set in the GEV parameter estimation in the total-tumor analysis using the ICGC, COS-

MIC, and Chang datasets (shape: 1.25, location: 0, scale: 0), while they are not set in bootstrap

simulations using these datasets. We also used different initial values (shape: 1.0, location: 0,

scale: 0) in the total-tumor analysis using the RTCGA dataset.

For parameter estimation of the Pareto distribution, we defined its probability density func-

tion (PDF) and maximum likelihood estimators as the following, referring to implementations

in the “VGAM” R package. Here, n is the length of the observed data vector.

fParetoðxÞ ¼
axam
xaþ1

x > xm ð4Þ

x̂m ¼ min
i
xi ð5Þ

â ¼
n

Pn
i¼1

ln xi � n ln x̂m
ð6Þ

Goodness-of-fit assessment by χ2 goodness-of-fit test

To assess goodness-of-fit of the GEV and Pareto distributions, we performed a conventional

χ2 goodness-of-fit test over the total-tumor and tumor-type-specific cancer driver MFaTs

using the “stats” R package (stats::chisq.test function; rescale.p and simulate.p.value flags were

both set to TRUE). The theoretical frequencies of the MFaTs were calculated using parameters

estimated by the maximum likelihood method (see Parameter Estimation section) and then

compared with the observed MFaT frequencies. In this setting, the null hypothesis H0 stated,

“the observed distribution is identical with the theoretical,” and the alternative hypothesis H1

stated, “the observed distribution is different from the theoretical.” Consequently, a higher sig-

nificance level such as p< 0.05 rejected the H0 and indicated that “the observed distribution is

significantly different from the GEV,” for example. Conversely, a lower significance level such

as p = 0.50 weakly supported the notion that the observed and theoretical distributions are

alike.

Bootstrap simulation and confidence interval

Bootstrap simulations over parameter estimators were performed using the “boot” R package

(boot::boot function) in the total-tumor analysis. In all analyses, the iteration number is set to

n = 1 × 105. We did not set initial values in the cases of the ICGC, COSMIC, and Chang data-

sets, while they were set in the case of the RTCGA dataset (shape: 1.0, location: 0, scale: 0).

We calculated 95% confidence intervals for the GEV shape parameter (i.e., tail index) using

simulated total-tumor bootstrap distributions and a variety of calculation methods (in boot::

boot.ci function): the first-order normal approximation (Normal), the basic bootstrap interval

(Basic), the studentized bootstrap interval (Student), the bootstrap percentile interval (Percen-

tile), and the adjusted bootstrap percentile (BCa) interval.
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Density plot

For MFaT observations in each total-tumor case, we plotted theoretical probability density

functions (PDFs) obtained from the parameter estimation of distributions and empirical PDFs

obtained from observed values. We used the “evd” R package (evd::dgev and evd::dgpd func-

tions) to plot GEV and GPD PDFs. Similarly, we defined the PDF of the Pareto distribution by

referring to the “VGAM” R package (VGAM::dpareto function) (see Parameter Estimation

section). We used the “stats” R package (stats::density function) to draw the empirical density

function obtained from observations.

Data normalization in Q-Q Plot

We calculated a theoretical value of an observed MFaT value xk with Q(k/(N + d)), where Q(�)

is the quantile function of GEV, k is the rank of the observation when the values are ranked

from the smallest, N is the number of observations (N = b in plots), and d is the numerator cor-

rection factor (both b and d are shown in plots). The quantile function is defined by an inverse

function of the cumulative distribution function (CDF) of GEV. We used the “evd” R package

(evd::qgev function) to calculate the quantile function values.

Formulation of Fréchet plot

Based on the Weibull plot introduced in [86], we developed and drew a Fréchet plot (see dem-

onstration in Supplementary Materials in S1 Appendix). After the assessment of the goodness-

of-fit of the GEV distribution to the observations, we calculated slope and intercept values in a

linear regression. In the cases of tumor-type-specific and gene-specific Fréchet plots, we added

an additional data point MFaT = 1.0 to the observations in calculating each value of the empir-

ical distribution function Femp(x) against the observed MFaT x. This satisfied the condition 0

< Femp(x) < 1 so that the y-axis value y(x)= −ln(−ln Femp(x)) is finite. In the gene-specific

cases, we plotted only genes with more than two unique MFaT values. In such cases, we

analyzed skin cutaneous melanoma (SKCM) tumors separately that are more enriched in

mutations.

Bayesian parameter estimation by Markov Chain Monte Carlo simulation

In Bayesian extreme value analysis, we estimated tumor-type-specific GEV parameters using

the Markov Chain Monte Carlo (MCMC) approach. We used the “evdbayes” R implementa-

tion for this purpose. Prior distributions of respective GEV parameters (i.e., shape, scale, and

location) were assumed independent and normal. This means that the variance-covariance

matrix that is used to calculate prior distribution is diagonal. Also, this distribution is equal to

the trivariate (i.e., with three variables) normal distribution with variables that are mutually

independent. In addition, we determined the prior parameters regarding the results of the

bootstrap simulation, which are dependent on observed data. This means that the prior distri-

bution used in this step is “informative.”

Specifically, the normal parameters in the informative priors were set as follows

(mean ± standard deviation): shape 1.0 ± 0.5, scale 2.5 × 10−4 ± 3.2 × 10−4, and location

1.5 × 10−3 ± 1 × 10−4. The standard deviations of proposal distribution in MCMC were set as

follows: shape 0.01, scale 1 × 10−5, and location 1 × 10−4. The burn-in number of MCMC was

set to 5 000, whereas the number of iterations was 1 × 105. The initial values of the MCMC

simulation were set equal to the expectation of the normal priors. However, for scale parame-

ters in tumor-type-specific parameter estimation, we set the next value τ as the initial values

considering the loss of genetic diversity in sequencing samples due to the shrinking sample
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size, which has been a problem in tumor-type-specific analyses.

t ¼ 1=½Sample size of the tumor type� ð7Þ

After the MCMC simulation, we estimated tumor-type-specific GEV parameters using an

expected à posteriori (EAP) estimator.

Estimation of mutational fitness effects by MFaT

Consider the relative fitness Wi,A of a cancer cell with a post-mutational sequence A at a cer-

tain genomic site i. We define this value using the classic evolutionary selection coefficient, or

fitness effect, Si,A:

Wi;A ¼ 1þ Si;A ð8Þ

With this definition, we formulate the selection coefficient whereby the cell’s genome is

mutated from a pre-mutation (or reference) sequence R (with length 1 bp) to a post-muta-

tional sequence A [27].

Si;R!A ¼
Wi;A � Wi;R

Wi;R
¼

Si;A � Si;R
1þ Si;R

ð9Þ

Then, we consider cancer cell environments that determine selective pressure throughout

cancer evolution. We consider the set of all possible environmental states Θ and its elements θ
that determine the value of a selection coefficient of a cancer cell with a given genotype. Next,

we define the selection coefficient whereby the cell mutates from a pre-mutational sequence R
to a post-mutational sequence A at a genomic site i within a given environmental state θ:

Si;R!A;y ¼
Si;A;y � Si;R;y

1þ Si;R;y
ð10Þ

In addition, we assume that the fitness effect of a cancer driver mutation after preclonal

evolution is maximized (the maximization assumption). In other words, the fitness effect of a

given mutation is the maximum of many alternative values that are possible depending on the

combinations of alternate sequence information and possible cancer cell environments. Under

this formulation, the mutational selection coefficient (MSC), whose values are unique to can-

cer driver mutation sites, is defined by:

Si ¼ maxðfSi;R!d;ygd2D; y2Y
Þ ð11Þ

Here, D is the set of post-mutational DNA sequences that are possible at the site i, and d is

its single element. D is dependent on the genomic site i and the scope of consideration of

mutational classes. For example, in the case considering only simple substitutions, then D =

{A, T, C} if the pre-mutational sequence R was G. In this case, the size (i.e., the number of ele-

ments) of D is #{D} = 3. In contrast, the set Θ is independent of genomic sites and pre- and

post-mutational sequences. Here, we assume the size of the set #{Θ} is infinite (i.e., the number

of possible micro-environmental states is numerous) (the infinite micro-environments assump-
tion). Then, the number of possible selection coefficients n = #{D} � #{Θ} for a given site i tends

to infinity, and n!1 holds.

Let the individual values of Si,R!d,θ at respective genomic sites i be continuous and indepen-

dent and identically distributed (IID) about D and Θ (the IID assumption and the continuity
assumption). Based on the maximization, IID, and continuity assumptions, the block maxima

model in extreme value theory is valid over Si, demonstrating that Si converges to the
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generalized extreme value distribution (GEV) as n!1. Finally, as this limit holds due to the

infinite micro-environments assumption, the probability distribution of Si will be GEV over the

set of genomic sites J(i 2 J).
Here, we assume that MSC at a site i is proportional to the MFaT of the site i (the propor-

tionality assumption).

Si / ½MFaT�
i ð12Þ

We generalize this by considering normalizing constants of MFaTs, σ0 and μ0.

Si ¼
½MFaT�

i
� m0

s0

ð13Þ

In general, fitness W is unobservable, and so is the relative fitness Wi,A by a mutation at site

i in preclonal cancer cells. Thus, here we heuristically set μ0 = 0 and σ0 = 1. Then, the estimator

of MSC at site i is given by

Ŝi ¼ ½MFaT�
i

ð14Þ

EAP estimation of MSCs by GEV-binomial model

We consider the probability distribution of the sample count k of tumor samples which have a

certain post-mutational sequence at a given genomic site i. Since 0< MFaT < 1, here we con-

sider the binomial distribution Binom(m, Si) with Si (the MSC at site i) as a ratio parameter

and m (the number of tumor samples) as a size parameter. We update the Bayesian knowledge

of the parameter Si in our Bayesian framework using observations of k and m. Specifically, we

assume GEV as a prior distribution over Si, and then we calculate the posterior distribution

using discrete observations at individual genomic sites.

The prior distribution of Si is expressed using the PDF of GEV fGEV(s) with three parame-

ters (shape ξ, scale σ, and location μ) as follows:

fGEVðsÞ ¼
1

s
AðsÞ

�

1

x
� 1

exp � AðsÞ
�

1

x

2

4

3

5 ð15Þ

x 6¼ 0 ; AðsÞ ¼ 1þ x
s � m

s
> 0 ð16Þ

Here, A(s) is a function of s, the argument of the PDF. The likelihood at each value of

tumor sample counts, k = 0, 1, 2, . . ., m, is expressed using the probability mass function

(PMF) of the binomial distribution fBinom(k) as follows:

PðX ¼ kjSi ¼ sÞ ¼ fBinomðkÞ ¼
m

k

 !

skð1 � sÞ
m� k

ð17Þ

From Bayes theorem and appropriate assumptions over PMF and PDF, we assume the fol-

lowing equation over the posterior distribution of Si

PðSi ¼ sjX ¼ kÞ ¼
PðX ¼ kjSi ¼ sÞPðSi ¼ sÞ

PðX ¼ kÞ
ð18Þ
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Here, the necessary assumptions are

PðSi ¼ sÞ ¼ fGEVðsÞ ð19Þ

PðX ¼ kÞ ¼
X

i

PðX ¼ kjSiÞ ð20Þ

For the stepwise calculation of P(X = k), we need to consider tumor sample counts at all

genomics sites. However, this is easily achieved by normalization of the numerator P(X = k|Si
= s)P(Si = s). Finally, we estimate Si by the expected à posteriori (EAP) estimation and obtain

its 95% confidence interval (EAP ± 1.96 APSD) by calculating the à posteriori standard devia-

tion (APSD).

Results

The probability distribution of driver MFaT is likely a Type II extreme

value distribution

A visual inspection of the distribution shape using a density plot (Fig 2A and S2A Fig) sug-

gested that the probability distribution of cancer driver mutation MFaTs is approximately

equal to the extreme value distribution (for details, see Materials and methods). A Q-Q plot

with Sugano normalization (see Materials and methods) confirmed that the driver MFaT dis-

tribution is approximately described by the extreme value distribution given the relationship

between observed and theoretical values (Fig 2B, S2B Fig). In addition, the arrangements of

data points in Fréchet plots are approximately linear (R2 > 0.92 in symbol-based filtering cases

and R2 > 0.97 in position-based filtering cases), suggesting driver MFaTs follow the Fréchet

distribution (Fig 2E, S2E Fig). The results of a bootstrap simulation (Fig 2C and 2D, S2C and

S2D Fig) over the tail index as the shape parameter of the generalized extreme value distribu-

tion (GEV) revealed that the tail index of driver MFaTs is common among different cancer

genome datasets (1.25 ± 0.62 with a 95% confidence interval), and its value is positive (Type II

extreme value distribution or Fréchet distribution). Also, the result suggested that the tail

index can contribute to the estimate of systematic biases within a dataset, and in this case, the

ICGC dataset harbors greater noise compared to other datasets (Fig 2C, S2C Fig).

Finally, the results of a χ2 goodness-of-fit test did not exclude the possibility that the actual

distribution of driver MFaTs is GEV (with a significance level α = 0.05) (Tables 1 and 2). In

this statistical test, the null hypothesis H0 that may be rejected is “the observed distribution is

identical with the theoretical,” and the alternative hypothesis H1 that may be accepted is “the

observed distribution is different from the theoretical.” Thus, the former null hypothesis (H0)

is our claim. For example, in the case of ICGC-DoCM in the driver-site analyses, we cannot

conclude that the two distributions are different because the null hypothesis is not rejected at a

significance level α = 0.05 (p = 0.51> 0.05). This does not state that the two distributions are

identical but weakly supports the claim that the distribution of driver MFaT is GEV.

Collectively, the total-tumor analysis, using both symbol-based and position-based filtering

methods, strongly suggested that cancer driver mutation MFaTs in total-tumor datasets are

appropriately modeled by the Type II extreme value (Fréchet) distribution.

Bayesian MCMC approach confirms that tumor-type-specific driver MFaT

distributions are also Fréchet type

We then asked whether driver MFaT distributions were also of the Fréchet type in each tumor

type. We used the RTCGA dataset for this analysis regarding data availability. The results of
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Fig 2. Exploratory plots on cancer driver mutation MFaTs in the total-tumor analysis with symbol-based filtering. In these figures, the

“ICGC-IntOgen,” for example, denotes a set of mutations as an intersection of the ICGC mutations with the IntOgen driver-gene definition (i.e.,

symbol-based filtering)(for details, see Materials and methods). (A) Density plot of MFaTs. The colored solid line is probability density of observations,

the black solid line is the probability density function (PDF) of GEV, and the dotted lines are the PDFs of the GPD and Pareto distributions. For each

plot, a gene symbol and an amino acid substitution of a mutation with the highest MFaT value is shown in a box. (B) Q-Q plot of MFaTs. Here, “b”

denotes the number of genomic sites of beneficial mutations considered, “th” denotes the effective threshold against MFaTs when selecting mutations

according to ranks (for details, see Materials and methods), and “d” denotes the parameter in the normalization in the Q-Q plot. The straight line has

the equation y = x. In the Q-Q plot, each point denotes a pair consisting of an observation and its corresponding theoretical value. (C) Bootstrap
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the “total”-tumor analysis using the RTCGA dataset (Fig 3A and 3B) confirmed that estimated

values of GEV parameters in the case of the RTCGA dataset are reproducible and independent

of differences in filtering methods, as shown with the ICGC, COSMIC and CHANG datasets

(Fig 2C and S2C Fig). Tumor-type-specific analyses of eight tumor types (Fig 3C and 3D) con-

firmed that the results were similar to the results of the total-tumor analysis. Parameter estima-

tion by Bayesian MCMC (Fig 3C) showed the MFaT distributions belonged to the Fréchet

type, although some degree of variability in GEV parameters according to the differences in

tumor types were observed. In addition, the comparison of histograms of observations to esti-

mated densities (Fig 3D) confirmed that the probability distribution of GEV approximately

describes the actual distributions of type-specific driver MFaTs. The arrangements of data

distributions of the tail index. The white point indicates the median of the distribution. The black square shows the first and the third quantiles. (D)

Bootstrap confidence intervals. The dotted line shows the value that is in range of all confidence interval cases. (E) Fréchet plot. The R2 values and the

equation for the linear regression lines are shown. The symbols “b” and “th” are as defined in (B).

https://doi.org/10.1371/journal.pone.0243595.g002

Table 1. The χ2 goodness-of-fit test p-values of total tumors with symbol-based filtering (rank< 200).

Combination Case MFaT Driver Definition GEV p-value Pareto p-value

ICGC-IntOgen ICGC IntOgen 0.280 0.005

ICGC-CGC ICGC CGC 0.301 0.009

ICGC-Tokheim ICGC Tokheim 0.269 0.081

COSMIC-IntOgen COSMIC IntOgen 1.000 0.758

COSMIC-CGC COSMIC CGC 1.000 0.767

COSMIC-Tokheim COSMIC Tokheim 1.000 1.000

CHANG-IntOgen CHANG IntOgen 1.000 1.000

CHANG-CGC CHANG CGC 1.000 1.000

CHANG-Tokheim CHANG Tokheim 1.000 1.000

Note that in this setting, a higher significance level such as p< 0.05 indicates that the observed and theoretical distributions are different, and a lower significance level

such as p = 0.50 weakly supports a notion that the two distributions are alike. In this table, the GEV p-values are all above 0.25 maintaining the null hypothesis (H0) that

the two distributions are identical, while some of the Pareto p-values have fallen below 0.05 accepting the alternative hypothesis (H1) that the two distributions are

different.

https://doi.org/10.1371/journal.pone.0243595.t001

Table 2. The χ2 goodness-of-fit test p-values of total tumors with position-based filtering.

Combination Case MFaT Driver Definition GEV p-value Pareto p-value

ICGC-IntOgen ICGC IntOgen 0.405 0.336

ICGC-DoCM ICGC DoCM 0.529 0.316

ICGC-Tokheim ICGC Bailey 0.244 0.203

COSMIC-IntOgen COSMIC IntOgen 1.000 1.000

COSMIC-DoCM COSMIC DoCM 1.000 1.000

COSMIC-Bailey COSMIC Bailey 1.000 0.672

CHANG-IntOgen CHANG IntOgen 1.000 1.000

CHANG-DoCM CHANG DoCM 1.000 1.000

CHANG-Bailey CHANG Bailey 0.632 0.625

Note that in this setting, a lower significance level with higher p-value such as p = 0.50 weakly supports a notion that the observed and theoretical distributions are alike.

In this table, p-values are equal or higher in the GEV than the Pareto distribution.

https://doi.org/10.1371/journal.pone.0243595.t002
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Fig 3. Bayesian MCMC approach for estimating tumor-type-specific GEV parameters. In these analyses, only mutations filtered by gene

symbols are analyzed (i.e., symbol-based filtering). In the total-tumor analysis, we used the IntOgen, CGC, and Tokheim driver-gene definitions,

and in the case of tumor-type-specific analyses, we used only the IntOgen definition. (A) Density plot of MFaTs in the cases of the RTCGA total-

tumor with symbol-based filtering. The colored solid line is the probability density of observations, the black solid line is the probability density

function (PDF) of GEV, and the dotted lines are the PDFs of the GPD and Pareto distributions, respectively. For each plot, a gene symbol and an

amino acid substitution of a mutation with the highest MFaT value is shown in a box. Here, “b” denotes the number of genomic sites of beneficial

mutations considered, and “th” denotes the effective threshold against MFaTs when selecting mutations according to ranks (for details, see

Materials and methods). (B) Bootstrap distributions of GEV parameters in the total-tumor analysis. We used the maximum likelihood method for
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points in Fréchet plots are approximately linear (R2 > 0.90 in any of eight tumor types), sug-

gesting that driver MFaTs follow the Fréchet distribution (Fig 3E). Finally, the results of the χ2

goodness-of-fit test did not reject the null hypothesis that the distribution is GEV, except for

the case of THCA (Table 3).

Collectively, the parameter estimation by the Bayesian MCMC approach confirmed that

the probability distributions of tumor-type-specific driver MFaTs are also of the Fréchet type,

as shown for the total tumors (Figs 2 and 3A and 3B, S2 Fig).

GEV-binomial model estimates mutational selection coefficients (MSCs) of

cancer driver protein mutations

Here, we assessed, through the estimation of MSCs, the degree of contribution of each amino

acid mutation in driver proteins to oncogenesis by applying the Bayesian approach in the

framework of EVT using the RTCGA mutations dataset. We recognize that a set of assump-

tions are required for estimating MSCs through MFaTs in the framework of EVT. The details

of such assumptions are provided in the Discussion section.

In this series of analyses, we were able to compare these mutational fitness effects estimated

by mutation frequencies between tumor types, because the estimators utilize MFaTs normal-

ized by respective sample counts. This normalization thus far is independent of the classes of

genes and other features of interest. Thus, EVT as a field of population genetics is consistent

with the quantitative comparison of mutational fitness effects among tumor types involving

both OGs and TSGs.

For example, we estimated the MSCs of BRAF mutations among various tumor types

(Fig 4A). The estimated MSC was the highest for BRAF V600E in thyroid cancer (THCA),

followed by BRAF V600E in skin cutaneous melanoma (SKCM). The BRAF V600E mutation

in lung adenocarcinoma (LUAD) or other amino acid changes in BRAF showed relatively

low MSCs.

the parameter estimation. The white point indicates the median of the distribution. The black square shows the first and the third quantiles. (C)

Bootstrap distributions of GEV parameters in the tumor-type-specific analysis. We used the Bayesian MCMC method for the parameter

estimation. The white point indicates the median of the distribution. The gray square shows the first and the third quantiles. (D) MFaT

histograms with tumor-type-specific GEV densities. Black bars show frequencies in the histogram. The colored lines are estimated densities. (E)

Type-specific Fréchet plots. The R2 values and the equations of the linear regression lines are shown. Here, “b” denotes the number of genomic

sites of beneficial mutations considered.

https://doi.org/10.1371/journal.pone.0243595.g003

Table 3. The χ2 goodness-of-fit test p-values of the RTCGA dataset with tumor-type-specific symbol-based filter-

ing (rank< 50).

Dataset Tumor Type GEV p-value

RTCGA BLCA 1.000

RTCGA BRCA 0.434

RTCGA HNSC 1.000

RTCGA LIHC 1.000

RTCGA LUAD 0.506

RTCGA PRAD 1.000

RTCGA SKCM 0.381

RTCGA THCA 0.002

Note that in this setting, a higher p-value such as p = 0.50 weakly supports a notion that the observed and theoretical

distributions are alike. In this table, p-values are above 0.30 except for the case of THCA.

https://doi.org/10.1371/journal.pone.0243595.t003
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Fig 4. The EAP estimates of driver mutation MSCs. Tumor-type-specific posterior distributions of mutational selection

coefficients (MSCs) and EAP (expected à posteriori) estimates in driver-protein mutations calculated by the GEV-binomial model

(for details, see Materials and methods). For ease of plotting, we discretized probability densities of posteriors to obtain probability

masses. Among the probability masses that count the total number of tumor samples (i.e., the parameter m in the GEV-binomial

model), we omitted those tail probabilities that are smaller than 1/1000 in the plot. The white points at the center of each violin in the

plots represent EAP estimates given the distribution. The shapes of plotted distributions have information of MFaT tails that cannot

be modeled by a simple binomial model. (A) Violin plots of tumor-type-specific posterior distributions of MSCs in genes. Violins

are colored according to each amino acid substitution to enable a comparison among MSC distributions of identically coordinated
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In the literature, the impact on the fitness effect of the BRAF V600E mutation is likely dif-

ferent among tumor types, including thyroid cancer, skin cutaneous melanoma, and lung ade-

nocarcinoma. The mutation has been associated with poor prognosis and mortality in patients

with papillary thyroid cancer [87–89]. This is likely the strongest association between these

three tumor types. The prevalence of this mutation is reported also in melanoma [90] and is

shown to induce metastasis of melanoma in mice [91]. However, this is conditional to PTEN
loss, suggesting weaker association compared to the case of thyroid cancer. The contribution

of this mutation is even weaker in lung adenocarcinoma [92]. The estimated MSCs of BRAF
mutations among tumor types are consistent with these known facts.

Although not much is known for the impact of each mutations on the fitness effect among

the tumor types for other genes in Fig 4A, OGs (i.e., HRAS and PIK3CA) tend to have a few

“mutation-tumor type” combinations that show relatively high MSCs. In contrast, in the case

of TSGs (i.e., CDKN2A, CTNNB1, and SPOP), MSCs were small and the differences between

“mutation-tumor type” combinations are also small. This tendency is evident in the case of

TP53 (Fig 4B).

Discussion

Driver MFaTs are expectations of VAFs in the Big Bang model of cancer

evolution

According to the Big Bang model of the cancer genome [2], individual tumor samples have

independent and different oncogenic trajectories. Moreover, a driver mutation that has had an

impact on carcinogenesis within a single sample is a “public” mutation shared by all cells in

the tumor. In one sample, a class of driver mutations may have an impact on carcinogenesis,

while in another sample, it does not. If a mutation at a certain driver-site within a tumor sam-

ple has an impact on carcinogenesis, then all of the tumor cells have that mutation, and about

that driver site, VAF = 1.0 holds if the tumor sample purity is ideal (i.e., 100%). Similarly, if a

mutation at a certain driver site within a tumor sample did not impact the oncogenic process,

that mutation should not be observed in any of the tumor cells, and about that driver site,

VAF = 0.0 holds regardless of tumor sample purity.

If these two important aspects of cancer driver mutation VAFs are considered, the value of

aggregated tumor VAF (i.e., VAF that is aggregated across tumor samples in a given dataset;

for details, see Supplementary Materials in S1 Appendix) will be equal to the value of mutant

allele frequency among tumors (MFaT), which is given by the ratio of mutated samples to total

samples. The use of MFaT will thus be a powerful approach in normalizing, investigating, and

deciphering the records of preclonal evolution in large-scale cancer genome data.

The ten assumptions in extreme value cancer genomics

With the framework of SSWM (strong selection and weak mutation) in population genetics [5,

25], we were able to mechanistically and stochastically describe the preclonal evolution of can-

cer. To achieve this and perform valid extreme value analysis over cancer driver MFaTs, we

propose the following ten assumptions. Some of the relationships among these assumptions

mutations observed in different tumor types. Genes that have four “mutation-tumor type” combinations or more in the RTCGA

dataset are shown. (B) Violin plots of tumor-type-specific posterior distributions of MSCs in the TP53 protein sequences. The violins

are arranged according to the amino acid coordinates of the mutations and are colored according to the amino acid residue after the

substitution introduced by the mutation.

https://doi.org/10.1371/journal.pone.0243595.g004
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are shown in Fig 1D. These assumptions will specify the scope of the application of the theory

and will enable precise interpretation of the results.

1. The Single Macro-Environment Assumption: Cancer evolution is an evolutionary process

in which cancer evolves and adapts to a single macro-environment. This is based on a

notion that, from a viewpoint that considers multiple sets of patients and multiple tissue

types, the oncogenic and progressive processes are repeatable (the macro-repeatability

assumption). This also is a prerequisite for two other assumptions (i.e., the proportionality
assumption and the maximization assumption) stated below.

2. The Infinite Micro-Environments Assumption: In a microscopic point of view that

focuses on patients’ genetic background, physical condition, tissue type, and tissue micro-

structure, as well as the genetic diversity of cancer itself, the uncertainty of evolutionary

processes, and many other critical aspects of cancer evolution, we have infinite cases of pos-

sible cancer micro-environments. This is a prerequisite of the independent and identical

distribution assumption and the maximization assumption stated below.

3. The Additive Dominance Assumption: To translate knowledge of population genetics of

monoploid organisms to cancer evolution in which diploid cancer cells play major roles, we

assume that, in preclonal evolution of cancer cells, the fitness effect of a heterozygous allele

is approximately additive [93] to explain the fitness effect of the two associated homozy-

gotes [31]. This approximation is useful when fitness effects of beneficial mutations are

small [31, 35, 36] like those mutations before violation of the weak mutation assumption.

For activating mutation alleles in OGs, we assume that as long as there are only wildtype or

heterozygous alleles in the population, effects of these alleles are additive considering the

effect of wildtype as zero. Activating mutations in OGs may violate the weak mutation
assumption while allowing us to retain the additive dominance assumption. For loss-of-

function mutation alleles in TSGs, violation of the additive dominance assumption is equiv-

alent to mutation homozygosity [55] or LoH [48, 56, 57] as a carcinogenic event.

4. The No Epistasis Assumption: Similar to the additive dominance assumption, we assume

that mutation effects at different genomic loci exhibit no epistasis and thus are additive

[30]. Although the framework itself is capable of incorporating epistasis by reassigning

selection coefficients at each evolutionary step [30, 94], we focus on a fact that the no epista-
sis assumption is practically not overly violated, possibly because the majority of the tumor

samples has driver mutations on non-redundant pathways. It is known that for tumorigen-

esis, at least six cancer hallmarks should be established with corresponding pathways

affected either by driver mutations or by other tumorigenic events [95].

5. The Strong Selection Assumption: The mutations in the scope are all either beneficial or

deleterious, and no neutral mutations are considered [5]. Because we presume driver muta-

tions are all beneficial in cancer evolution [18], we can safely accept this assumption over

driver mutations. In the analysis, the validity of this assumption is ensured by removing

mutations with lower observed fitness gains. For the case of total-tumor analysis with sym-

bol-based filtering, we focused on mutation sites with the top 200 MFaT values, and for

type-specific analysis, we focused on the top 50.

6. The Weak Mutation Assumption: The beneficial mutations are fixed independently in the

population [25]. This is equivalent to the exclusion of clonal interference from the scope. In

the stage of preclonal evolution of cancer, it is plausible to assume that the probability of

acquiring multiple mutations within a single generation is sufficiently low. This leads to an

approximation of the presence of a single clone at any time. In combination with the strong
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selection assumption, we obtain the SSWM fitness landscape in which the population adapts

to the environment following a series of selective sweep.

7. The Proportionality Assumption: From the above-stated single macro-environment
assumption, cancer adapts and evolves in a single macro-environment. Here, we assume

that MFaT is proportional to the fitness gain that a mutation yields in the single macro-

environment. This enables quantification of mutational fitness gains in the cancer macro-

environment using MFaT.

8. The Continuous Fitness Effect Assumption (Continuity Assumption): So far, the fitness

effect that a mutation yields in cancer evolution is only indirectly observable. Thus, the pre-

cise formulation of the probability distribution of that variable is unknown as well as its

existence. However, the repeatability of cancer evolution implies that such fitness effects by

a mutation have a certain probability distribution, and the complexity suggests that the vari-

able is approximately continuous. From the above, we assume that the mutational fitness

gains in cancer evolution have a certain continuous probability distribution.

9. The Independent and Identical Distribution Assumption (IID Assumption): In general,

if two mutations had different genomic coordinates, then the phenotypic effects of the two

mutations also vary. This is because different genomic sites encode different structures and

functions of the organism. For example, mutations in the first and third letters of triplets in

the codon table will yield different amino acid substitutions (i.e., the first- and third- letter

substitutions are independent). In contrast, the fitness effect that a phenotypic effect of a

given mutation confers on the organism is dependent on the environment in which the

organism adapts and evolves. From the above-mentioned infinite micro-environments
assumption, we have numerous cases of such environments in cancer evolution. Under

these possible environments, we assume that the fitness effect of a given, single mutation

has a certain probability distribution that is independent of a genomic site of the mutation

(i.e., any given mutation have identical probability distribution). Then, the value of the fit-

ness effect of a mutation is independent and identically distributed (i.i.d.) across genomic

sites. This is equivalent to excluding cases of interaction of mutation effects (i.e., epistasis)

from the scope.

10. The Maximization Assumption: From the infinite micro-environments assumption, the

number of cases of possible cancer micro-environments is infinite. Fitness effect caused by

a mutation at a given genomic site have a different value in a different micro-environment.

It is known that, in the preclonal evolution of cancer, such micro-environments play criti-

cal roles in the evolution of cancer cells. Here, from the single macro-environment assump-
tion, we consider adaptation of cancer cells to the single cancer macro-environment in the

preclonal evolution step. We consider that, under such a macro-environment, cancer cells

are selected based on combinations of different micro-environments and different fitness

effects of cancer driver mutations. Thus, we assume that mutational fitness gain at a given

cancer driver site is maximized across possible values (the block maxima model) after

selection in the preclonal evolution. This is consistent with the idea of “survival of the fit-

test” in the theory of natural selection.

Si ¼ maxðSi;1; Si;2; . . . ; Si;nÞ ðn !1Þ ð21Þ

Here, S is a selection coefficient, i is an index for genomic sites, and n is the number of pos-

sible micro-environments.
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Although some of the above assumptions may not fit with our current knowledge of

cancer biology, the results of our analysis suggest that they may hold at least for the first

approximation.

The probability distribution of cancer driver MFaTs is likely the Fréchet

type

At the current level of our knowledge, statistical properties of fitness effect distributions of can-

cer driver mutations are to a large extent unknown. A primary reason for this is the lack of a

method that directly measures such fitness effects. However, the population genetics of cancer

cells based on SSWM and extreme value theory has the flexibility to deal with the behavior

of cancer cell populations while avoiding this problem. With these frameworks and several

appropriate assumptions, we are able to discuss at least some of the properties of the fitness

effect distributions from observed mutation frequencies as a result of adaptation and evolution

of cells, without knowing the exact fitness effect distribution in each mutation in each cell. In

other words, if the distribution of interest is continuous, the distribution of maxima drawn

from samples from that distribution will be one of these three types: Gumbel, Fréchet, or Wei-

bull [96].

Many “ordinary” probability distributions, such as normal, exponential, and gamma,

belong to the Gumbel maximum domain of attraction. Based on this fact and discussion that

Fréchet-type and Weibull-type distributions are not “biological,” Gumbel-type distributions

have been justified as distributions of fitness effects of beneficial mutations [97]. In addition,

a historical background in which such a fitness effect distribution has been considered to be

exponential also supported this preconception (Fisher’s geometric model; [27, 98]). However,

recent theoretical advances clarified that distributions that belong to the Fréchet and Weibull

domains are also possible [73].

Biological experiments roughly supported this non-Gumbel hypothesis of fitness effects

of beneficial mutations. A recent experiment involving two virus strains showed that fitness

effects practically yielded by a beneficial mutation do not follow an exponential distribution

[99–101]. The mathematical background of this experiment is that, if values of the fitness

effects have a right-truncated distribution due to their upper limit being characteristic of a

given experimental setting, then the maxima of values drawn from that distribution will follow

the Weibull distribution. In this experiment, a fitness effect value of a mutation is quantified as

a count of formed plaques and is a proxy for virus particles [102, 103]. A quantity based on a

count of biological entities is among the most powerful candidates for a variable to quantify

the fitness effects of a mutation.

Also, an Escherichia coli experiment designed as an application of EVT empirically con-

firmed that the fitness effects of fixed beneficial mutations follow a distribution with a positive

mode [104]. Although experimental settings including the method to quantify mutant fitness

are greatly different from this study, the Fréchet distribution as a statistical distribution that

describes the behavior of fitness effects of fixed driver mutations in tumor samples also has a

positive mode in its mathematics.

Our study suggested that the distribution of fitness effects of driver mutations calculated

from a sample frequency in a large-scale sequence dataset is of the Fréchet type (Figs 2 and 3),

while it also allows distributions of the fitness effects of the individual mutations to remain

unknown. The results of goodness-of-fit tests (Tables 1–3) did not reject the null hypothesis

that the given two distributions are identical, supporting the possibility that the distribution

of MFaTs as estimates of mutational selection coefficients (MSCs) is Fréchet distribution.

Mathematically, a zero value of the shape parameter of the generalized extreme value (GEV)
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distribution means the Gumbel type, and a positive value means the Fréchet type. Also, the

Fréchet distribution itself belongs to the attraction domain of the Fréchet distribution. These

results not only present a problem to the previously held Gumbel hypothesis [73] from a prac-

tical point of view but also suggest the applicability of the Fréchet distribution in cancer geno-

mics (Fig 4). In the case of THCA (Table 3), the null hypothesis was rejected in the goodness-

of-fit test and it did not reproduce this result. It is obvious from the graph that this irreproduc-

ibility is due to the lack of mutations used in the analysis (Fig 3E).

The applicability of extreme value theory in cancer genomics

The posterior distributions of tumor-type-specific mutational selection coefficients (MSCs) of

driver mutations calculated by the GEV-binomial model (Fig 4) contain information of distri-

bution tails described by EVT. In the violin plots, because the EAP estimates drawn as white

dots contain information of the tails that cannot be handled by a simple binomial model, those

estimates have shifted to the right from the central point, as suggested by shapes of the poste-

rior distributions. Such shifts are significant in posterior distributions of mutations, such as

the S33P mutation in the CTNNB1 gene in the LIHC tumor type and the Q61R mutation in

the HRAS gene in the THCA tumor type (Fig 4A). Similarly, while EAP estimates of driver

mutation MSCs in the TP53 gene strongly reflect MFaTs that are mutant sample frequencies,

these values also reflect information of the tails so as to be more continuous (Fig 4B). The shifts

in these estimates suggest the applicability of EVT in cancer genomic analyses that entail esti-

mation of fitness effects of beneficial mutations.

Conclusion

Based on statistical data analysis involving multiple tumor types and multiple definitions of

cancer driver mutations, this study not only demonstrates that EVT helps us to understand the

statistical distribution of driver-mutation frequencies in the cancer genome, which is a critical

aspect in cancer genetics, but also suggests its applicability in cancer genomics based on its

potential to model the tail behavior of mutation frequency distributions.
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