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1  |  INTRODUC TION

Ovary plays a central role in the female reproductive system by pro-
ducing functional oocytes capable of undergoing fertilization and 
embryogenesis and secreting several steroid hormones as part of 
its endocrine function. To achieve this, the normal development and 
function of ovarian follicles are crucial, with the oocyte playing a 
central role in this process. In fact, in mice, when follicles are recon-
structed from oocytes and somatic cells collected separately from 
follicles at different developmental stages, the developmental stage 

of the follicle synchronizes with that of the oocyte rather than with 
that of the somatic cells.1 Therefore, the developmental stage of the 
follicle is determined by the oocyte, and this appears to be an im-
portant mechanism for establishing a suitable follicular environment 
for the developmental stage of the oocyte itself.

Many studies investigated the mechanism by which oocytes co-
ordinate follicular development and function. These studies have 
identified critical growth factors produced by oocytes that are re-
quired for normal folliculogenesis. Oocyte- derived paracrine fac-
tors (ODPFs) regulate the way how follicular somatic cells, namely 
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Abstract
Background: Development of ovarian follicles is regulated by a complex interaction 
of intra-  and extra- follicular signals. Oocyte- derived paracrine factors (ODPFs) play a 
central role in this process in cooperation with other signals.
Methods: This review provides an overview of the recent advances in our under-
standing of the paracrine regulation of antral follicle development in mammals. It spe-
cifically focuses on the regulation of granulosa cell development by ODPFs, along 
with other intrafollicular signals.
Main Findings: Bi- directional communication between oocytes and surrounding cu-
mulus cells is a fundamental mechanism that determines cumulus cell differentiation. 
Along	with	estrogen,	ODPFs	promote	the	expression	of	 forkhead	box	L2,	a	critical	
transcription factor required for mural granulosa cells. Follicle- stimulating hormone 
(FSH) facilitates these processes by stimulating estrogen production in mural granu-
losa cells.
Conclusion: Cooperative interactions among ODPFs, FSH, and estrogen are critical in 
determining the fate of cumulus and mural granulosa cells, as well as the development 
of oocytes.
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granulosa cells, respond to extra-  and intrafollicular signals, pro-
foundly by affecting the gene expression in these cells. In this review, 
we summarize the current understanding of paracrine regulation of 
antral follicle development, with an emphasis on the regulation of 
granulosa cell development by ODPFs and other intrafollicular sig-
nals in mammals.

2  |  FOLLI  CUL OGE NESIS

Follicular development begins with the formation of primordial fol-
licles (Figure 1). Primordial follicles consist of a layer of squamous 
somatic cells, often called “pre- granulosa cells,” surrounding an im-
mature and quiescent oocyte. The ovary contains thousands to mil-
lions of primordial follicles in a dormant state, which serve as a pool 
of oocytes produced by the animal throughout its lifetime. Some 
of the dormant primordial follicles initiate growth and progress to 
become primary follicles, where the oocyte starts to grow and the 
surrounding somatic cells transform into cuboidal morphology. The 
somatic cells surrounding the oocyte at this stage are now called 
“granulosa cells.” Formation and activation of primordial follicles 
are affected by oocytes, as evidenced by the ovarian phenotypes 
of mutant mouse models. For example, the ovaries of mice deficient 
in Figla (folliculogenesis specific basic helix– loop– helix) and Pten 
(phosphatase and tensin homolog) exhibit no primordial follicles and 
activation of entire pool of primordial follicles and consequent pre-
mature ovarian failure, respectively.2,3

When the granulosa cells of the primary follicle continue to pro-
liferate and form multiple cell layers, the follicle is called a secondary 
follicle,	and	 the	granulosa	cells	become	round	shape	 in	mice.	As	a	
secondary follicle develops into a tertiary follicle, a fluid- filled cavity 
called the antrum is formed within the follicle. Hence, the tertiary 
follicle is also known as an “antral follicle,” while the secondary fol-
licle	 is	often	referred	to	as	a	“preantral	 follicle.”	Antrum	formation	
appears to be dependent on oocytes, as shown in experiments in 
which oocytes or recombinant proteins of ODFPs promoted antrum 
formation in isolated granulosa cell complexes in vitro.4,5

Formation of the antral cavity physically divides granulosa cells 
into two sub- populations in the antral follicles: cumulus cells and 
mural granulosa cells. Cumulus cells are located close proximate to 
oocytes and play a pivotal role in supporting oocyte development. 
In contrast, mural granulosa cells are located far from oocytes at the 

wall of the follicle and primarily perform endocrine functions such 
as estrogen production. In comparison to these granulosa cell pop-
ulations in antral follicles, granulosa cells of preantral follicles (i.e., 
secondary follicles) are sometimes referred to as “preantral granu-
losa	cells.”	Normal	development	of	these	granulosa	cell	populations	
is crucial for ovarian function and, therefore, for normal female 
fertility.

3  |  BI-  DIREC TIONAL COMMUNIC ATIONS 
BET WEEN OOCY TES AND CUMULUS CELL S

Cumulus cells contact oocytes through narrow cytoplasmic exten-
sions known as transzonal projections (TZPs) that penetrate the 
zona pellucida.6,7	At	the	end	of	TZPs,	cumulus	cells	form	heterolo-
gous gap junctions with oocytes and support oocyte development 
by supplying small- molecule substances, such as metabolic prod-
ucts.8 For example, oocytes do not express enzymes in the glyco-
lytic pathway and therefore cannot efficiently utilize glucose as an 
energy substrate.9 In contrast, cumulus cells have high glycolytic 
activity, actively metabolize glucose, and supply metabolic products 
(such as pyruvate) to the oocytes.10,11 Through this process, cumulus 
cells support the energy metabolism of oocytes. Similarly, cumulus 
cells supply substances that oocytes are not capable of producing 
or taking up, such as cholesterol and certain amino acids, to support 
oocyte development.12– 14 Moreover, oocytes depend on cumulus 
cells for transcriptional regulation15 and meiotic controls.16

In contrast, oocytes are not merely the recipients of support 
from cumulus cells; rather, they actively participate in regulating 
the development and function of cumulus cells by secreting various 
growth factors. For example, oocytes promote the proliferation of 
cumulus cells,17 prevent apoptosis,18 and, at least in mice, enable 
cumulus expansion, a prerequisite process for normal ovulation.19,20 
Moreover, the aforementioned metabolic activities in cumulus cells, 
that is, glycolysis, amino acid uptake, and cholesterol biosynthesis, 
are also regulated by oocytes.12,21,22 In addition, while meiotic arrest 
of oocytes requires cyclic guanosine monophosphate (cGMP) sup-
plied from cumulus cells through gap junctions, cGMP production by 
cumulus cells is regulated by oocytes.23

Therefore, while oocytes regulate the development and function 
of cumulus cells, cumulus cells support the normal development of 
oocytes. This bi- directional communication between oocytes and 

F I G U R E  1 Overview	of	folliculogenesis	
in mice.
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cumulus cells is an essential mechanism for the normal development 
of both cell types.

4  |  OOCY TE-  DERIVED PAR ACRINE 
FAC TORS (ODPFS)

4.1  |  Members of transforming growth factor beta 
(TGF- β) superfamily

The critical requirement for ODPFs in normal follicular development 
was first reported in a study using a mutant mouse model deficient 
in growth differentiation factor 9 (GDF9), an oocyte- secreted mem-
ber of the TGF- β superfamily.24 Female mice deficient in Gdf9 gene 
exhibit infertility due to the arrest of follicular development at the 
primary follicle stage.24,25 Similarly, in vivo administration of GDF9 
or treatment with GDF9 in ovarian organ cultures has been shown 
to stimulate primary follicle progression in rats.26,27 Moreover, in 
human ovarian organ cultures, treatment with GDF9 promotes sur-
vival and progression of follicular development to the secondary 
stage.28 Therefore, GDF9 promotes follicular development during 
the early stages.

The arrest of follicular development in Gdf9- deficient mice ap-
pears to be attributable to increased production of inhibin, which 
suppresses the proliferation of granulosa cells.29 In fact, in the ova-
ries of mice deficient in both Gdf9 and inhibin α genes, the arrest of 
follicular development was not observed, and follicles develop be-
yond the secondary stage. However, these mice eventually develop 
granulosa cell tumors and become infertile.29

Because the ovaries of Gdf9- deficient mice exhibit folliculogen-
esis arrest at the primary follicle stage, the role of GDF9 in the later 
stages of follicular development has mainly been studied using re-
combinant proteins. These studies have shown in mice that GDF9 
promotes the proliferation of granulosa cells,30,31 suppresses the ex-
pression of luteinizing hormone receptor (LHCGR) in cumulus cells,32 
and promotes cumulus expansion,32 thus, highlighting its crucial role 
in the regulation of granulosa cell differentiation and function in the 
later stages of follicular development. Moreover, recombinant GDF9 
and/or oocyte coculture can enhance the developmental compe-
tence of oocytes in cattle,33 mice,34 goats,35 and pigs.36

Oocytes also produce bone morphogenetic proteins (BMPs), such 
as BMP15 and BMP6, which are the other members of the TGF- β 
superfamily. The profound requirement of BMP15 for female fertil-
ity was first reported in sheep. Inverdale and Hanna sheep carrying 
a naturally occurring mutation in BMP15 gene exhibited increased 
ovulation rates in heterozygotes, whereas homozygotes exhibit pri-
mary ovarian failure due to impaired follicular development beyond 
the primary stage.37 Similarly, sheep carrying mutations in genes en-
coding BMP receptors exhibited increased ovulation rate.38– 40

In contrast to sheep, mice deficient in Bmp15 gene show no sig-
nificant abnormalities in the developmental dynamics of follicles; 
however, they are subfertile due to decreased ovulation and fertiliza-
tion rates.41 Similarly, female mice deficient in Bmp6 or both Bmp15 

and Bmp6 genes exhibit reduced ovulation and fertilization rates and 
are subfertile.42 On the other hand, the ovaries of mice deficient in 
the	genes	encoding	SMAD1/5/8,	which	are	 intracellular	mediators	
of BMP signaling, develop granulosa cell tumors, ultimately result-
ing in infertility.43,44 Moreover, deficiency in the BMP receptor gene 
Bmpr1b results in female infertility and functional ovarian defects in-
cluding lower aromatase production in granulosa cells.45 These find-
ings suggest that an intrafollicular BMP signal consisting of BMP15 
and BMP6 produced by oocytes, together with BMPs derived from 
other cells within the follicle, is essential for normal female fertility 
in mice.

BMP15 and GDF9 have also been implicated in fertility of 
woman. For example, mature GDF9 levels in follicular fluid sig-
nificantly correlated with oocyte nuclear maturation and embryo 
quality in patients who underwent in vitro fertilization (IVF)/intra-
cytoplasmic sperm injection (ICSI).46 Mutations in the GDF9 genes 
are significantly correlated with dizygotic twinning.47,48 Moreover, 
the association of mutations in the GDF949– 52 and BMP1550,53– 57 
genes with primary ovarian insufficiency (POI) has been reported. 
In addition, dysregulation of BMPR1B in granulosa cells is associated 
with reduced ovarian reserves and age- related decline in human 
fertility.58

Synergistic interaction between BMP15 and GDF9 has been re-
ported in the regulation of granulosa cell development. For instance, 
as mentioned earlier, while Bmp15- deficient mice exhibit relatively 
mild ovarian defects, mice with an additional heterozygous deletion 
of Gdf9 (i.e., Bmp15−/−/Gdf9+/−) show more severe ovarian abnor-
malities and become infertile.41	 Although	 the	 precise	mechanisms	
underlying the synergistic function of BMP15 and GDF9 require 
further investigation, heterodimerization of BMP15 and GDF9 is 
likely to be involved. This BMP15/GDF9 heterodimer, known as 
cumulin, exhibits higher activity than the homodimers of BMP15 
or GDF9.59 More recently, highly potent GDF9 variant, designated 
as “super- GDF9,” has been developed.60 Both cumulin and Super- 
GDF9 have been reported to improve the developmental potential 
of mouse oocytes in culture, and their application is anticipated to 
enhance oocyte development in livestock and infertility treatment 
in humans.61,62

4.2  |  Fibroblast growth factors (FGFs)

Another	 growth	 factor	 family	 produced	 by	mammalian	 oocytes	 is	
FGFs. Expression of FGF8 by oocytes has been reported in sev-
eral mammalian species, including mice63 and cows.64	 Although	
FGF8 transcript was not detected in normal human ovaries, it was 
detected in ovarian tumors and cancer cell lines.65 These findings 
suggest that FGF8 plays an important role in ovarian tumorigenesis 
in human. Furthermore, FGF17, one of the FGF8 subfamily ligands, 
is expressed by oocytes in mice,66 and by oocytes, theca cells, and 
granulosa cells in cows.67 Other FGF8 subfamily ligand, FGF18, is 
expressed by mouse oocytes, but not by bovine oocytes; instead, 
FGF18 was detected in bovine theca, granulosa, and luteal cells.68 
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Moreover, the expression of FGF receptors has been reported in 
granulosa cells of various mammalian species, including mice, rats, 
cows, and humans.64,69– 73

As	mentioned	above,	mouse	oocytes	promote	glycolysis	 in	the	
surrounding cumulus cells and utilize the metabolic products pro-
vided by the cumulus cells as energy substrates.22 One of the ODPFs 
that control glycolysis in cumulus cells is FGF8.74 FGF8 cooperates 
with BMP15 to promote the expression of glycolytic enzymes, such 
as	PFKP	and	LDHA,	by	cumulus	cells,	thereby	enhancing	glycolytic	
activity in these cells. SPRY2, an antagonist of FGF signaling, has 
been implicated in the coordinated action of FGF8 and BMP15.75 
A	 cooperative	 interaction	 between	 FGF8	 and	 BMP	 signaling	 has	
also been reported in rats. FGF8 promotes the suppressive effects 
of BMPs on follicle- stimulating hormone (FSH)- induced cyclic ad-
enosine	 monophosphate	 (cAMP)	 production	 and	 BMP-	stimulated	
SMAD1/5/8	phosphorylation	in	rat	preantral	granulosa	cells.76

Ovarian follicles are enriched in FGF signals, and many studies 
have emphasized the importance of FGFs in the regulation of ovarian 
function. In fact, mice carrying mutations in FGF receptor genes have 
been reported to exhibit female infertility.77– 79 However, compared 
to the TGF- β superfamily, there is relatively limited in vivo evidence 
regarding the requirement of FGF signaling in normal follicle develop-
ment, such as the phenotypes observed in knockout mouse models. 
Future studies involving the conditional deletion of genes encoding 
FGF ligands and receptors are crucial to gain a deeper understanding 
of FGF function in the ovaries and its impact on female fertility.

5  |  DIFFERENTIATION BET WEEN 
CUMULUS AND MUR AL GR ANULOSA CELL S

5.1  |  Intrafollicular signal gradients of FSH and 
ODPFs

Both cumulus and mural granulosa cells differentiate from preantral 
granulosa cells during the transition from preantral to antral follicles. 
The currently accepted model for the regulation of the differentia-
tion of these cell types is that preantral granulosa cells located near 
the oocytes differentiate into cumulus cells under the influence of 
ODPFs (Figure 2). In contrast, preantral granulosa cells located rela-
tively far from the oocytes differentiate into mural granulosa cells. 
Differentiation into mural granulosa cells depends to a great extent 
on FSH from the pituitary gland. Therefore, the differentiation and 
function of cumulus and mural granulosa cells are determined by 
opposing signal gradients within a follicle, with FSH signaling from 
outside the follicle and ODPFs signaling from inside.80

In addition to ODPFs and FSH, normal follicular development re-
quires signals of estrogen. In fact, the disruption of estrogen signaling 
by deletion of the Esr2 gene encoding estrogen receptor 2 (also known 
as estrogen receptor- β), a predominant estrogen receptor expressed 
by granulosa cells, results in female subfertility,81 attenuated follicular 
development81– 83; and reduced ovulation rates in mice.81,84 Moreover, 
loss of both Esr1 (encoding estrogen receptor- α) and Esr2 results in 

female infertility associated with granulosa cell defects.85 Our study 
also revealed that the cooperative interaction between oocyte and 
estrogen signals is critical for the normal development and function of 
cumulus cells in mice.86– 88 Therefore, estrogen is critical for the devel-
opment and function of both cumulus cells and mural granulosa cells.

A	comprehensive	analysis	of	cellular	transcripts	is	a	valuable	ap-
proach for understanding the processes and regulation of cell differ-
entiation and function. We have previously attempted to elucidate 
the differentiation processes and regulatory mechanisms of cumulus 
and mural granulosa cells through transcriptomic analysis.12,87,89,90 
According	to	these	studies,	there	are	significant	differences	 in	the	
expression of over 3000 genes between cumulus and mural granu-
losa cells.89 Transcripts highly represented in cumulus cells are often 
associated with cell proliferation and metabolism- related processes 
such as glycolysis and cholesterol production, whereas those related 
to steroid production show higher expression in mural granulosa 
cells. These transcriptomic differences between these cell types 
are in agreement with in vitro experiments showing that oocytes 
promote the expression of transcripts encoding enzymes involved 
in glycolysis and cholesterol biosynthesis in cumulus cells,12,22,74 
whereas FSH regulates the expression of enzymes involved in ste-
roid synthesis in mural granulosa cells.91,92 Furthermore, by compar-
ing these data with the transcriptomic differences between cumulus 
cells of Bmp15−/−/Gdf9+/− mice and wild- type mice12 and the changes 
in gene expression upon stimulation of cumulus cells with ODPFs,87 
it was suggested that approximately half of the significantly upreg-
ulated genes in cumulus cells compared to mural granulosa cells are 
directly regulated by oocytes.89 These findings strongly support the 
importance of oocyte- derived signals in cumulus cell differentiation.

Although	the	importance	of	ODPFs	in	the	development	of	cumu-
lus cells has been reported, oocytes are also required for the devel-
opment and maintenance of mural granulosa cells. For example, in 
the reconstructed follicles where the somatic cells of newborn ova-
ries were combined with mid- growth stage oocytes, the develop-
ment of not only cumulus cells but also that of mural granulosa cells 
was accelerated.1 Moreover, removing cumulus- oocyte complexes 
from antral follicles in rabbits results in precocious luteinization of 

F I G U R E  2 The	opposing	signal	gradients	of	oocyte-	derived	
paracrine factors (ODPFs) and FSH influence the fate of granulosa 
cell development in antral follicles.
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mural granulosa cells,93 and oocytes suppress the luteinization of 
cultured mural granulosa cells in rats.94 These observations indicate 
that oocyte- derived signals are required not only for the develop-
ment of mural granulosa cells but also for maintaining the charac-
teristics of mural granulosa cells; however, the mechanism by which 
oocytes influence these processes is not well understood.

5.2  |  Forkhead box L2 (FOXL2): A transcriptional 
regulator of cumulus and mural granulosa cell 
differentiations

To explore the basic mechanisms that determine the transcrip-
tomic differences between cumulus and mural granulosa cells, we 
attempted to identify the “transcriptional regulators” controlling 
the differences in gene expression between these two granulosa 
cell populations using mice as a model.90 The results showed that a 
transcription factor FOXL2 is a critical transcriptional regulator re-
sponsible for the differentiation of mural granulosa cells. In fact, the 
target transcripts of FOXL2 are enriched in those involved in steroid 
metabolism, which is one of the critical functions of mural granulosa 
cells, but not cumulus cells.95

FOXL2 is an essential transcription factor involved in normal 
ovarian development and function. In Foxl2- deficient ovaries, gran-
ulosa cells do not complete the squamous- to- cuboidal transition, 
which normally occurs during the transition from primordial to pri-
mary follicles, and result in infertility.96,97 In contrast, when Foxl2 
genes are deleted in the ovaries of adult mice, developing granulosa 
cells become express testis- specific genes such as SOX9 and sexu-
ally transdifferentiate into Sertoli cell- like cells.98 In humans, muta-
tions in FOXL2 gene cause the blepharophimosis- ptosis- epicanthus 
inversus syndrome (BPES), which is often associated with POI.99 
Additionally,	approximately	97%	of	adult-	type	granulosa	cell	tumors	
harbor a somatic missense mutation in the FOXL2 gene.100,101 Based 
on these findings, FOXL2 is considered an essential transcription 
factor for the development and maintenance of granulosa cells.

We previously reported in mice that FOXL2 expression in-
creases during the development of mural granulosa cells, while it is 
maintained at a lower level in cumulus cells due to suppression by 
ODPFs.88 In addition, the high level of FOXL2 expression in mural 
granulosa cells requires the stimulation of both ODPFs and estro-
gen.102 Therefore, oocytes exert two antagonistic effects on FOXL2 
expression during granulosa cell differentiation: they cooperate with 
estrogen signaling to promote mural granulosa cell differentiation by 
enhancing FOXL2 expression and facilitate cumulus cell differentia-
tion by suppressing FOXL2 expression.

Ovarian follicles are composed of various cell types including oo-
cytes, cumulus cells, and mural granulosa cells. The coordinated de-
velopment and function of each cell type is crucial for normal ovarian 
function and female fertility (Figure 3). Bi- directional communication 
between oocytes and cumulus cells is essential for the normal de-
velopment of both cell types.8,103 Mural granulosa cells facilitate this 
bi- directional communication by producing estrogen since ODPFs 
and estrogen cooperatively regulate the development and function 

of cumulus cells.86,87	At	the	sametime,	along	with	estrogen,	oocytes	
regulate the development and function of mural granulosa cells by 
promoting FOXL2 expression.88,102 Importantly, estrogen production 
by mural granulosa cells is controlled by FSH.104– 106 Therefore, FSH 
indirectly influences oocyte development by promoting cumulus cell 
development via estrogen, at least, in mice. These interactions are 
likely part of the complex regulatory network governing granulosa 
cell development and warrant further research. Furthermore, since 
these studies were conducted in mice, it is important to determine 
whether a similar mechanism exists in other mammals.

In addition to FOXL2 expression, differences are observed in 
the expression of epigenetic regulators between cumulus and mural 
granulosa cells.88 Therefore, epigenetic regulation may play a role 
in determining the fate of these cells. Further investigation of these 
factors will provide deeper insights into the cellular mechanisms reg-
ulating the differentiation of cumulus and mural granulosa cells.

6  |  CONCLUSION

The potential importance of nutrient support from the surround-
ing granulosa cells during oocyte development was first noted over 
100 years	ago.107 Subsequent studies have shed light on the regula-
tion of granulosa cell differentiation and revealed many roles played 
by them. These studies have greatly improved our understanding of 
follicular development. However, the specific mechanism involved 
remains unclear. Recent advances in next- generation sequencing 
and genome- editing technologies have drastically accelerated the 
research progress. Further investigations using these advanced tech-
niques will accelerate our understanding of follicular development and 
aid in the production of efficient assisted reproductive technologies.
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