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Abstract: Melatonin (MEL), a ubiquitous indolamine molecule, has gained interest in the last few
decades due to its regulatory role in plant metabolism. Likewise, nitric oxide (NO), a gasotransmitter,
can also affect plant molecular pathways due to its function as a signaling molecule. Both MEL and
NO can interact at multiple levels under abiotic stress, starting with their own biosynthetic pathways
and inducing a particular signaling response in plants. Moreover, their interaction can result in the
formation of NOmela, a very recently discovered nitrosated form of MEL with promising roles in plant
physiology. This review summarizes the role of NO and MEL molecules during plant development
and fruit ripening, as well as their interactions. Due to the impact of climate-change-related abiotic
stresses on agriculture, this review also focuses on the role of these molecules in mediating abiotic
stress tolerance and the main mechanisms by which they operate, from the upregulation of the entire
antioxidant defense system to the post-translational modifications (PTMs) of important molecules.
Their individual interaction and crosstalk with phytohormones and H2S are also discussed. Finally,
we introduce and summarize the little information available about NOmela, an emerging and still
very unknown molecule, but that seems to have a stronger potential than MEL and NO separately in
mediating plant stress response.
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1. Introduction

N-acetyl-5-methoxytryptamine, better known as melatonin (MEL), is an indole-derived
compound similar to indole-3-acetic acid (IAA). MEL is an indolamine, and although it was
first discovered in bovine extracts from the pineal gland in 1958, it was only isolated and
identified in 1960 by Lerner et al. [1]. It was named after its ability to aggregate melanin
granules in skin chromatophores. Although it was believed that this compound was only
present in animals, in 1995, two independent groups identified the presence of MEL in
higher plants [2,3]. In the following years, it was proven that MEL was also found in several
Eukarya and Bacteria groups, although there is still no evidence for its presence in the
Archaea domain. Due to its ubiquitous distribution, it has been suggested that the structure
of this molecule has barely changed through evolution [4,5]. Initially, this molecule acted
as an antioxidant in unicellular organisms, but through evolution, this role changed, and
it started to act as a hormone in superior eukaryotes, being involved in diverse processes
such as immunomodulation, circadian rhythms, or seasonal reproductive regulation [6].

In 2004, the term phytomelatonin was proposed to discriminate between animal MEL
and plant MEL [7]. Apart from regulating plant growth, in the last few years, it has
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been described as a “master regulator” involved in plant cell metabolism, regulating and
increasing plant tolerance to biotic and abiotic stress. This is possible due to its ability to
act as a hormone or as an antioxidant molecule, by scavenging diverse reactive oxygen
species (ROS) and reactive nitrogen species (RNS) [8–10]. In addition, MEL can easily pass
through cell membranes and move in the cytosol and organelles due to its amphiphilic and
amphipathic character [11], thus facilitating its regulatory role in plant metabolism.

Gasotransmitters are molecules involved in the regulation of plant development and
stress responses. The principal gasotransmitters are nitric oxide (NO), carbon monoxide
(CO), and hydrogen sulfide (H2S). NO is a potent signaling molecule due to its short half-
life and high diffusibility across the plasma membrane. It is a molecule with dual functions,
as it can act both as an antioxidant or pro-oxidant, depending on its concentration, with
important roles in flowering, plant growth, morphogenesis regulation, and oxidative stress
response [12]. The interaction of NO with target molecules results in the production of RNS,
and although RNS implication in cell metabolism still needs further research [13], some
known RNS aspects are described in the present review. Both NO and MEL can interact
at multiple levels, modulating cell metabolism during plant development, although some
aspects of the routes through which this interaction occurs have not been described yet.
Given the importance of these two molecules (i.e., NO and MEL), and their interaction in
plant physiology and plant stress response, this review focuses on the role and the putative
and known interactions between NO and MEL in different contexts.

2. Interaction between MEL and NO Biosynthetic Pathways: Synergistic and
Antagonistic Interactions

MEL’s precursor is tryptophan, an amino acid that plants can synthetize through
the shikimate pathway (which is also the synthesis route for all aromatic amino acids in
plants). First, tryptophan is converted to serotonin through two different pathways: tryp-
tophan’s decarboxylation into tryptamine via tryptophan decarboxylase (TDC), followed
by its hydroxylation into serotonin by tryptamine 5-hydroxylase (T5H); or tryptophan
hydroxylation into 5-hydroxytryptophan by tryptophan hydroxylase (TPH), followed by
its decarboxylation into serotonin by TDC, with the first route being most frequent in
plants. Once serotonin is produced, it is acetylated to N-acetylserotonin by serotonin
N-acetyltransferase (SNAT), which is finally methylated by O-methyltransferase (ASMT),
although this last step can also be performed by caffeic acid 3-O-methyltransferase (COMT).
There is also an alternative pathway that leads to MEL formation, the first step of which is
serotonin catalysis to 5-methoxytryptamine by ASMT or COMT, which is converted to MEL
by SNAT (Figure 1A). Depending on the route followed, MEL can be synthesized in the
cytoplasm or the chloroplast, respectively [14,15]. MEL can also generate active derivatives
under physiological conditions. Specifically, 2-hydroxymelatonin (2OHM) is the most
abundant in plants, and some authors affirm that it induces stress tolerance in plants more
effectively than MEL [16,17]. Plants vary in their MEL levels, from high to undetectable con-
centrations [11], underlining that stress conditions enhance MEL production [4,18]. Within
plants, it has been reported that flowers have the highest MEL levels, followed by leaves
and seeds, which can be explained by the need to maintain a high antioxidant environment
in flowers and leaves, as these organs are more exposed to stress conditions [4]. MEL is
mainly synthetized in chloroplasts and mitochondria, which correlates with its protective
role against free radicals produced in these organelles [14,19]. At basal conditions, both
ROS and MEL are kept at relatively low and constant levels, with their synthesis being
upregulated under stress conditions [20].

NO production can occur via oxidative and reductive pathways. NO is synthetized
through the oxidative pathway via the oxidation of L-arginine by NO synthase (NOS),
polyamine by polyamine oxidase, or NADH/NADPH via cytochrome oxidase. Meanwhile,
the reductive pathway is characterized by the reduction of NO3

− to NO2
− by nitrate

reductase (NR), using NADH as the electron donor, under anoxic conditions. This is fol-
lowed by NO2

− reduction to NO due to the action of xanthine oxidoreductase (XOR), and
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plasma-membrane-bound nitrite–NO reductase (Ni-NOR). Moreover, NO can be generated
within polyamine metabolism. High nitrate concentrations or highly reducing environ-
ments trigger the non-enzymatic reduction of nitrite to NO. The mitochondrial electron
transport chain, under acidic and anoxic conditions, can also produce NO from nitrite
(Figure 1B) [21–26]. Due to the short half-life of NO (~30 s), NO transport and accumu-
lation in plants are mediated by NO carriers (which are more stable in solution), mainly
S-nitrosothiols [27]. S-nitrosothiols (SNOs) are non-protein sulfhydryl-containing com-
pounds that are formed by their reaction with NO. They are more stable than NO and can
be transported and act as NO storage. In addition, SNOs can carry out post-translational
modifications (PTMs) mediated by cell signaling, especially during the stress response, as
they can act as S-nitrosylating agents, which can react with thiol groups [28]. SNOs can be
classified by their molecular mass into high-molecular-mass S-nitrosothiols (HMM-SNOs)
or low-molecular-mass S-nitrosothiols (LMM-SNOs), with GSNO (S-nitrosoglutathione)
being the most abundant LMM-SNO in biological systems, being generated via NO interac-
tion with reduced glutathione [29]. GSNO constitutes a NO reservoir that can be degraded
by S-nitrosoglutathione reductase (GSNOR). Lee et al. [30] showed that plant development
and stress response were defective after mutations in the GSNOR gene, confirming NO role
in plant metabolism.

Figure 1. Melatonin (A) and NO (B) biosynthetic pathways. The figure shows the specific points
in the melatonin biosynthetic pathway that NO is able to regulate, and vice versa, through the
modification of key enzymes within each pathway.

In recent years, the crosstalk between NO and MEL in plant physiology has been
described, as MEL can affect endogenous NO levels and NO can alter endogenous MEL
content (Figure 1). MEL can either induce NO production or scavenge NO and is also
capable of increasing NO levels by upregulating NOS gene expression [31,32]. Experiments
performed in tomato seedlings showed that exogenous MEL inhibits S-nitrosoglutathione
reductase (GSNOR) activity and upregulates NR activity, which elevates endogenous NO
levels [33]. On the other hand, NO can also promote MEL biosynthesis by inducing the
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expression of TDC, T5H, SNAT, and COMT genes, which code for the main enzymes found
in the MEL biosynthesis pathway. In addition, NO also increases MEL levels by modulating
the activity of MEL synthesis enzymes [8,34].

The crosstalk between NO and MEL is especially relevant during the plant’s response
to unfavorable situations. Under stress conditions, MEL triggers NO accumulation by
modulating the activity of NR and NOS via the arginine pathway, as well as the expression
of related genes [31,35]. However, NO and MEL also have antagonistic actions. MEL
can inhibit NOS, decreasing NO levels, through various mechanisms [36], but it can also
promote NO accumulation via the arginine pathway [31] or upregulate NOS-related genes
by increasing NOS activity and, thereby, NO levels [32].

These kinds of interactions between these two molecules, and the described fine-
tuned regulation exerted by both molecules on each other, deserve further investigation
to discover the specific cell signaling processes that govern the plant’s adaptation to
climate change.

3. MEL and NO Action on Plant Growth and Development: Physiological Responses
and Effect on Fruit Ripening

Both MEL and NO play fundamental roles during plant development, as they mod-
ulate several essential processes such as plant growth, senescence, flowering, and fruit
ripening [37–39]. As a consequence, it is of vital importance to understand how these
molecules help the regulation of plant and fruit developmental processes.

3.1. Plant Development

The first phytomelatonin receptor, CAND2/PMRT1, was recently discovered and
identified in Arabidopsis by Wei et al. [40]. Among its functions, it was shown that the
union between CAND2/PMRT1 and MEL can control stomatal closure via the Ca2+ and
H2O2 signaling cascade. MEL binding to this receptor activates Gγb dissociation from
Gα, triggering H2O2 production by NADPH-oxidase, which enhances Ca2+ influx and K+

efflux, causing stomatal closure [40].
In plants, MEL is involved in plant development and growth, due to its action as

an auxin-like molecule [41]. MEL is not capable of stimulating IAA synthesis, but it can
affect plant growth in an auxin-independent manner (as it does not activate the expression
of DR5:GUS, an auxin-inducible gene marker, and there is no evidence that MEL can be
perceived by auxin receptors), although initially MEL was described as an auxin-mimetic
molecule [42,43]. It is involved in processes such as flowering, leaf senescence, root mor-
phogenesis, and fruit ripening, as well as the modulation of chlorophyll and proline levels
in leaves and fruits [4,42,44–47]. In recent studies by Lee and Back (2019), mutant plants,
in which SNAT was downregulated, showed a semi-dwarf stature, which confirmed the
action of MEL as a growth promoter [48].

Arnao et al. [42] demonstrated the role of MEL in improving rhizogenesis. Lately,
it was shown that exogenous MEL promoted lateral and adventitious root formation in
Lupinus albus rice, cucumber, and Arabidopsis [42,43,49,50]. Moreover, MEL was proven to
modulate root gravitropic response [51]. Exogenous MEL may either promote or inhibit
plant growth depending on its concentration, with a higher inhibitory effect at higher
concentrations, due to its auxin-like effects. It has been demonstrated that high MEL con-
centrations (100 µM) inhibit root growth, while low MEL concentrations (0.1 µM) promote
it, at the same time inducing an increase in endogenous IAA levels (it is thought that this
IAA increase triggers root growth) [52]. Thus, high MEL concentrations are associated
with a decrease in IAA biosynthesis, reducing root meristem size [53]. In addition, it has
been proven that the genes regulated by low MEL concentrations are different from the
ones regulated at high MEL concentrations [54]. In some plant species such as cucumber,
exogenous MEL did not affect the expression of auxin-related genes [50], although experi-
ments performed in Arabidopsis showed that high MEL concentrations downregulated the
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expression of genes encoding auxin-influx carrier proteins (AUX1/LAX) [54] and auxin
biosynthesis [53].

Similarly, NO is capable of regulating auxin responses, promoting adventitious root for-
mation, as well as lateral roots growth, root hair development, and root gravitropism. [55,56].
Specifically, it has been suggested that NO can also regulate root growth via the cGMP
(cyclic guanosine monophosphate) pathway, acting as a second messenger in this route [57].
An increase in NO levels inhibited root meristem activity and reduced the number of
dividing cells in primary roots by inhibiting auxin transport and response owing to the
downregulation of auxin efflux protein PIN-FORMED 1 (PIN1), as shown by Fernández-
Marcos et al. [58]. Thus, the effects of high NO levels are similar to the ones observed by
high MEL levels. Another mechanism of NO action is characterized by the capacity of
NO to induce protein PTMs, mainly S-nitrosylation, which can modulate enzyme activity
and protein function, although its relationship with plant development requires further
research [59]. In the last few years, some researchers have shown an interesting interac-
tion between MEL and NO. In this regard, Wen et al. [33] showed that in tomato plants,
exogenous MEL triggered NO production by promoting NR activity, which induced the
formation of adventitious roots through the modulation of the expression of auxin-related
genes, such as the genes involved in auxin accumulation, transport, and signal transduction.
Moreover, MEL is capable of regulating the NO/NOS system in order to perform physio-
logical functions [60]. Likewise, MEL synthesis was shown to be induced by NO exogenous
treatment in tomato seedlings [41], which also induced root development, indicating that
there may be a feedback loop between NO and MEL that influences root development via
auxin signaling pathways.

MEL also plays a role in regulating floral transition. Shi et al. [61] showed that
MEL mediated the stabilization of DELLA proteins, which disturbed flowering-related
transcription factors, thus repressing the floral transition. On the other hand, an excess
of exogenous MEL triggered the activation of Flowering Locus C (FLC), thus delaying
flowering. However, strigolactone (a carotenoid-derived phytohormone) can act upstream
of MEL, inducing floral transition by inhibiting MEL synthesis [62]. Lozano-Juste and
León [63] showed that NO can also disturb flowering by increasing DELLA protein levels.
Due to this, it has been hypothesized that flowering is regulated by a NO/MEL crosstalk,
although the mechanisms involved in this process are still unknown, and more research is
needed on this putative crosstalk hypothesis.

MEL has been reported to have antisenescence proprieties, which have been attributed
to its role as an antioxidant. Moreover, MEL can impede the upregulation of Hexokinase-1,
a senescence-associated gene, and autophagy-related genes (ATGs), thereby preventing
leaf senescence [64–66]. In apples, during leaf senescence, MEL is capable of preventing
carotenoid and chlorophyll degradation. Moreover, exogenous MEL increased fructose, sor-
bitol, sucrose, glucose, and starch levels, and prevented the decline of Rubisco and soluble
protein content. [66,67]. However, NO regulation during these processes is still unknown.

3.2. Fruit Ripening

Fruit ripening is defined as a complex process, orientated toward promoting animal-
mediated seed dispersion, which involves changes in fruit organoleptic proprieties. During
the ripening of climacteric fruits, both MEL and NO have been shown to inhibit ethylene
biosynthesis, preventing postharvest senescence. During fruit ripening, NO can interact
with ACC oxidase, a key enzyme in ethylene biosynthesis, generating an ACC oxidase–
NO complex, which can also form a stable ternary ACC–ACC oxidase–NO complex via
chelation by ACC. This metabolic step decreases ethylene production by inactivating ACC
oxidase [68]. Moreover, NO can nitrosate ACO (also involved in ethylene production),
decreasing its activity and downregulating ACO gene expression (LeACO1, LeACOH2, and
LeACO4), thus reducing ethylene levels [69].

Soluble sugars also play important roles in fruit ripening, as they can act as signaling
molecules and participate in mediating fruit ripening and senescence. Shi et al. [70]
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showed that exogenous NO-treatment-modulated sugar metabolism by enhancing sucrose
phosphate synthase (SPS), sucrose synthase (SS), and neutral invertase (NI) activity, thereby
maintaining higher sucrose, fructose, and glucose levels. Thus, NO treatment acts by
inhibiting ethylene biosynthesis, as well as by regulating sugar metabolism in postharvest
fruit programs [71].

Sun et al. [72] showed that, in tomatoes, MEL stimulated fruit ripening by upregulat-
ing the expression of ethylene-signal-transduction-related genes, thus inducing ethylene
production. Moreover, it has been shown that MEL increases ripening- and anthocyanin-
increase-related protein levels [73]. This results in amplification in ethylene signal trans-
duction, which triggers cell wall degradation, lycopene accumulation, and the synthesis
of volatile organic compounds (VOCs) via gene regulation [74]. However, in some fruits,
such as bananas, exogenous MEL repressed ethylene synthesis, thus delaying the ripen-
ing process [75]. In tomatoes, MEL acts as an antioxidant molecule that scavenges RNS
during fruit ripening and enhances arginine-pathway-mediated NO accumulation, as well
as polyamines and proline production. On the other hand, in pears, in order to delay
postharvest senescence, MEL was capable of reducing ethylene production by regulat-
ing the synthesis of NO. The inhibition of NO synthesis eliminated the effect of MEL
delaying fruit ripening, which may indicate that MEL acts upstream of NO in this path-
way [13,31,32,68,76,77]. Thereby, MEL does not directly repress ethylene biosynthesis; it
inhibits ethylene production via NO-mediated mechanisms.

4. MEL and NO Interaction during Molecular Metabolic Regulation under
Abiotic Stress

In plant physiology, stress is defined as a condition that prevents normal development,
growth, and metabolism [78]. Climate change is likely to increase the impact of stress factors
on plants, which can limit plant production in the following years [79], thus representing a
major challenge for agricultural lands.

Abiotic stresses can affect plant growth and development, as well as reproductive
programs. However, plants can adapt to environmental stresses through complex mecha-
nisms involving changes in enzyme activity, gene expression, and the accumulation of key
molecules. Under stress conditions, there is an immediate response characterized by an
increase in ROS, RNS, and malondialdehyde (MDA) levels. High concentrations of ROS
and RNS may lead to membrane damage due to lipid peroxidation and electron leakage
(EL), but they can also cause DNA damage, impaired enzyme activity, and carbohydrate
oxidation [80] (Figure 2). ROS, such as superoxide anion, hydrogen peroxide, or hydroxyl
radical, are continuously produced in plants and can act as signaling molecules, although
high ROS levels can lead to a situation of oxidative stress. Due to this, plants have devel-
oped both enzymatic and non-enzymatic antioxidant systems in order to protect themselves
against oxidative stress. Enzymatic systems include enzymes such as superoxide dismu-
tase (SOD), catalase (CAT), peroxidase (POD), glutathione reductase (GR), glutathione
peroxidase (GPX), etc. Likewise, non-enzymatic systems are constituted by antioxidant
molecules such as glutathione (GSH), ascorbic acid (AsA), flavonoids, or carotenoids. As is
well-known, ROS can activate numerous stress response pathways, and among them, ROS
upregulate MEL biosynthesis, which acts by balancing redox homeostasis either directly by
scavenging free radicals, or indirectly by increasing the activity of key antioxidant enzymes
(SOD, CAT, POD, APX, and/or GPX). Moreover, MEL can also increase the concentration
of GSH and AsA [34,37,81–84] (Figure 2). On the other hand, MEL acts by decreasing EL
and MDA levels, thus alleviating abiotic-stress-related membrane damage [85,86]. MEL
also increases the transcription of many stress-tolerance-related genes and activates several
downstream signaling transduction pathways [87] (Figure 2).



Int. J. Mol. Sci. 2022, 23, 6646 7 of 21

Figure 2. General mechanisms for MEL- and NO-mediated stress response. Stress causes an increase
in ROS and RNS levels, which damage plant cells. Increased ROS levels trigger MEL production,
which can also promote NO synthesis. Both MEL and NO directly scavenge ROS and RNS and
promote the activity of antioxidant enzymes, the accumulation of antioxidant molecules, and osmo-
protectants, and influence gene expression, thus alleviating the effects of stress on cells.

In terms of photosynthetic efficiency, MEL reduces chlorophyll degradation, thus
improving photosynthetic efficiency during stress conditions [88]. It also regulates the
accumulation of key proteins, such as 1,5 bisphosphate carboxylase/oxygenase (Rubisco),
and improves the efficiency of photosystem II reaction centers [64,88,89]. Another signifi-
cant aspect is that MEL increases leaf area, which also helps to improve the photosynthesis
rate [83] (Figure 2). Wei et al. [90] showed that MEL upregulated the expression of ferre-
doxin, photosystem I subunits (PsaK and PsaG), and photosystem-II-related elements
(PsbO and PsbP), and is described by these authors as a key molecular regulator of the
photosynthetic apparatus. Similarly, Lee and Back [91] showed that MEL interacts with
ROS and RNS signaling pathways, which have been described recently as a mechanism that
improves plant stress tolerance through the modulation of the activity of key antioxidant
enzymes, which resulted in an alleviation in photosynthesis inhibition, and modulation of
several transcription factors [91]. It has also been proven that MEL alleviates stress effects
through the increase in NO levels owing to the upregulation of NR and NO synthase-related
activities, also coordinating the polyamine pathway [92].

NO formation in response to abiotic stress is common in several plant species. In this
sense, NO acts as a signaling molecule that regulates key responses including osmolyte
accumulation, oxidative defense, photosynthesis modulation, gene expression, or PTMs
of proteins [57]. NO and MEL can directly act as antioxidants by directly scavenging free
radicals, alleviating oxidative damage in a receptor-independent manner [36] (Figure 2).
NO is capable of balancing redox homeostasis by inducing PTMs in essential enzymes,
mainly S-nitrosylation (covalent binding of NO to a cysteine thiol group) and tyrosine
nitration (nitro group addition to one of the aromatic rings of tyrosine residues), as well as
metal nitrosylation, which regulates its activity. These PTMs regulate the activity of the
modified enzymes, especially antioxidant enzymes, but can also affect molecules such as
AsA/GSH, modulating their antioxidant capacity [93]. Among the proteins regulated by
NO, Ca2+-sensitive channels and proteins kinases are involved in the signaling cascade
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that leads to the adaptive response to stresses, germination, adventitious root formation,
and stomatal closure [94], with the role of NO being essential for the proper functioning of
these processes under stress conditions.

Recently, it has been proposed that MEL action may occur owing to a feedback
mechanism modulated by H2O2 and NO, molecules which, as described previously, are
essential for plant stress responses. Moreover, it is believed that interactions between NO
and MEL are a necessary step for inducing the required PTMs of key stress-related proteins,
which could be confirmed using proteomics analysis [37].

A plant’s exposure to temperatures above optimum leads to heat stress. Under these
conditions, MEL boosts the levels of antioxidant molecules such as phenolic compounds,
flavonoids (via NO-dependent pathways), and carotenoids [83,95]. In addition, in kiwifruit,
Liang et al. [96] showed that exogenous MEL increased the expression of a variety of
glutathione S-transferase genes, which alleviated the oxidative stress caused by high tem-
peratures. Likewise, it has been shown that NO can also alleviate heat stress by maintaining
the activity of 1,5 bisphosphate carboxylase/oxygenase (Rubisco) and enhancing photosyn-
thetic nitrogen, and sulfur-use efficiency [97]. On the other hand, suboptimal temperatures
are also harmful, and in this sense, exogenous MEL was capable of increasing the resistance
against cold of plants, seeds, callus, and explants [10]. In tomatoes, MEL improved chilling
tolerance by upregulating the arginine pathway, which led to higher NO levels. This helped
with the maintenance of membrane integrity owing to a decrease in EL and MDA accu-
mulation [31]. MEL treatment, in Arabidopsis, was capable of modulating gene expression,
causing the upregulation of CBFs, COR15a, CAMTA1, and ZAT10/12, thus alleviating cold
stress [98]. In tomato plants, under both heat and cold stress, MEL positively induced the
activity of the arginine pathway-related enzymes, which led to higher polyamines levels
and an increase in plant stress tolerance [31,92].

As is well-known, salt stress caused by excessive Na+ accumulation leads to osmotic
stress and high ROS levels. Zhao et al. [99] showed that MEL- and NO-releasing compounds
can maintain the Na+/K+ ratio during salt stress by modulating NHX1 (a sodium hydrogen
exchanger) and salt overly sensitive 2 (SOS2) transcription levels. Thereby, NO is required
for mediating MEL action in this situation [99]. The GSH/GSSG ratio is an indicator
of oxidative stress, regulated by GR. During salt stress, both MEL and NO are capable
of differentially regulating GR activity (thus, GSH levels), alleviating stress damage in
sunflower seedlings [34,100], and revealing another point of interaction between these
two molecules.

As mentioned above, under stress conditions, MEL can regulate NO levels and vice
versa. Stress induced by NaCl, ZnSO4, and H2O2 resulted in an increase in MEL content
in a time-dependent manner in barley roots [101]. In rapeseed, MEL induced NR- and
NO-associated 1 (NOA1)-dependent NO formation, although it was shown that NO was
not responsible for MEL synthesis and accumulation under salt stress. This condition
also triggers S-nitrosylation, which was specifically induced by NO [99]. On the other
hand, Arora and Bhatla [102] showed that NO was capable of reducing growth inhibition
induced by salt stress in sunflower by triggering MEL accumulation, which modulated
the expression of Cu/Zn SOD and MnSOD genes. Moreover, the interaction between
MEL and NO also reduced the deleterious effects of salt stress by decreasing tyrosine
nitration of proteins, and decreasing peroxynitrite content. As said previously, both NO
and MEL can also alleviate sodic alkaline stress via the reduction of Na+ levels and the
increase in K+ uptake, as well as the enhancement of antioxidant enzymes activity [82].
As water is essential for plants, the lack of it causes major damages to plants, leading to a
situation known as drought stress [103]. It has been shown that exogenous MEL alleviates
drought stress by increasing cell turgor, photosynthetic rate, and water-retention capac-
ity [35]. Sharma et al. [83] demonstrated that Carya cathayensis plants pretreated with MEL,
when subjected to drought stress, showed fewer negative effects than untreated plants. In
addition, MEL upregulated primary and secondary metabolisms, such as the carotenoids
pathway, under drought stress [83], and in alfalfa, MEL alleviated oxidative damage due
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to drought stress [35]. Likewise, MEL can also alleviate the negative effects induced by
drought stress by improving plant photosynthesis. Liu et al. [104] showed that in tomato
plants, exogenous MEL increased stomatal conductance, net photosynthetic rate, conduc-
tance, transpiration rate, the quantum yield of PSII, maximum quantum yield (Fv/Fm), and
electron transport. Similarly, in cucumber seedlings, exogenous MEL alleviated drought
effects by reducing chlorophyll degradation and increasing photosynthetic rate [105]. The
rhizospheric application of MEL also improves stress tolerance. For instance, in alfalfa,
Antoniou et al. [35] showed that this type of MEL application enhanced drought tolerance
by regulating ROS and RNS via the modulation of SOD, GR, CAT, APX, NR, and NADH
dehydrogenase activity and/or transcription. In this example, MEL application caused the
downregulation of NR, decreasing NO levels, thus revealing the association of drought
tolerance with reduced NO accumulation [106].

Several other studies have also shown that both NO and MEL play a role during met-
als’ toxicity stress response, specifically under cadmium (Cd) toxicity [107]. In Catharanthus
roseus, MEL and sodium nitroprusside (SNP, a NO donor) improved seedling growth under
Cd toxicity via the increase in the concentration of photosynthetic pigments, Cd transloca-
tion, proline concentration, and antioxidant enzymes activity (SOD, POD, APX, and CAT),
leading to a decrease in lipid peroxidation and H2O2 content. Moreover, seed germination
and root antioxidant response were modulated by NO, downstream of MEL [108–110].
Additionally, in wheat, Cd toxicity led to an increase in NO levels. Kaya et al. [111] showed
that a MEL treatment was capable of enhancing Cd tolerance, with this effect reversed after
cPTIO (an NO scavenger) addition, which suggested that MEL action may occur via NO
increase. Conversely, under Cd toxicity, Wang et al. [112] showed that, in Chinese cabbage,
NO upregulated IRT1 (a Cd-absorption-regulation-related transport gene) expression, in-
creasing Cd absorption, which led to an intensified stress situation. However, MEL acted
by inhibiting NO synthesis, thus reducing Cd levels. In terms of toxicity by other metals,
as shown by Zhang et al. [113], exogenous MEL abolished NO production, alleviating
aluminum-induced root growth inhibition. Meanwhile, in maize, Okant and Kaya [114]
demonstrated that NO increased antioxidant enzyme activity, alleviating Pb toxicity.

Although light is essential for plants, an excessive amount of light can induce critical
damage to the photosystems, resulting in what is known as high light stress. Under
high light stress conditions, NO can interact with other molecules such as H2O2 (which
induces stomatal closure) or inositol, mediating a situation of UV-B-initiated oxidative
stress [115,116]. In maize seedlings, NO application improved high light tolerance by
increasing flavonoids, anthocyanins, MDA, and UV-B-absorbing compounds’ levels, as
well as increasing CAT and APX enzyme activity [117].

The climate predictions for the coming years tend to indicate adverse conditions, with
devastating increases in temperature, salinity, and water scarcity. In nature, stresses do not
act in an isolated manner but in combination [118], which means that plants are simulta-
neously subjected to two or more abiotic stresses [119]. It has been shown that the plant’s
response to combined stress cannot be elucidated from the study of single stresses [120,121],
and therefore, the role of NO and MEL under abiotic stress combination may be different
from what has been described under single stress experiments, as described above. Recent
studies by Martinez et al. [122] with tomato plants showed that, under heat and salt stress
combination, MEL enhanced stress tolerance by protecting the photosynthetic apparatus
and promoting ROS detoxification. Plants subjected to MEL treatment showed less lipid
peroxidation and protein oxidation than untreated plants. Exogenous MEL modulated
the expression of key oxidative-metabolism-related genes, such as the genes coding for
APX, GR, GPX, and Ph-GPX enzymes, which led to a reduction in ROS levels [122]. MEL
also modulates the concentration of osmoregulators in high-temperature stress condi-
tions, mainly carbohydrates (such as trehalose) and amino acids (such as proline) [123].
This response was also found under stress combination (cold and drought stress) in rice
plants [17]. During cold and drought stress combination, in cucumber, tomato, and tobacco,
2-hydroxymelatonin alleviated cell damage by lowering MDA production [124].
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Given the few studies carried out in the field of abiotic stress combination, it is
necessary to continue investigating the role of MEL and NO in the response to stress
combination, and more importantly, the signaling mechanisms involved in the interaction
of both molecules in light of increasing plant stress tolerance to climate change.

4.1. NO and MEL Interaction with Hormones during a Stress Response

Both MEL and NO interact with the main plant hormones, such as auxins (AUXs),
cytokinins (CKs), ethylene, and abscisic acid (ABA), modulating the stress response. ABA
is an essential phytohormone during a stress response, so its interaction with NO and MEL
could provide a better understanding of the mechanisms involved in stress tolerance [125].
MEL can act via ABA signaling transduction pathways, modulating the response to salinity
and drought stress, respectively [82,83]. In cucumber or apple plants, under stress situa-
tions, exogenous MEL can downregulate ABA biosynthesis and upregulate its catabolism by
promoting the expression of ABA-catabolism-related genes such as CYP707 and repressing
the expression of ABA-biosynthesis-related genes such as NCED2 or MdNCED3 [126,127].
Li et al. [126] also proved that MEL is capable of activating ABA-mediated signaling
pathways. Conversely, in water-stressed maize, exogenous MEL had no effect on ABA
levels [128] and, in chilling-stressed cucumber, MEL treatment even triggered ABA pro-
duction during the first 4 days [129]. As described, the effect of MEL on ABA levels is
still controversial, although it is clear that MEL modulates ABA signaling transduction
pathways, as MEL is capable of regulating ABA receptors, either inducing or repressing
them [85,130]. ABA can also mediate NO–MEL signaling, and NO metabolism is also
responsible for regulating ABA homeostasis via PTMs, which also modulates the activity
of proteins from ABA-mediated signaling pathways. Moreover, NO and ABA are both
capable of regulating the activity of antioxidant systems, although other molecules such as
H2S and MEL can also be responsible for regulating these pathways [131]. Moreover, ABA
can also induce PMTs during the stress response. Specifically, ABA induces S-nitrosylation
of SnRK6.2/OST1 at Cys-137, inhibiting its kinase activity, which can also be induced by
NO. As this kinase is part of ABA signaling pathways, these results suggest that both ABA
and NO regulate ABA signaling via a negative regulatory loop [132]. Likewise, MEL, due
to its auxin-like activity, is able to stimulate and modulate root generation and growth
and enhance adventitious root formation, as mentioned previously [41]. Under stress
conditions, the effect of MEL in stimulating plant growth is higher than under favorable
conditions, as shown in salt-stressed maize or cold-stressed Arabidopsis plants [98,133].
There is also evidence of NO action during auxin signaling pathway activation. During
Fe deficiency, in roots, Chen et al. [134] showed a correlation between auxin availability
and NO levels, enhancing root ferric-chelate reductase activity, thus improving Fe up-
take. Ethylene intervenes during fruit ripening, but also during the stress response. In
alfalfa, MEL inhibited ethylene biosynthesis by downregulating ethylene biosynthesis-
related genes. Under these conditions, MEL also promoted the accumulation of polyamines
by upregulating polyamine metabolism-related enzymes, thus alleviating waterlogging
stress [135]. MEL can also interact with gibberellins (GAs). Zhang et al. [127] demonstrated
that cucumber seedlings treated with MEL and subjected to salt stress showed higher GA
content due to the upregulation of GA20ox and GA3ox, GA biosynthesis genes, and the
downregulation of ABA-biosynthesis-related genes.

During heat stress, exogenous MEL increased CK levels by upregulating LpIPT2
and LpOG1, key CK-biosynthesis-related genes, while, under non-stress conditions, MEL
treatment did not modify CK levels. Moreover, the CK signaling pathway was also altered
by MEL via the modulation of A-ARRs and B-ARRs, transcription factors involved in CK
signaling pathways [136]. NO also mediates tolerance to drought stress by modulating CK-
induced photosynthetic resistance, enhancing parameters such as PSII electron donation
capacity or plant photosynthetic performance index (PI). Moreover, during this response,
CK increased NO synthesis via NR, which suggests that there is a crosstalk between CK and
NO during the stress response [137]. To date, there have been no studies on the putative
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interaction of MEL and NO in the modulation or regulation of the signaling pathway of
hormones. In this sense, this field of study will require special attention in the future due to,
firstly, the phytohormone intrinsic characteristic of MEL and, secondly the large signaling-
stress-related network governed by plant hormones. Since MEL and NO converge in many
regulation points of plant hormone modulation, we speculate that it might be an interesting
point of interaction between these two molecules and some key hormones.

4.2. Interaction of MEL or NO with H2S in Mediating Stress Tolerance

As a reactive molecule, such as ROS and NRS, hydrogen sulfide (H2S) is a reactive
gas that requires special attention in this review, as it modulates and regulates many stress
tolerance signaling pathways, fruit ripening, and cellular antioxidant enzymes’ action [138].
Therefore, given the similarity between its role and those of NO and MEL, it is interesting
to mention the interactions described between H2S and MEL or H2S and NO, and between
these three molecules (Figure 3).

Figure 3. H2S interactions with MEL or NO during abiotic stress response.

NO and H2S have been reported to act both synergistically and antagonistically
toward each other. H2S is capable of reducing NO accumulation by triggering stomatal
opening [139]. However, during salt stress, H2S reduced oxidative damage by inducing
NO production [140]. Moreover, NO was capable of alleviating hypoxia stress by triggering
the activation of enzymes involved in H2S biosynthesis [141]. In bananas, H2S enhanced
chilling stress tolerance by inhibiting ethylene production, a function that can also be
performed by NO and MEL. It can also promote cold-stress tolerance by decreasing EL
and MDA levels, as well as upregulating Ca2+-ATPase activity, a key secondary signaling
enzyme involved in energy metabolism [142]. As shown by Li et al. [143], Cd stress
induced H2S expression by upregulating LCD, DCD, and DES1. This molecule could act as
a signaling molecule that modulates antioxidant enzymes, such as SOD, CAT, POD, and
APX, alleviating Cd-induced oxidative stress [143]. As mentioned, both exogenous H2S
and NO can alleviate Cd stress response. H2S was capable of increasing NO synthesis in
alfalfa seedlings [144]. On the other hand, NO also enhanced H2S production in Bermuda
grass and wheat [145,146]. These responses have been observed during Cd stress, which
indicates that there is a NO/H2S crosstalk that enhances Cd stress tolerance.
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Likewise, MEL can also interact with H2S during the abiotic stress response. In tomato
cotyledons subjected to salt stress, MEL can modulate L-DES activity, thus regulating H2S
homeostasis [147]. In addition, Siddiqui et al. [148] showed that, in tomato seedlings,
MEL-mediated salt stress tolerance involves a H2S-dependent pathway.

Very recently, it has been suggested that stress tolerance induced by MEL might
occur through a H2S and NO cascade. During salt stress, in pepper, both NO and H2S
were essential for establishing MEL-induced stress tolerance. Similar results have been
observed in cucumber under salt stress, pointing out that NO and H2S act downstream
MEL during the stress response [149,150], and indicating a putative point of synergisms
and interaction between these three molecules, although these results are very partial, and
more investigations on their interactions and signaling mechanisms are needed.

5. NOmela: An Emerging Molecule with Important Stress Signaling Roles

As suggested during this review, the convergence of MEL and NO in many physi-
ological, biochemical, and molecular events in plant cells is not fortuitous, and recently,
an increased interest has been observed in a new emerging molecule with important
roles in plant cells. In situations involving the presence of oxygen, at physiological pH
values, MEL can be NO-nitrosated in the nitrogen atom of the indole ring, resulting in
N-nitrosomelatonin (NOmela). This nitrosated form of MEL is an effective NO donor and
is involved in redox signaling in plants [27,151–155]. The transfer of nitroso groups from
N-nitrosotryptophan derivatives to MEL can also result on the formation of NOmela. This
transnitrosation reaction is very strong, and it cannot be inhibited by RNS scavengers, as
shown by Kirsch and De Groot [156].

An advantage provided by NOmela is that NO release from NOmela is independent
of buffer composition, but at the same time, it affects NO release from GSNO. Due to
this aspect, it is believed that NOmela is a better NO precursor in cell culture. Moreover,
the MEL generated by NOmela is a strong antioxidant that can protect cells in culture.
This molecule is capable of releasing both NO and MEL, thus combining the beneficial
proprieties of both molecules. Due to the simultaneous releasing of NO and MEL during
NOmela breakdown, cells are protected from harmful effects from the RNS formed by
NO autoxidation owing to MEL. In vivo, NOmela is capable of releasing NO, MEL, and
SNOs without promoting the generation of hydroxyl radicals, thus avoiding their cytotoxic
effects [27,154]. In mammals, NOmela has been proven to modulate circadian rhythms. The
NO released from this compound was capable of enhancing its photic synchronization via
increasing the immunoreactivity of key genes, as shown by Baidanoff et al. [157]. Therefore,
it is possible that this compound is also capable of regulating various responses and
physiological processes in other eukaryotes such as plants. In plants, NOmela is believed
to exert an important role, especially under stress conditions. Roots are the first organs
that are affected by soil-mediated abiotic stress. For example, sunflower seedlings showed
a higher MEL concentration in roots than cotyledons after being exposed to salt stress,
indicating that this organ is the first stress sensor, and therefore, MEL is rapidly synthesized.
It has also been proven that abiotic stress situations can trigger long-distance signaling
mediated by MEL from roots to aerial parts [158]. Likewise, due to the short half-life of
NO, its transport from the roots to the aerial parts may be possible. However, this is not
well-known, and further research is still needed, although it is believed that molecules
such as NOmela or S-nitrosothiols such as GSNO could participate in long-distance NO
transport. Moreover, in vivo studies performed by Singh et al. [159] in Arabidopsis seedlings
showed that NOmela facilitates NO transport from roots to leaves, hence a more efficient
NO donor and transporter than GSNO (Figure 4A).

As mentioned previously, NO can modify protein function or activity via PTMs; thus,
we believe that NOmela can also act through this mechanism, as described in what follows.
The main PTM generated by NO is a reversible redox modification called S-nitrosylation,
which is characterized by the addition of a nitroso group to a thiol group present in cysteine
residues (Cys) [160]. Thus, it can modulate protein stability, activity, subcellular localization,
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conformation, and protein–protein interactions. It is more common for S-nitrosylation to
occur as a non-enzymatic process, owing to the mediation of NO, SNOs, ONNOO− or
higher nitrogen oxides (NOx), without the interplay of any co-factor or enzyme-like protein.
However, transnitrosylation involves enzymes called transnitrosilases, which can transfer
a nitroso group to a Cys residue [59]. This PTM is involved in important physiological pro-
cesses, such as xylem vessel cell differentiation, as shown by Kawabe et al. [161]. Moreover,
it can regulate plant growth and development by positively regulating auxin signaling
and negatively regulating cytokinin signaling [162,163]. The plant’s response to abiotic
stress is also regulated by S-nitrosylation; for instance, in response to hypoxia conditions
during seed germination, GSNOR1 is subjected to S-nitrosylation, which leads to its degra-
dation [59,164]. Tyrosine nitration is another common PTM mediated by NO, which can
alter the activity of SOD, modifying ROS signaling balance [165]. During the stress re-
sponse, protein arginine methylation was also modulated by NO-mediated S-nitrosylation,
which indicates that cellular signaling could be regulated via interactions between different
PTMs [166]. Therefore, and given the versatility of NO-inducing PTMs, NOmela may play a
similar role, since NO carriers, such as LMM-SNOs, can also transnitrosate cysteine residues
of proteins, altering their activity and functionality [167]. Although there are just a few
studies in this field, it has been demonstrated that NOmela is capable of transnitrosating
low-molecular-weight thiols, as well as vitamins and aromatic amines [156,168]. Moreover,
NOmela can also react with protein thiols, which makes NOmela able to transnitrosate
several proteins in their Cys residues, modulating their activity even more effectively than
LMM-SNOs, as demonstrated by Kirsch and de Groot [168] (Figure 4B). Due to the impor-
tance of PTMs in regulating plant development and stress response, it is key to deepen
our knowledge of NOmela’s ability to induce protein PTMs and their implications in plant
physiology. From here on, we encourage the scientific community to delve into the action
mechanisms of NOmela and how this attractive, novel, and very unknown molecule can
act within cellular signaling mechanisms and protein activity regulation, in both animals
and plants.

Figure 4. (A) Proposed mechanism for NO and MEL transport from roots to aerial parts via NOmela
synthesis during stress conditions. Stress induces NOmela formation from NO and MEL, which can
be transported to aerial parts, where it breakdowns into NO and MEL for triggering stress responses;
(B) proposed mechanism for NOmela-mediated molecules transnitrosation mechanism under stress.
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6. Conclusions and Future Perspectives

Both MEL and NO play fundamental roles in different molecular pathways present in
plants. The synthesis, accumulation, transport, and action mechanisms of both molecules
are fundamental—from the first stages of development to more advanced stages such as
fruit ripening. In addition, they also play fundamental roles in modulating the molecular
response to abiotic stresses, which requires further knowledge of the mechanisms by which
this modulation occurs, to delve into the interaction of these molecules with phytohormones
or with other signaling molecules such as H2S.

There is evidence that both molecules are capable of interacting, both at the level of
biosynthesis and in more complex molecular pathways that regulate different processes,
with synergistic and antagonistic interactions between them. Despite the studies presented
in this review, there is still a great lack of knowledge about the exact relationship be-
tween these two molecules in numerous physiological processes, so further research is
still necessary.

Given its ability to transport NO, release MEL, and induce protein PTMs, the study
of NOmela promises to be a powerful source of new knowledge to better understand the
molecular pathways that regulate physiological processes and stress responses in plants. In
spite of this, NOmela detection tools are scarce and imprecise [154], and it is necessary to
develop them correctly to properly investigate this molecule.
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