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Molecular-based analysis has become a fundamental tool to understand the
role of Quaternary glacial episodes. In the Magellan Province in southern
South America, ice covering during the last glacial maximum (20 ka) radically
altered the landscape/seascape, speciation rates and distribution of species.
For the notothenioid fishes of the genus Harpagifer, in the area are described
two nominal species. Nevertheless, this genus recently colonized South Amer-
ica from Antarctica, providing a short time for speciation processes.
Combining DNA sequences and genotyping-by-sequencing SNPs, we evalu-
ated the role of Quaternary glaciations over the patterns of genetic structure
in Harpagifer across its distribution in the Magellan Province. DNA sequences
showed low phylogeographic structure, with shared and dominant haplo-
types between nominal species, suggesting a single evolutionary unit.
SNPs identified contrastingly two groups in Patagonia and a third well-
differentiated group in the Falkland/Malvinas Islands with limited and
asymmetric gene flow. Linking the information of different markers allowed
us to infer the relevance of postglacial colonization mediated by the general
oceanographic circulation patterns. Contrasting rough- and fine-scale genetic
patterns highlights the relevance of combined methodologies for species
delimitation, which, depending on the question to be addressed, allows
discrimination among phylogeographic structure, discarding incipient
speciation, and contemporary spatial differentiation processes.
1. Introduction
Biogeographical boundaries, identified as the coincidence of species distribution
limits, generally reflect abiotic discontinuities acting directly on the survival of
taxa, but they can also reflect both evolutionary consequences and historical
climate changes. Quaternary glacial cycles are considered main drivers of current
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distribution patterns in cold-temperate and polar near-shore
biotas, as continental ice sheet expansions during glacial
maxima led to the eradication of most marine benthic organ-
isms in large ice-covered areas [1–5]. Thus, Quaternary ice
ages, particularly the last glacial maximum (LGM) around
20 ka, radically altered the demography and the geographical
range of higher latitude species and populations. Glacial ice
sheet advances and retreats also modelled the distribution
of intraspecific genetic variation and patterns of population
structure [2,4,6,7]. A vast array of records from the Northern
Hemisphere provided the empirical basis for the expansion–
contraction (E–C) model of Pleistocene biogeography [8], a
fundamental paradigm for Quaternary biogeographers. This
model describes the response of populations and species to
climate change [2,9,10] and helps to understand how cold-
temperate taxa survived the LGM at lower-latitude refugia
and then recolonized higher latitudes through range expansion
following the deglaciation process [9,11].

During the LGM, the Pacific Magellan margin was
almost fully covered by the Patagonian Ice Sheet, expanding
over 480 000 km2 with a volume of around 500 000 km3

[12–15]. Radical glacial landscape/seascape shifts across this
area resulted in the periodic temporal elimination of the
associated terrestrial and near-shore marine biota [4,16–18].

Ice sheet retreats during warmer periods allowed the
colonization of new vacant habitats creating opportunities
for isolation and speciation [2,3,19,20]. Quaternary glacial
cycles led to regional isolation and extinction, shaping the
current patterns of species diversity in cold-temperate areas
of southern South America [4,21].

Zoogeographic delimitations of the Southern Ocean
provinces have considered the Magellan Province as a key
sub-Antarctic area that includes the southern tip of South
America and the Falkland/Malvinas Islands [22–24], and
the new Biogeographic Atlas of the Southern Ocean [25] recog-
nized the Magellan Province as a single sub-Antarctic
province clearly separated from other sub-Antarctic ones
[24]. During the last two decades, mtDNA-based phylo-
geographic studies across the Magellan Province showed
that terrestrial and marine biota underwent demographic
dynamics associated with the E–C model, with recent popu-
lation expansions following the LGM. Such patterns have
been recorded in vertebrates [26–28] and plants [29,30].

Several studies conducted in near-shore marine species
were restricted to the Pacific margin of South America several
taxa [31–35], including fishes [36,37]. These studies support a
strong impact of the last LGM on species restricted to shallow
marine habitats in areas heavily impacted by continental ice
sheet advances. Although several near-shore marine species
are distributed across the entire Magellan Province, few phy-
logeographic studies have been conducted across the region
[34,38,39]. Phylogeographic patterns detected when includ-
ing the Falkland/Malvinas Islands ranged from the absence
of genetic differentiation [39,40] to marked phylogeographic
differentiation [19,33,34] and the presence of clearly divergent
species-level clades [41,42].

The Southern Ocean notothenioid fishes originated in Ant-
arctica and have dominated in diversity, abundance and
biomass since the local extinction of most of the ichthyofauna
during the Eocene [43]. The monogeneric notothenioid family
Harpagiferidae includes littoral benthic species currentlydistrib-
uted in the Southern Ocean. Two nominal species are currently
recognized in theMagellan Province:Harpagifer bispinis (Forster
1801), endemic to the southern tip of SouthAmerica, andH. pal-
liolatus Richardson 1845, endemic to the Falkland/Malvinas
Islands. However, Richardson [44], in the original description
of H. palliolatus, was sceptical if the morphological differences
were enough to diagnose them as different species: ’I have
seen only one example of this form of Harpagifer and am not
convinced on its being specifically distinct from bispinis, not-
withstanding the very different way in which it is colored’ [44].
Accordingly, the specific status conferred to H. palliolatus from
the Falkland/Malvinas is still doubtful and requires revision.

So far, one study has been performed on the genus Harpa-
gifer through mtDNA comparisons between South American
H. bispinis and the Antarctic species H. antarcticus [37]. Phylo-
genetic reconstructions supported the presence of different
species of Harpagifer on the two sides of the Drake Passage,
albeit with low levels of genetic divergence. Divergence
time estimates suggest separation during the Pleistocene,
between 1.2 and 0.8 Ma [37], much more recently than the
divergence between South American and Antarctic congene-
ric species of other marine species [5,45–47], including other
notothenioid species [20,48,49]. Hüne et al. [37] proposed a
scenario of a northward movement of the Antarctic Polar
Front during the Great Patagonian Glaciation of the Quatern-
ary (0.9–1 Ma). This northward shift would have allowed the
sub-Antarctic colonization of Harpagifer from the Antarctic
Peninsula towards South America through the Scotia Arc.
This scenario of recent sub-Antarctic colonization leads to
the question of whether if it is possible that speciation took
place in South America (H. bispinis versus H. palliolatus) in
such a short evolutionary time, posing the possibility that
the Magellan Province harbours a single species.

During recent decades, molecular-based analyses using
traditional markers (mtDNA and nucDNA sequences) have
become the main tool to understand and unravel the role of
Quaternary glacial episodes on the distribution and demogra-
phy of populations, generally improving the understanding of
biodiversity and systematics through species delimitation
methods [2,6,8,40,50]. Accordingly, the sudden increasing avail-
ability of genome-based data in non-model organisms has
significantly improved the spatial resolution of genetic structure
and potentially allows inferences concerning the historical and
contemporary diversification of organisms [51]. Also, there is
a trend to use anonymous genome-wide markers obtained
through reduced representation sequencing (RRS) to address
systematic and taxonomic questions [52–55]. However, such
data do not generally allow one to distinguish population gen-
etic structure from divergence process as they provide allelic
frequency comparisons [56–58]. In this study, we used the com-
bined information ofDNA sequences and non-targeted SNPs to
shed light about the role ofQuaternary glacial events in the gen-
etic structure and the potential role of post-glacial colonization
processes in the contemporary patterns of gene flow of the
genusHarpagifer in SouthAmerica.Using this genus in southern
SouthAmerica as a studymodel,we aim to unravel the role and
potential of each kind of molecular marker to address specific
questions about population genetic structure, phylogeography
and species delimitation.
2. Material and methods
Populations of Harpagifer bispinis were collected from the interti-
dal of 12 localities along the Pacific Patagonia between 48.73° S,
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Figure 1. Sampling sites for the nominal species Harpagifer bispinis and H. palliolatus across Pacific Patagonia and the Falkland/Malvinas Islands. (Online version in
colour.)
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74.05°W and 55.84° S, 67.37°W, and H. palliolatus specimens
were collected at Hookers Point (51.03° S, 57.7°W) in the Falk-
land/Malvinas Islands (figure 1; electronic supplementary
material) [59]. All specimens were preserved in 95% ethanol.
DNA extractions were done using the DNeasy Blood and
Tissue Kit (Qiagen, USA). The quantity and integrity of DNA
were measured using both Nanodrop 2 (Thermo, USA) and
Qubit 4 (Thermo, USA).

Partial fragments of two mitochondrial (D-loop and COI)
and one nuclear gene (Rhodopsin) were amplified through
PCR (electronic supplementary material, table S2). Amplicons
were purified and sequenced in both directions at Macrogen
Inc. (Seoul, South Korea). Alignments were obtained with
Geneious R10 (https://www.geneious.com). The haplotype
phases of the rhodopsin sequences were inferred using Phase
2.1 in DnaSP 6.0 [60].

For RRS, samples were sequenced through a genotyping-by-
sequencing (GBS) method at the Biotechnology Center in the
University of Wisconsin using, after optimization, the ApeKI
restriction enzyme. After enzyme digestion, each DNA fragment
was linked to a barcode adaptor to recognize it in silico and
libraries were prepared using a HiSeq2000 (Illumina, USA) plat-
form. Reads were visualized in FastQC 0.10.1 for quality checks.
SNP-calling was carried out with the pipeline Universal Net-
work-Enabled Analysis Kit (UNEAK) in Tassel v. 3 [61]. We
used a minor allele frequency of 0.05 and a site minimum call
rate of 0.75 to ensure that at least 75% of the individuals in
each SNP were covered for at least 1 tag. After filtering, we esti-
mated Hardy–Weinberg equilibrium deviations per locus and
per population with Arlequin 3.5.2.2 [62] using 10 000 permu-
tations. p-values were corrected with a false discovery rate
(FDR) correction (q-value = 0.05), and SNPs that appeared in
HW disequilibrium in at least 60% of the populations were
removed from the dataset.

We estimated levels of polymorphism in H. bispinis and
H. palliolatus populations for the COI, D-loop and rhodopsin
datasets in DNasP 6.0 [60] using standard diversity indices:
haplotype number, number of polymorphic sites, haplotype
diversity, the average number of pairwise differences, and
nucleotide diversity. Genealogical relationships were recon-
structed using median-joining haplotype networks in PopART
(http://popart.otago.ac.nz). Pairwise distances ( p-distances)
were calculated using Kimura-2-parameter.

Patterns of population structure were determined through
pairwise FST and ΦST in Arlequin v. 3.5 [62] and their
significance using 10 000 permutations. We evaluated phylogeo-
graphic structure using Permut [63] by comparing the FST and
ΦST values using 10 000 random permutations of genetic distance
among haplotypes. Finally, we performed the Bayesian clustering
algorithm implemented in Geneland v. 3.1.4 [64].

SNPs putatively under diversifying selection were identified
using an FST outlier approach implemented in Bayescan 2.1 [65].
Considering that such loci tend to be highly differentiated and
exacerbate the genetic structure, they were not considered for
analyses. A total of five separate runs were performed with
500 000 iterations and a 10% burn-in period to assure the conver-
gence of the MCMC and a prior odd of 1000. A FDR correction
of q-values of 0.05 was applied in Bayescan to avoid the
occurrence of false positives.

Expected and observed heterozygosity and allele richness
with rarefied allele counts across the study area were calculated
using Genodive v. 3.05 [66], and private allelic richness and diag-
nostic alleles among genetic groups were calculated in HP-Rare
1.0 [67].

Pairwise FST analyses were calculated in Arlequin v. 3.5 [62]
with the significance tested through 10 000 permutations of indi-
viduals between localities. With Structure 2.3.4 [68], we
evaluated the probability of assignment of a given individual
to a genetic cluster using 10 replicate runs performed in parallel
using Strauto [69] with 500 000 MCMC and 10% burn-in. Opti-
mal K values were estimated using Evanno’s method [70],
using delta K. Discriminant analysis of principal components
(DAPC) in the R package adegenet [71] was used to identify gen-
etic clusters with the information about the geographical origin
of each individual. The optimal number of clusters for DAPC
was estimated with the k-means clustering with Bayesian infor-
mation criterion (BIC) in the function find.clusters using 100 000
iterations, 100 PC and six discriminant functions.

Additionally, we tested for population structure using spatial
location and geographic distance between individuals using the
R package conStruct to dissociate the population structure from
continuous clines of genetic variation [72]. With conStruct, we
estimated the effect of both isolation by distance and discrete
population structure based on individuals’ relationships [72].
We run five independent chains with three layers, with 100 000
iterations. The contribution of each layer was calculated using
cross-validation runs.

Finally, contemporary asymmetric gene flow patterns
between each determined cluster were estimated with BayesAss
3.04 [73]. With BayesAss, we used the results of the previous
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Table 1. Genetic diversity for COI, D-loop and rhodopsin data for H. bispinis and H. palliolatus. The table shows sampling size (N), polymorphic sites (S),
number of haplotypes (H), haplotype diversity (h), the average number of differences between pairs of sequences (∏) and nucleotide diversity (π).

nominal species N S H h ∏ π

H. bispinis 99/135/48 25/ 27/3 29/33/3 0.789/0.743/0.121 1.42/1.69/0.20 0.00213/0.0037/0.0003

H. palliolatus 27/42/38 10/3/4 9/3/5 0.718/0.220/0.572 1.18/0.27/1.12 0.00176/0.0006/0.0014

total 126/177/86 31/29/5 36/34/6 0.783/0.652/0.358 1.42/1.39/0.67 0.00212/0.003/0.00084

Table 2. Summary of genetic and geographic structure analysis of COI,
D-loop and rhodopsin for Harpagifer using three approximations: FST in
Arlequin, FST >ΦST t in Permut and spatial clustering using Geneland
(optimal k value).
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clustering analyses and identified those individuals that puta-
tively migrate from another genetic group using the number of
times that each individual assigns to the other populations/gen-
etic group. The rates of contemporary immigration among
clusters were estimated using 10 000 iterations and a burn-in
period of 10%.
Arlequin Permut Geneland

FST ( p) FST >ΦST (p) k

COI 0.0326 (0.026) 0.035–0.091 (0.0058) 1

D-loop 0.1166 (<0.001) 0.152–0.089 (0.9344) 1

Rho 0.1924 (<0.001) 0.178–0.163 (0.6) 1

Table 3. Genetic Diversity for SNP-GBS of Harpagifer. This table shows the
acronyms for each location (same as DNA sequences), number of alleles
corrected after rarefaction (Ar), expected (He) and observed heterozygosity
(Ho) and inbreeding coefficient (Gis).

acron N Ar Ho He Gis

TEM 3 1.477 0.376 ± 0.26 0.478 ± 0.13 0.267

FP 13 1.612 0.196 ± 0.14 0.310 ± 0.14 0.361

CSB 13 1.676 0.256 ± 0.16 0.310 ± 0.14 0.188

PB 13 1.574 0.260 ± 0.19 0.358 ± 0.34 0.287

IC3 12 1.621 0.215 ± 0.18 0.337 ± 0.14 0.318

PY 19 1.729 0.306 ± 0.18 0.313 ± 0.14 0.013

FPI 14 1.714 0.276 ± 0.17 0.319 ± 0.14 0.121

PW 14 1.688 0.238 ± 0.17 0.324 ± 0.13 0.223

HP 27 1.647 0.256 ± 0.17 0.298 ± 0.15 0.124

Soc.B
289:20212738
3. Results
We obtained 126 COI sequences of 669 nucleotide positions
with no stop codon and no indels, corresponding to 99 and
27 individuals of H. bispinis and H. palliolatus, respectively.
Alignment included 36 haplotypes and 31 variable positions
(4.63%) of which 13 were parsimony informative (41.93%).
D-loop data included 34 haplotypes in 177 sequences, corre-
sponding to 135 and 42 individuals of H. bispinis and
H. palliolatus, respectively. Rhodopsin alignment consisted
of 6 haplotypes in 86 sequences after Phase, corresponding
to 24 and 19 individuals of H. bispinis and H. palliolatus,
respectively. Levels of genetic diversity in nominal species
were generally moderate to low (table 1). For instance, haplo-
type diversity for COI and D-loop in H. bispinis ranged from
0.121 to 0.789 (table 1). Similar values for COI were recorded
for H. palliolatus (h = 0.718), with lower genetic diversity for
D-loop in this nominal species (h = 0.220) (table 1). Rhodopsin
was the least diverse marker, with only six haplotypes in total
and low overall haplotype diversity for both nominal species.
H. palliolatus exhibited higher diversity for rhodopsin than
H. bispinis (h: H. bispinis = 0.121, H. palliolatus = 0.572)
(table 1).

Molecular distances (Kimura 2-parameter) between the
nominal species were low and varied between 0.099% (rho-
dopsin) and 0.221% (D-loop). Global ΦST comparisons
showed low but significant structure for the three studied
markers considering both nominal species (ΦST: COI = 0.03
[p = 0.02], D-loop = 0.12 [p < 0.001], rhodopsin = 0.19 [p <
0.001]) (table 2). Using pairwise values of ΦST, several
locations from Patagonia appeared as non-significantly dif-
ferentiated from Falkland/Malvinas Islands after FDR
correction (electronic supplementary material, Information).
Analyses using PERMUT and GENELAND for each of the
three markers did not discriminate between significant
grouping or evidence of phylogeographic signal (table 2).

Genealogical reconstructions of haplotypes using mtDNA
markers (COI and D-loop) showed a star-like pattern, with a
single broadly distributed dominant haplotype (figure 2a,b).
H. bispinis and H. palliolatus shared several haplotypes,
including the dominant ones, and showed low frequencies
of private haplotypes. For the nuclear marker rhodopsin,
derived haplotypes were linked by no more than three muta-
tional steps to the dominant and broadly distributed
haplotype (figure 2c).
We obtained a total of 3061 SNPs for Harpagifer in South
America. Bayescan determined that 68 SNPs showed strong
or very strong evidence of being putatively under diversify-
ing selection and in consequence were removed from the
dataset. Finally, 2993 putatively neutral non-targeted SNPs
were used to evaluate the spatial genetic structure
and contemporary gene flow of Patagonia and Falkland/
Malvinas in Harpagifer populations.

In contrast with results with DNA sequence data, there
was a significant geographic structure found in the study
area (figure 3). With similar levels of genetic diversity
(table 3), this structure consistently showed three groups:
two groups in Patagonia, P1 (From TEM to IC3) and P2
(From PY to PW), whose limit was coincident with the
Strait of Magellan, and a third and highly differentiated
group (M1) in the Falkland/Malvinas (Hooker Point)
(figure 3a,b). Independently of whether analyses were
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based on individuals (Structure), a spatial model incorporat-
ing isolation by distance (conStruct) or sampled localities
(DAPC), they showed the same pattern. With clustering
approaches, Falkland/Malvinas appears as an isolated
group with slight signals of admixture with Patagonia with
conStruct, Structure and BayesAss (figure 3a–c). For Struc-
ture, and in agreement with DAPC, three main groups
were detected as optimal clustering using Evanno’s
method: two in Patagonia (P1 and P2) and one in Falk-
land/Malvinas. Using HPRare, no private alleles were
detected in Falkland/Malvinas, while 58 were detected in
Patagonia. Furthermore, no diagnostic allele was found
comparing Patagonia with Falkland/Malvinas.

Contemporary gene flow determined with BayesAss
(figure 3c) showed asymmetrical migration rates between the
two groups in Patagonia following a northern migration pat-
tern, with a migration rate of 18.8% from P1 to P2. A lower
migration rate of 2.03% was recorded from P2 to P1
(figure 3c). The same analysis showed limited and asymmetri-
cal migration rates from Patagonia to Falkland/Malvinas
Islands, with an estimated proportion of 3.69% migrants in
total from both groups in Patagonia (P1 and P2) (figure 3c),
with 96.3%of the individuals of Falkland/Malvinaswith ances-
try in the same island (self-recruitment), results that agreedwith
admixture proportion pies estimatedwith conStruct (figure 3c).
4. Discussion
The biogeographyof the Southern Ocean largely reflects the his-
torical and contemporary interaction among plate tectonics,
oceanography, climate and the biota through the Cenozoic, and
particularly during the last 50 Ma [74–76]. Our results showed
that traditional DNAmarkers did not detect evidence of discrete
evolutionary units between putative South American species of
Harpagifer, which exhibited very low (and even absence
of) genetic differentiation. Neither of the clustering analyses
using traditional DNA sequences was able to recognize signifi-
cant groups associated with the nominal species H. bispinis and
H. palliolatus. In fact, each of the analysed markers consistently
showed the presence of shared dominant haplotypes in both
nominal species. Moreover, levels of genetic distance between
H. bispinis and H. palliolatus (0.213 in D-loop) are lower than
those recorded for intraspecific population studies of fishes
(0.343 ± 0.05%) [77]. Hence, Harpagifer populations across the
Magellan Province represent a single evolutionary unit, support-
ing a recent biogeographic ichthyological revision of sub-
Antarctic fish fauna suggesting a single Magellan ecoregion
[78]. Finally, following the taxonomic priority principle, we
suggest that a single species, Harpagifer bispinis (Forster 1801),
is currentlydistributedalong thePacific andtheAtlanticmargins
of South America and in the Falkland/Malvinas Islands.
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Low levels of phylogeographic structure in the study area
have been reported in the pulmonates Siphonaria fuegiensis
[34] and S. lessonii [39]. Also, Harpagifer populations in
South America exhibited middle to low levels of mtDNA
and nuclear DNA genetic diversity compared to other Magel-
lan fishes including the notothenioid Eleginops maclovinus [79]
and the galaxiid Galaxias maculatus [36], being most compar-
able to patterns of genetic diversity recorded in Antarctic fish
species including Lepidonotothen spp. [80,81] and Trematomus
[82]. Low levels of genetic diversity and structure recorded in
Harpagifermay be explained by the Quaternary glacial history
of the study area, as well as the ecology of the species. The
colonization of areas that were formerly glaciated would
have involved a series of genetic bottlenecks and therefore
recolonized areas should exhibit low genetic diversity domi-
nated by few haplotypes and high frequency of sequences
from the founding population. Accordingly, the main phylo-
geographic patterns in Harpagifer provide evidence for the
E–C model of Quaternary biogeography. Alternatively, the
absence of genetic structure found in Harpagifer using DNA
sequences could also be a consequence of the recent diversi-
fication estimated for the genus that may have colonized
the Magellan Province less than approximately 1 Ma [37].

Complementing the results obtained with traditional DNA
sequences, SNP-GBS identified a contrasting pattern; three gen-
etic groups in H. bispinis, two of them restricted to Pacific
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Patagonia, one located north of the Strait of Magellan (P1)
another south of it (P2), as well as a third differentiated group
from the Falkland/Malvinas Islands (M1). Our analyses
showed a marked separation between Pacific Patagonia and
the Falkland/Malvinas Islands, a pattern that could be
explained mainly by the geographic distance between popu-
lations. Despite these areas being highly differentiated, we
found evidence of low but significant asymmetrical gene flow
where at least 3% of the individuals collected in the Falkland/
Malvinas Islands are likely to be derived fromPacific Patagonia.
In the opposite direction, a negligible percentage (less than
0.1%) of the individuals from Patagonia could have been from
the Falkland/Malvinas Islands. Contemporary asymmetrical
gene flow from Pacific Patagonia towards the Falkland/Malvi-
nas Islands in H. bispinis is expected under the general
oceanographic circulation pattern in this region and has been
also found in patellogastropods [19,33] and pulmonates [39]
using traditional sequence markers. Limited (but significant)
contemporary gene flow could explain the absence of phylo-
geographic structure detected through traditional DNA
analyses, preventing population divergence between the areas.

An interesting spatial pattern that emerged from the SNP-
based structuring analyses in H. bispinis is the presence of two
groups in Pacific Patagonia separated by the Strait ofMagellan.
After Quaternary glacial cycles, the Strait ofMagellan ismainly
a long waterway that separates Patagonia from Tierra del
Fuego, with a minimum width of 2 km and a maximum
depth of approximately 1800 m. Although this area has been
considered as a transition zone by some authors [83,84], to
date there is no molecular evidence supporting the presence
of different populations at both sides of this geographical fea-
ture. Possible explanations for this discontinuity may be
associated with the ecology of the species, its reproductive be-
haviour [85] and the larval ecology, which may decrease the
connectivity across geographically complex areas such as that
found in the Patagonian fjords. Due to the absence of swim
bladder and their negative buoyancy, adults ofH. bispinis exhi-
bit major restrictions of movement. Hence, individuals are
mainly benthic inhabitants of coastal rocky shores and interti-
dal pools, and have the lowest natant ability among sub-
Antarctic nototheniids [86]. Accordingly, active dispersion of
individuals should occur only during the free-living pelagic
larval period, which may last approximately three months in
conspecifics (H. antarcticus [87]). However, Harpagifer larvae
tend to be retained close to the coast [85,88], limiting the effec-
tive dispersion capability and in consequence the connectivity
between populations [87]. The Strait of Magellan seems to act
as the main connectivity barrier for a benthic organism with
limited effective larval dispersion. According to our migration
estimations, and as expected under the general circulation pat-
tern and the direction of the main Cape Horn current, there is
an asymmetric andpoleward gene flowpattern from (P1) north
to south (P2), a pattern previously reported in the same area for
the limpets Nacella magallanica [19] and N. mytilina [33].

Our results in Harpagifer bispinis represent the first evi-
dence of a genetic discontinuity across this area and show
the importance of the use of fine-scale molecular markers in
genetic differentiation studies, which may play a key role in
the knowledge of the Quaternary evolution of near-shore
benthic fauna. A similar example occurs in the 30° S tran-
sition zone in the Humboldt Current System [89]. In the
ascidian Pyura chilensis, this well-known phylogeographic
break was unrecognized by traditional markers [90] but
detected with SNPs using spatial genetic structure analysis,
further suggesting that the contemporary influence of this
break is due to environmental differences north/south of
the zone and consequent local adaptation processes [91,92].

Since this is the first study in a Magellan near-shore
marine benthic species performed with SNPs, further
phylogeographic studies using fast-evolving markers and
oceanographic biophysical models of the circulation patterns
in this complex area are necessary to corroborate and support
these findings, and to assess if this isolation by distance
pattern could be maintained by local adaptation processes.
5. Conclusion
Since non-targeted SNPs are increasingly used for phyloge-
netic inferences and species delimitation analyses [52–
55,93], we point out here the need to complement such
an approach with traditional DNA sequences. In our study,
in the absence of the information provided by mtDNA and
nucDNA sequences, and due to the strong spatial structure
between Patagonia and Falkland/Malvinas detected through
SNPs, we would have probably supported the hypothesis of
two Harpagifer species in southern South America or at least
supported evidence of incipient speciation. Nevertheless,
such a conclusion would have been a consequence of intras-
pecific spatial structure rather than historical genealogical
patterns associated with historical divergence. Using different
species concepts (e.g. phylogenetic, biological and genealogi-
cal), our data confirm that Harpafiger in South America does
not include two separate evolutionary units as Richardson
[44] hypothesized in the original description of H. palliolatus.
Based on the low levels of pairwise distances recorded
among Harpagifer populations across Pacific Patagonia and
the Falkland/Malvinas Islands, our results do not support
a scenario of incipient speciation or divergence. Furthermore,
the absence of diagnostic alleles between Patagonia and Falk-
land/Malvinas provides strong evidence that the detected
patterns with SNPs in South American populations of Harpa-
gifer are a consequence of contemporary patterns of genetic
structure and gene flow. This pinpoints the necessity to
verify the phylogenetic status of each evolutionary unit
using different approaches before drawing genealogical con-
clusions based solely on non-targeted SNPs. In the Southern
Ocean, traditional DNA molecular markers have been
extensively used for species delimitation analyses (see
[40,41,94,95]). Recently, RRS data has also been successfully
applied as a tool for phylogenetic inference [50,96,97], but
in all those cases, SNP data were complemented with avail-
able molecular, morphological or taxonomic evidence.
Our study therefore supports the idea that depending on
the original question to be addressed, what we are detecting
using traditional markers and SNP data is (i) potential
phylogeographic structure that could show a divergence pro-
cess and incipient speciation (discarded in our case), and
(ii) differentiation processes linked to drift-migration equili-
brium models. Sukumaran & Knowles [56,57] suggest that
multi-species coalescent approaches for species delimitation
regularly delimit population structure rather than actual cla-
dogenetic processes. Contrasting results between traditional
and fast-evolving markers will help to put in perspective
the reliability of SNPs from RRS techniques (e.g. GBS and
RADseq) approaches in the absence of a reference genome
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in species delimitation, phylogenetic inferences and as a
genealogical approach in evolutionary biology.

Finally, as previously demonstrated in shallow marine
benthic organisms including fishes [98], invertebrates
[3,34,40,42,99] and bacteria [100], the taxonomy of the
Southern Ocean biota requires major revisions, including
molecular and morphological analyses.
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