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A novel radioprotective function for the mitochondrial
tumor suppressor protein Fus1

EM Yazlovitskaya1,2, R Uzhachenko3, PA Voziyan1, WG Yarbrough4,5,6 and AV Ivanova*,4

FUS1/TUSC2 is a mitochondrial tumor suppressor with activity to regulate cellular oxidative stress by maintaining balanced ROS
production and mitochondrial homeostasis. Fus1 expression is inhibited by ROS, suggesting that individuals with a high level of
ROS may have lower Fus1 in normal tissues and, thus, may be more prone to oxidative stress-induced side effects of cancer
treatment, including radiotherapy. As the role of Fus1 in the modulation of cellular radiosensitivity is unknown, we set out to
determine molecular mechanisms of Fus1 involvement in the IR response in normal tissues. Mouse whole-body irradiation
methodology was employed to determine the role for Fus1 in the radiation response and explore underlying molecular
mechanisms. Fus1� /� mice were more susceptible to radiation compared with Fus1þ /þ mice, exhibiting increased mortality
and accelerated apoptosis of the GI crypt epithelial cells. Following untimely reentrance into the cell cycle, the Fus1� /� GI crypt
cells died at accelerated rate via mitotic catastrophe that resulted in diminished and/or delayed crypt regeneration after
irradiation. At the molecular level, dysregulated dynamics of activation of main IR response proteins (p53, NFjB, and GSK-3b),
as well as key signaling pathways involved in oxidative stress response (SOD2, PRDX1, and cytochrome c), apoptosis (BAX and
PARP1), cell cycle (Cyclins B1 and D1), and DNA repair (cH2AX) were found in Fus1� /� cells after irradiation. Increased
radiosensitivity of other tissues, such as immune cells and hair follicles was also detected in Fus1� /� mice. Our findings
demonstrate a previously unknown radioprotective function of the mitochondrial tumor suppressor Fus1 in normal tissues and
suggest new individualized therapeutic approaches based on Fus1 expression.
Cell Death and Disease (2013) 4, e687; doi:10.1038/cddis.2013.212; published online 20 June 2013
Subject Category: Cancer

About 50% of current cancer patients receive ionizing
radiation (IR) therapy.1 Although tumors can develop or have
intrinsic radioresistance, the primary limitation of radiation
therapy is tolerance of normal tissues. In particular, the well-
described gastrointestinal (GI) syndrome is the major
factor limiting efficacy of therapy of abdominal and pelvic
cancers.2–4 Strategies to improve radiation therapy can
include increasing sensitivity of tumor cells and/or increasing
resistance of normal tissues. These strategies will be
accelerated by understanding drivers of tissue response to
IR that can be correlated with the specific genetic background
of individual patients.5

Response to radiation has been extensively investigated
and is a linchpin of cancer therapy for many solid tumors.
However, molecular mechanisms determining normal tissue
response to radiation are poorly understood. Specifically,
identification of new genetic factors involved in radiation
response is critical for understanding inter-patient variability
and improvement of individualized cancer therapy. This
patient-to-patient variability is a complex polygenic trait that
results from the interaction of a number of genes in different

cellular pathways.6,7 Several knockout mouse models for p53
and its targets,8–12 NFkB13 and other genes14 have identified
some of the molecular mechanisms driving cellular, tissue,
and organismal response to radiation. However, additional
critical mechanisms contributing to radiation response remain
to be defined.

We previously found that deficiency of mitochondrial tumor
suppressor Fus1 results in multiple immune system defects,
perturbed inflammatory response, aberrant cytokine expres-
sion, as well as dysregulation of mitochondrial homeostasis
including generation of high levels of ROS.15,16 Fus1
expression is epigenetically suppressed by asbestos expo-
sure17,16 and tobacco smoking,18,19 demonstrating that
inhibition of Fus1 expression can occur in normal tissues
under chronic oxidative stress. These findings suggest that
individuals with chronic oxidative stress may have low Fus1
levels and hence become more sensitive to the side effects of
radiation therapy.

On the other hand, the fact that Fus1 expression is
decreased or lost in majority of lung and many head-and-
neck, breast and kidney cancers may render these tumors
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more sensitive to IR therapy.17–19 Therefore, Fus1 may have
an important role in the regulation of cellular radiosensitivity/
radioresistance in normal and tumor tissues as well as be a
prospective target for therapies that better balance risks and
benefits of radiation treatment of tumors.

In this study, we demonstrated that whole-body irradiation
(WBI) of Fus1� /� mice resulted in increased and accelerated
death likely driven by accelerated apoptosis and untimely reentry
into cell cycle, leading to mitotic catastrophe of crypt epithelial
cells and diminished crypt regeneration. Study of the molecular
mechanisms associated with the absence of Fus1 expression
demonstrated alterations in the key signaling pathways regulat-
ing apoptosis, cell cycle, DNA repair, and oxidative stress
response in irradiated GI epithelium. Lack of Fus1 was also
associated with similar IR-induced defects in immune cells and
hair follicles, suggesting that effects of Fus1 loss are not
restricted to GI mucosa. Our findings describe Fus1 as a
modulator of oxidative stress and radiosensitivity and provide a
foundation for developing new individualized therapeutic
approaches based on Fus1 expression, which will help balancing
radiotherapy of tumors with protection of normal tissues.

Results

Fus1 protects mice from radiation-induced death. Survi-
vals of Fus1 WT and Fus1 KO mice were compared following
WBI with 8, 9 or 10 Gy. Upon WBI, survival of both Fus1þ /þ

and Fus1� /� mice was dose-dependent; however, based on
survival rate and survival time after irradiation, Fus1� /�

mice were more sensitive than Fus1þ /þ mice (Figure 1a).
Remarkably, 30% of Fus1� /� mice succumbed to 8 Gy WBI,
typically a non-lethal dose for WT mice. To determine if the
absence of Fus1 altered latency of death after WBI, higher
doses of 9 and 10 Gy that cause high rates of lethality in WT
mice were used. At both doses, Fus1� /� mice died earlier
than Fus1þ /þ mice (Figure 1a). In addition, 9 Gy resulted in
100% mortality in Fus1� /� mice at day 12 after WBI, but
allowed for 15% of Fus1þ /þ mice to survive at day 18. The
dynamics of daily weight loss following 9 Gy of WBI
suggested that mice were dying from the GI syndrome
(Figure 1b). Supporting this suggestion, irradiated Fus1 KO
mice had increased severe diarrhea and stomach bleeding.

Fus1 KO mice showed increased apoptosis in GI
epithelium at 4 and 8 h post IR. To better define the role
of Fus1 in regulating the dynamics of GI damage in response
to IR, small intestine (jejunum and ileum) from WT and Fus1
KO mice were examined after high doses of WBI using
histopathological (hematoxylin and eosin (H&E) staining) and
immunohistochemical analyses. At 4 and 8 h after irradiation
with 12 Gy, apoptotic cells were identified by TUNEL staining.
Compared with WT mice, the crypt epithelium in Fus1� /�

mice displayed statistically significant increase in apoptosis at
4 and 8 h post IR (Figure 2; apoptotic cells/crypt WT versus
KO, 4 h post IR: 3.54±0.90 versus 6.30±0.49, P¼ 0.028; 8 h
post IR5.48±1.07 versus 11.84±0.63, Po0.001).

Untimely proliferation in small intestine from Fus1 KO
mice at 8 h post IR correlates with increased aberrant
mitoses rate and rapid death of crypt cells. After high IR

Figure 1 Effect of Fus1 deficiency on mouse survival after exposure to different
doses of WBI. Fus1 WT and Fus1 KO female mice (5–6 weeks of age, 6–10 animals
per group) were exposed to 8, 9 and 10 Gy WBI. Mice were weighed daily and
observed for the signs of pre-morbid state. Shown are Kaplan–Meier survival curves
(a) and graphs of the average animal weight for 9 Gy (b)
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doses, epithelial cells in the GI crypts enter a reversible
prolonged G1 cell cycle arrest that is thought to be important
for repair of damaged DNA before DNA synthesis and
mitosis.20 To determine if loss of Fus1 abrogates these cell
cycle checkpoints, cellular proliferation in GI crypts was
examined at 4, 8, and 24 h after 12 Gy WBI (Figure 3a). While
no difference between Fus1 WT and KO mice was observed
at 4 h post IR (Figure 3a; proliferating cells/crypt: WT
5.3±0.55 versus KO 4.72±0.61, P¼ 0.5), a statistically
significant increase in the amount of proliferating cells
occurred in Fus1� /� mice at 8 h post IR (Figure 3a;
proliferating cells/crypt: WT 4.6±0.55 versus KO,
7.26±0.38, P¼ 0.01). Interestingly, at 24 h after WBI, a
trend toward decreased proliferation was observed in
Fus1� /� crypts (Figure 3a; proliferating cells/crypt: WT,
3.03±0.16 versus 2.06±0.3, P¼ 0.07). Together, these
data suggest that, like cells from WT mice, Fus1� /� GI crypt
cells undergo a growth arrest after high-dose irradiation.
Unlike GI cells from WT mice that undergo a prolonged
growth arrest lasting at least 24 h, cells from Fus1� /� mice
reenter the cell cycle as soon as 8 h after high-dose WBI
(Figure 3a). The sharp decrease in Fus1 KO cell proliferation
at 24 h post IR may be explained by a re-initiation of cell cycle
arrest or by death of cells that prematurely entered the cell

cycle and did not have sufficient time to repair IR-induced
DNA damage. Analyses of mitoses in GI cells from Fus1 WT
and KO mice at 24 h post IR, revealed a two-fold decrease in
the number of normal mitoses (WT, 0.025±0.007 versus KO
0.01±0.002, Po0.05) and a more than three-fold increase in
abnormal mitoses in Fus1� /� crypts (WT, 0.064±0.025
versus KO, 0.238±0. 035, Po0.01) (Figures 3b and c).

Fus1 KO mice show impaired crypt regeneration at 72
and 96 h post IR. It is well established that WBI with doses
of 48 Gy induces cell cycle arrest and apoptosis of GI crypt
epithelial cells within 24 h, leading to a decrease in
regenerating crypt colonies by day 3.5 and associated crypt
depletion.21 As Fus1 loss altered crypt cell proliferation and
apoptosis at early time points (Figures 2 and 3), we
examined effects of Fus1 loss on the morphology of jejunum
epithelia for various time points over a period of 4 days after
irradiation with 12 Gy. At early time points post IR (o24 h),
when differences in crypt cell apoptosis and proliferation
were observed, crypt morphology of WT and Fus1 KO
mice was similar; however, at later time points, dramatic
differences in jejunal crypt morphology and regeneration
were detected (Figure 4). At 48 h post IR, crypt size and cell
counts were decreased in mice of both genotypes; however,

Figure 2 Apoptosis in Fus1þ /þ and Fus1� /� intestinal crypts after 12 Gy WBI. Sections of distal jejunum from sham-irradiated and irradiated WT and Fus1 KO mice
at 4 and 8 h post IR were prepared and assayed with TUNEL staining. Shown is a bar graph of the average numbers of TUNEL-positive (apoptotic) cells per crypt in each
treatment group with SEM from at least three mice in each group, 50 crypts per mouse
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at 72 h after IR, Fus1þ /þ , but not Fus1� /� jejuna revealed
regenerating crypts, as indicated by morphology (Figure 4a).
Loss of crypts in Fus1� /� mice was accompanied by
morphological deterioration of villi epithelia, with progression
to complete degeneration at 96 h post IR. Although at 96 h
time point occasional regenerating crypts could be found in
Fus1� /� jejunum, they demonstrated altered morphology,
size and proliferation rates, and were enriched with aberrant
mitoses when compared to regenerating crypts from WT
mice (Figures 4b–d). As almost all crypts vanished between
48 and 72 h post IR in both WT and KO mice, the crypts
found at 96 h time point are likely to be formed de novo, being
derived from stem cells that re-establish proliferative
capacity. These data suggest that in the absence of Fus1,
stem cells cannot repopulate crypts after damage by high
dose of IR, implying that Fus1 may protect crypt epithelia
stem cells from IR damage.

Activation of early radiation response markers in
mucosa of Fus1 KO mice is altered. To compare
molecular events occurring in GI epithelial cells early after
IR, we isolated small intestinal mucosa cells from Fus1þ /þ

and Fus1� /� mice at 0, 4 and 8 h after treatment with 12 Gy

WBI, and activation/expression of IR apoptosis/injury
response regulators was examined by immunoblotting. At
4 h post IR, in Fus1� /� cells, we found increased phosphor-
ylation of histone H2AX at serine 139 (g-H2AX), activation of
GSK-3b (decreased inactivating phosphorylation at serine 9),
and accumulation of apoptotic markers such as Bax and
cleaved PARP1 (Figure 5). In agreement with increased
numbers of apoptotic cells seen in Fus1� /� compared to
Fus1þ /þ crypts at 4 and 8 h after IR (Figure 2), cleaved
PARP1 was much higher at 4 h, and Bax was increased at 4
and 8 h post IR (Figure 5). Remarkably, absence of Fus1 was
associated with a marked decrease in gH2AX along with total
H2AX and an increase in inhibitory phosphorylation of
GSK-3b at 8 h post IR, suggesting that Fus1 regulates
phosphorylation of these proteins after IR (Figure 5).

Fus1� /� epithelial cells are defective in early and late
response to IR. Fus1 deficiency resulted in aberrant cellular
and tissue response, as well as molecular response in mice
exposed to 12 Gy WBI. To further characterize the role of
Fus1 during early radiation response, we used sponta-
neously immortalized Fus1þ /þ and Fus1� /� murine epithe-
lial cells. We applied in vitro system for expanded studying of

Figure 3 Proliferation and aberrant mitosis in Fus1þ /þ and Fus1� /� intestinal crypts after 12 Gy WBI. (a) Sections of distal jejunum from BrdU-injected sham-irradiated
and irradiated WT and Fus1 KO mice at different time points after irradiation were prepared and stained with anti-BrdU. Shown is a bar graphs of the average numbers of
BrdU-positive proliferating cells per crypt in each treatment group with S.E.M. from at least three mice in each group, 100 half-crypt sections per mouse. (b and c) Sections of
distal jejunum from sham-irradiated and irradiated WT and Fus1 KO mice at 24 h post IR were prepared and stained with H&E. Shown is a bar graphs of the average numbers
of cells with normal and aberrant mitoses per crypt in each treatment group with S.E.M. from at least three mice in each group, 100 half-crypt sections per mouse (b). Shown
are micrographs of half-crypts with aberrant mitoses from Fus1� /� jejunum at 24 h post IR indicated by red arrows (� 400 magnification) (c)
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IR-response pathways affected by Fus1 loss to complement
the data obtained in mouse tissues. This approach allowed
overcoming the technical difficulties of working with non-
homogenous animal tissues. Moreover, we utilized the
benefit of cultured cells to characterize Fus1-dependent
early radiation response (0.5–2 h after exposure). Cells were
irradiated with 9 Gy, and lysates were examined by immuno-
blotting during the early (0 to 8 h) post-IR phase. Dynamics of
critical IR-response proteins representing cell cycle, proli-
feration, DNA damage and repair, signal transduction, and
oxidative stress response molecular pathways were investi-
gated (Figure 6). We found that the basal levels of signal
transduction proteins GSK-3b (total and phosphorylated),
phospho-p38 (Figure 6b) and anti-oxidant protein PRDX1
(Figure 6c) were higher in Fus1� /� cells. These data are
consistent with known consequences of Fus1 deficiency
associated with chronic oxidative stress and deregulated
signaling pathways. We also observed a pronounced Fus1-
dependent difference in the dynamics of IR response: while
in WT cells, activation of most of the analyzed molecules was
steadily increasing during early post-IR time points, in Fus1
KO cells, we observed a biphasic IR response pattern. In
Fus1þ /þ cells, majority of investigated proteins were
activated between 30 min and 1 h (Figure 6: increased
activating phosphorylation of p53, NfkB and p38; accumula-
tion of p53, NfkB, cyclins B1 and D1, PRDX1, and SOD2),
while Fus1� /� cells showed no or low response to radiation

damage between 0 and 2 h post IR. Moreover, the 1-h time
point appeared critical for the survival of Fus1� /� cells, as at
this time, the levels of nearly all early-response markers
dropped to the basal level. Noteworthy, after this critical
point, Fus1� /�cells entered the second phase of IR
response. Specifically, they showed a sharp increase in the
activation of majority of analyzed markers at 2 h post IR
(Figures 6a–c, increased activating phosphorylation of NFkB
and ERK1/2; accumulation of NfkB, cyclin D1, and SOD2).
Interestingly, three proteins, p53, GSK-3b and p38, unlike
other IR response proteins in Fus1� /� cells, demonstrated a
strong change in activity as early as 30 min post IR and at
much higher levels than in Fus1þ /þ cell. Although the p53
response, as measured by phosphorylation and accumula-
tion, was greater in Fus1� /� cells, the time course of p53
activation was similar in WT and Fus1� /� cells (Figure 6a).
In contrast, the pattern and extent of phosphorylation of p38
(activating) and GSK-3b (inhibiting) was distinct in Fus1 KO
cells (Figure 6b). In WT cells, p38 phosphorylation increased
moderately for the first hour after IR and rapidly decreased to
below the basal level at 2 h after treatment (Figure 6b). In
contrast, irradiation of Fus1� /� cells resulted in high levels
of p38 phosphorylation at 30 min followed by a decrease at
1 h, then a second wave of phosphorylation at 2 h post IR
followed by a decrease to below levels seen in sham-
irradiated cells at 8 h (Figure 6b). Inhibiting phosphorylation
of GSK-3b in Fus1� /� cells demonstrated a similar biphasic

Figure 4 Dynamics of radiation injury and regeneration in small intestines of Fus1þ /þ and Fus1� /�mice after irradiation with 12 Gy WBI. (a–c) Shown are micrographs
of H&E-stained paraffin sections of small intestines from sham-irradiated and irradiated Fus1 WT and Fus1 KO mice. (a) Time after IR 0–96 h; � 40 magnification. (b) Time
after IR 96 h; � 100 magnification. (c) Time after IR 96 h; � 200 magnification (d) Shown are micrographs of paraffin sections of small intestines from sham-irradiated and
irradiated Fus1 WT and Fus1 KO BrdU-injected mice stained for BrdU incorporation (upper panel) and proliferative marker Ki67 (lower panel)
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pattern with initial phosphorylation at 30 min after IR, followed
by decreased phosphorylation at 1 h and a second wave of
phosphorylation beginning at 2 h post IR (Figure 6b). How-
ever, unlike for p38, phosphorylation of GSK-3b continued to
increase throughout all experimental time points (Figure 6b).

Discussion

In this study, we identified the mitochondrial tumor suppressor
Fus1 as a novel factor involved in the protection of radio-
sensitive cells of the GI tract and other organs against IR
damage. Upon WBI, Fus1 KO mice demonstrated decreased
survival due to accelerated GI syndrome, as compared with
WT mice. Fus1 KO GI crypt epithelial cells underwent a short
period of IR-induced proliferative arrest followed either by
apoptosis or by rapid proliferation without sufficient time for
DNA repair. This abnormality resulted in the increased
number of aberrant mitoses, death of crypt cells and massive
crypt loss. Moreover, individual crypts that attempted to
regenerate displayed abnormal morphology. Interestingly, the
events leading to compromised crypt regeneration in Fus1 KO
mice were similar to the IR-induced cellular events observed
in other mouse models of radiosensitivity, such as p53- and
p21-deficient mice8,11,12,22, suggesting commonality of
signaling pathways involved in response to IR.

Molecular analysis of irradiated Fus1 KO GI mucosa cells
showed a significantly altered activation dynamics of
IR-responsive signaling pathways as compared with
irradiated WT GI cells (Figure 5). The most striking Fus1-
dependent difference was the early accumulation of gH2AX,
suggesting earlier activation of the DNA-repair machinery due
to double-strand breaks formation as well as an increased
apoptosis in the Fus1-deficient GI cells.23 Interestingly, this
H2AX activation was followed by early decrease in gH2AX

level (8 h post IR) that was accompanied by a dramatic
decrease in total H2AX. This suggests that Fus1-dependent
regulation of this protein may occur not only at the post-
translational but also at the RNA/protein synthesis/degrada-
tion levels. Most important, low level of gH2AX indicates an
incomplete DNA repair in Fus1� /� cells that may serve as the
key event promoting cell death in the form of ‘mitotic
catastrophe’ associated with aberrant mitosis.

This sequence of molecular events in GI mucosa was
supported by the kinetics of accumulation of pro-apoptotic
markers, cleaved PARP1 and Bax,24 and altered activity of
GSK-3b, which contributes to p53 and Bcl-2 family-mediated
pro-apoptotic signaling.25–28 The early increase in GSK-3b

Figure 5 Dynamics of molecular radiation-induced changes in mucosa of Fus1
WT and Fus1KO mice. GI mucosa cells were isolated from WT and Fus1 KO mice
irradiated with 12 Gy at 0, 4 and 8 h post IR. Shown are western immunoblot
analyses using antibodies against DNA damage and apoptotic proteins. Membrane
staining for total protein/well was used as a loading control. Average relative
fold change in protein levels with SEM is shown (number of analyzed mice
per group is 3)

Figure 6 Dynamics of radiation-response pathways activation in Fus1þ /þ and
Fus1� /� epithelial cells in vitro. Immortalized Fus1þ /þ and Fus1� /� epithelial
cells were irradiated with 9 Gy and collected at several time points post IR. Shown
are western immunoblot analyses for dynamics of activation of proteins from DNA
damage response and apoptotic pathways (a), activation of signal transduction
pathway proteins (b), activation of proteins from oxidative stress response
pathways (c)
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activity and levels of Bax and cleaved PARP1 in the Fus1� /�

mucosa (Figure 5) are in line with the increased apoptosis in
the crypts of Fus1 KO mice at 4 and 8 h post IR as compared
with the WT mucosa (Figure 2). These data suggest that
radiation-induced apoptosis in intestinal epithelial cells
involves, in addition to Fus1, the Bax/PARP1 pathway and
that GSK-3b regulates activation of this pathway.

A more detailed analysis of Fus1-dependent molecular
events in the early IR response using immortalized cultured
epithelial cells (Figure 6) demonstrated involvement of
compensatory p53-dependent mechanisms, which can
protect Fus1-deficient cells via tight regulation of the
cell cycle.10,22 Increased early accumulation of cyclin D1
concomitant with decreased accumulation of cyclin B1 in
Fus1� /� cells supports compensatory changes in the
IR-induced cell cycle arrest. High level of cyclin D1 parallels
the decreased activity of GSK-3b, suggesting that cyclin D1
accumulation is regulated by GSK-3b. This suggestion is
consistent with the reports that GSK-3b-dependent phosphor-
ylation of cyclin D1 regulates its proteolytic turnover.29

In our earlier studies, we demonstrated that Fus1� /�

immune and epithelial cells produce significantly higher levels
of basal and stress-induced mitochondrial ROS and experi-
ence chronic oxidative stress.16 Mitochondria are the major
source of ROS30 that may trigger ROS-associated radiation-
induced genomic instability.31–36 Free radicals, in particular,
hydroxyl radical (HOK), are highly reactive molecules.
Excessive HOK formation can result in considerable damage
to cellular macromolecules via lipid peroxidation within
membranes, oxidative modification or fragmentation of
proteins, and DNA damage.37 IR induces formation of HOK

primarily via radiolysis of water. High basal levels of HOK and
other ROS in Fus1� /� cells can contribute to activation of
p5316,38 and early IR response markers, such as NfkB/p65,
H2AX, and PARP1, as well as markers of oxidative stress and
DNA damage, such as NfkB, H2AX, PARP1, ERK1/2, p38,
SOD2, and cytochrome c.39–42

IR induces activation of cellular anti-oxidant defense
mechanisms including overexpression of SOD243 and
PRDX1.44 Cytochrome c, which is traditionally considered a
pro-apoptotic protein,45 was recently shown to also have an
anti-oxidant function.45–48 In this study, we demonstrated that
expression of cytochrome c and anti-oxidant defense pro-
teins, PRDX1 and SOD2, are dysregulated in Fus1� /�

epithelial cells (Figure 6). While Fus1þ /þ cells demonstrated
increased PRDX1 expression in response to IR, Fus1� /�

cells were not capable of doing so, most likely due to the
already high basal level of PRDX1. SOD2 and cytochrome c
also demonstrated a perturbed accumulation kinetics during
early radiation response in Fus1

� /�
epithelial cells as

compared with that in Fus1þ /þ cells. Therefore, we suggest
that the unchanged level of PRDX1, moderate increase in
cytochrome c, and delayed accumulation of SOD2 after IR
resulted in inefficient response to IR-induced oxidative stress
in Fus1� /� cells.

We have previously demonstrated that Fus1� /� immune
and epithelial cells are characterized by dysregulated
mitochondrial membrane potential (MMP). In these cells,
MMP was higher in the steady state and increased dramati-
cally under the genotoxic stress.16 MMP has also been shown

to correlate positively with cell radiosensitivity.49 Thus, we
suggest that dysregulation of mitochondrial homeostasis
including elevated intrinsic generation of ROS, increase in
MMP, and inhibition of anti-oxidant defenses in Fus1� /�crypt
epithelial cells are major contributing factors to the
mechanism of radiosensitivity of Fus1 KO mice.

It is noteworthy that Fus1 also protects other radiation-
sensitive tissues against damaging IR effects, specifically
immune organs and hair follicles (see Supplementary Figures
S1 and S2). As damage to hematopoietic system occurs
concomitantly with the GI syndrome after 8–20 Gy WBI,50,51

we analyzed the dynamics of damage to immune organs in
Fus1 KO and WT mice. One of the characteristic signs of
immune system damage after acute IR is depletion/atrophy
of thymus and spleen. Compared with WT mice, depletion of
immune cells in Fus1 KO mice was augmented in both spleen
and thymus (Supplementary Figure S1).

Irradiated Fus1� /� mice also exhibited premature hair
graying. It was observed in 100% of surviving Fus1 KO mice at
8 weeks after IR but not in WT mice (Supplementary Figure
S2). Hair graying is caused by defective renewal of
melanocyte stem cells,52 a process that can be dramatically
accelerated by DNA-damaging IR that abrogates their
renewal.53,54 Thus, Fus1 modulates radioresistance in cells
of the GI tract, immune cells as well as melanocyte stem cells
of hair follicles.

We propose the following mechanism of Fus1-depedent
radioresistance (Figure 7). We have previously shown that
Fus1 is responsible for the maintenance of mitochondrial
homeostasis. In our current study, the response of Fus1 KO
mice to IR is dysregulated compared with WT mice. Therefore,
we suggest that Fus1 is a key regulator of the response to
oxidative and genotoxic stress. Specifically, Fus1� /� cells
undergo accelerated cell cycle arrest, which results in either
early apoptosis or entrance into the DNA repair phase
(Figure 7). However, these cells prematurely resume cell

Figure 7 Schematic representation of the molecular mechanisms, cellular
events and systematic response of Fus1-dependent radioprotection
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division and, thus, cannot complete DNA repair, which leads to
aberrant mitosis and cell death due to the mitotic catastrophe
(Figure 7). These events result in accelerated cell death in GI
epithelium, immune system, and hair follicles, thus signifying
radiosensitive phenotype of Fus1 KO mice (Figure 7).

Traditionally, a role of tumor suppressors in disorders
associated with radiosensitivity was viewed in light of
molecular mechanisms underlying emergence and repair
of DNA double-strand breaks.55 The existing mouse models
of radiosensitivity utilize knockout of tumor-suppressor
proteins involved in cell cycle regulation and DNA repair such
as p53, ataxia-telangiectasia (ATM), Nijmegen breakage
syndrome (NBS), and DNA-PKcs.55 Here, we demonstrate
for the first time that tumor suppressor Fus1 modulates
radiosensitivity of normal tissues via regulation of anti-oxidant
response pathways.

Materials and Methods
Mouse model and irradiation. Fus1 KO mice generated by Dr. A Ivanova15

were backcrossed to 129sv background in the laboratory of Dr. S Anderson (NCI-
Frederick). All animal experiments were performed according to a protocol approved
by the Institutional Animal Care and Use Committee. The mice were fed with a
standard diet. The animals were housed four per cage in standard cages and under
a light cycle of 12 h light–dark. They had ad libitum access to drinking water and
normal diet throughout the experiment. WBI of mice was carried out in a Mark I
137Cs irradiator (J.L. Shepherd & Associates, San Fernando, CA, USA) at a dose
rate of 167 cGy/min and total doses of 8, 9, 10 or 12 Gy. Female mice (5–6 weeks
old) were irradiated in a holder designed to immobilize unanesthetized mice, as
previously described.56,57 Sham-irradiated mice were handled the same way as
irradiated animals with the exception of irradiation. Experimental groups consisted of
at least six animals.

Proliferation evaluation in mouse small intestine. Mice exposed to
12 Gy WBI were killed at 4, 8, 24, 48, 72 and 96 h after treatment. All mice were
i.p. injected with 120 mg/kg BrdU 2 h before being killed. The proximal jejunum and
distal ileum were fixed for histology in 10% formalin with PBS. For estimation of
proliferation, tissues were stained with anti-KI-67 and anti-BrdU antibodies and
visualized with DAB. Proliferation was scored by light microscopy analysis (Ki-67 and
BrdU) in 100 half-crypt sections per mouse with at least three mice in each group. All
crypts were at least 20 cells in height, with cell position 1 located at the crypt base.

TUNEL staining for GI epithelial apoptosis. Sections of proximal
small intestine (6 cm distal to the stomach) and distal small intestine (2 cm
proximal to the cecum) were stained with H&E. Tissue sections were stained as
described previously.56,57 The mean number of TUNEL-positive cells per crypt and
standard error of the mean (S.E.M.) were calculated from 50 crypts in each
treatment group consisting of at least three mice. Crypts were identified by
the presence of defined Paneth cells and X10 healthy-looking chromophilic
non-Paneth cells.58

Crypt regeneration. For crypt-regeneration studies, mice were killed at 0, 4,
8, 24, 48, 72 and 96 h after 12 Gy WBI. Each mouse received i.p. injection of
120 mg/kg BrdU and was killed 2 h later. Proximal jejunum and distal ileum were
fixed. Cells incorporating BrdU were detected by mouse anti-BrdU antibody,
visualized by DAB (brown) and counterstained with hematoxylin (blue). A surviving
crypt was defined as containing five or more adjacent chromophilic BrdU-positive
non-Paneth cells, at least one Paneth cell and a lumen.

Scoring aberrant mitosis in crypt epithelial cells. At 24 h after WBI,
intestines were collected and processed as described above. Crypts that were cut
longitudinally so that Paneth cells and an adjacent villus could be visualized were
scored for mitotic cells by a single observer blinded to genotype and treatment.
Normal mitoses were scored when a cell was undergoing mitosis and the
chromosomes aligned symmetrically. Aberrant mitoses were scored when
chromosomes were misaligned, lagged, showed anaphase bridges or if
micro-nuclei were present.12,11

Isolation of GI epithelial cells. For the isolation of GI epithelial cells, the
small intestines from sham-irradiated and irradiated Fus1 WT and KO mice were
placed in ice-cold PBS and ice-cold PBS was flushed through the intestines using a
syringe. The intestines were then cut longitudinally with scissors and rinsed with
cold PBS. The small intestines were placed in PBS with 3 mM EDTA and 50 mM
DTT, and stored on ice for 1 h in 50-ml conical tubes. Then, the tubes were shaken
15 times to detach the GI epithelia. The muscularis was removed and the GI
epithelia were collected by centrifugation. The cells were washed with PBS, lysed in
2� Laemmi sample buffer and subjected to western immunoblot analysis.

Fus1 WT and KO immortalized epithelial cells. Primary normal
epithelial cells were obtained from Fus1 WT and Fus1 KO mice by trypsinization of
small tissue pieces for 15 min at 37 1C. Trypsinized cells were re-suspended in
10% FBS/DMEM high glucose medium, plated and maintained in culture for 4
months with regular (2–3 times a week) re-plating until the cells immortalized
spontaneously. For irradiation, cells were routinely cultured till 70–80% confluency
and then exposed to 9 Gy IR using Mark I 137Cs irradiator. Cells were returned to
tissue-culture incubator and lysed at 0, 0.5, 1, 2, 4, and 8 h post irradiation using
M-PER kit (Thermo Fisher Scientific, Rockford, IL, USA). Protein concentration
was quantified using BCA reagent (Thermo Fisher Scientific). Protein extracts
(100mg) were subjected to western immunoblot analysis.

Western immunoblot analysis. Western immunoblot analysis was
performed using antibodies against the following proteins: H2AX (Abcam,
Cambridge, MA, USA), gH2AX (Abcam), PARP1 (Santa Cruz Biotechnology, Inc.,
Dallas, TX, USA), PRDX1 (Sigma-Aldrich, St. Louis, MO, USA), SOD2 (R&D
Systems, Inc., Minneapolis, MN, USA), Cytochrome c (Santa Cruz Biotechnology,
Inc.), NF-kB p65, phospho-p65Ser536, p53, phospho-p53Ser18, Cyclin B1, Cyclin
D1, GSK-3b, phospho-GSK-3bSer9, ERK1/2, phospho-ERK1/2Thr202/Tyr204, p38,
phospho-p38Thr180/Tyr182 (all from Cell Signaling Technologies, Danvers, MA,
USA). The band intensity was determined using ImageJ software, normalized to
loading control and presented as a relative fold change (WT/KO).

Statistical analysis. Student’s t-test was used to compare two groups and
one-way analysis of variance (ANOVA) and Holm–Sidak multiple-group post-test
comparisons was used for comparisons among multiple groups. All statistical tests
were two-sided and statistical analysis was done with the use of SigmaStat
software (Systat Software Inc., San Jose, CA, USA). Statistical significance was
defined as P o0.05. Data are presented as means with S.E.M.
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