
International  Journal  of

Environmental Research

and Public Health

Article

Identifying Risk Factors Of A(H7N9) Outbreak by
Wavelet Analysis and Generalized Estimating Equation

Qinling Yan 1 , Sanyi Tang 1,*, Zhen Jin 2 and Yanni Xiao 3

1 School of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710119, China;
yanqinling1222@snnu.edu.cn

2 Complex System Research center, Shanxi University, Taiyuan 030006, China; jinzhn@263.net
3 Department of Applied Mathematics, Xi’an Jiaotong University, Xi’an 710049, China; yxiao@xjtu.edu.cn
* Correspondence: sytang@snnu.edu.cn or sanyitang219@hotmail.com

Received: 9 February 2019; Accepted: 7 April 2019; Published: 12 April 2019
����������
�������

Abstract: Five epidemic waves of A(H7N9) occurred between March 2013 and May 2017 in China.
However, the potential risk factors associated with disease transmission remain unclear. To address
the spatial–temporal distribution of the reported A(H7N9) human cases (hereafter referred to as
“cases”), statistical description and geographic information systems were employed. Based on
long-term observation data, we found that males predominated the majority of A(H7N9)-infected
individuals and that most males were middle-aged or elderly. Further, wavelet analysis was used to
detect the variation in time-frequency between A(H7N9) cases and meteorological factors. Moreover,
we formulated a Poisson regression model to explore the relationship among A(H7N9) cases and
meteorological factors, the number of live poultry markets (LPMs), population density and media
coverage. The main results revealed that the impact factors of A(H7N9) prevalence are manifold,
and the number of LPMs has a significantly positive effect on reported A(H7N9) cases, while the
effect of weekly average temperature is significantly negative. This confirms that the interaction of
multiple factors could result in a serious A(H7N9) outbreak. Therefore, public health departments
adopting the corresponding management measures based on both the number of LPMs and the
forecast of meteorological conditions are crucial for mitigating A(H7N9) prevalence.

Keywords: A(H7N9); live poultry markets; wavelet analysis; Poisson regression; generalized
estimating equation

1. Introduction

An outbreak of human infections with the emerging avian influenza A(H7N9) virus occurred
in China in early 2013, which caused general concern about a possible future pandemic. Humans
infected with A(H7N9) virus have a high rate of morbidity and mortality (30% or so) [1,2]. By the end
of 13 May 2017, the overall proportion of infected individuals (hereafter referred to as “cases”) with
serious illness accounted for 58.88% (875/1486), and the proportion of fatal and dead human cases was
13.66% (203/1486). Since the first reported case in eastern China in March 2013, the outbreak of A(H7N9)
has shown a characteristic spread from the south to north and even the northwest of China. Also,
the A(H7N9) epidemic spread to other parts of mainland China, Hong Kong (21 cases), Macao (2 cases),
Taiwan (5 cases), Malaysia (1 cases) and Canada (2 cases). Besides this, the outbreak of A(H7N9)
generally shows a seasonal trend, with five major waves of outbreaks occurring to date. The rapid
growth of cases in a short period of time causes panic and raises concerns about what essential factors
may cause A(H7N9) outbreaks. However, due to the randomness of the outbreak area and uncertainty
of multiple factors, methods of predicting A(H7N9) and then preventing and controlling the disease
for public health departments remain unclear, falling within the scope of this manuscript.
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Recently, several studies have been done to predict the spread of A(H7N9) viruses in humans and
birds, and the potential risk factors associated with disease transmission have been estimated [1–15].
In particular, live poultry was identified as an important risk factor for humans being infected with
A(H7N9) on the basis of the statistical analyses [2,4]. For example, most infected individuals with
confirmed A(H7N9) virus infection had a history of exposure to poultry [2,4], live poultry markets
(LPMs) significantly contributed to the occurrence of human infection by A(H7N9) virus [5,7,8,10,12],
and LPM closures were effective in the control of human risk of avian influenza A(H7N9) virus
infection [9]. Moreover, several other identified factors including sex and age [2–4,7,9,13], coexisting
medical conditions [3], human population density, irrigated croplands, built-up land, coverage of
shrub [4,5,8,12,13], location, residence type (rural or urban area), and dates of illness onset [4,9]
influenced the incidence of A(H7N9). In addition, the transmission dynamical models have also been
formulated to address the effects of seasonality, secular changes and environmental factors on the
spread of A(H7N9), and some useful control measures have been put forward [11,14], such as timely
actions to end an outbreak, careful surveillance and persistent intervention [6].

However, each of the above studies only focused on some specific factors, instead of taking all
the factors into consideration comprehensively. For example, Zhang et al. focused on the impacts
of temperature, humidity, sex and age on the incidence of A(H7N9), but did not take the LPMs
and population density into account [13]. Fang et al. examined the relative contribution of the
agro-ecological, environmental and meteorological factors on the occurrence of human A(H7N9)
infection [5,10,12], but the method was not used to assess the statistical significance of individual
effect variables [16]. The impacts of live poultry were considered and gender differences for infected
individuals were explained, but climate factors and population density were not considered in the
literature [2–4]. Xiao et al. only focused on addressing the effectiveness of control measures without
considering the temperature and precipitation (humidity) [6,11,14]. Bui et al. considered the animal
environment case data and spatial precision, but they only focused on domestic factors, including
neither LPMs nor the specific transmission dynamics [15]. Fortunately, the relationship between
A(H7N9) prevalence and the main environmental factors was considered comprehensively [17].
Nevertheless, due to too many environmental variables being included in the model, environmental
factors of A(H7N9) human infection have not been clearly identified.

Therefore, in order to take all factors into consideration and identify the key factors that influence
A(H7N9) prevalence, and to explain these controversial conclusions from different studies, we will focus
on the following issues: (i) weekly reported data sets from March 2013 to May 2017 in China (named
long-term data—if the length of the time series is less than one year, then it is here called short-term data)
are used to address multiple factors including temperature, total precipitation (humidity), and LPMs
on the incidence of A(H7N9). As a result, the types of data are complex, including both longitudinal
and cross-sectional data, which undoubtedly brings challenges for data analysis, model fitting and
prediction; (ii) generalized estimating equations (GEE) are employed to reveal the key uncertainties and
to identify the most important factors; (iii) the effects of the interaction of temperature and precipitation
(humidity) and media coverage on the incidence of A(H7N9) are discussed; (iv) methods of preventing
and controlling the disease for public health departments for emerging infectious A(H7N9) outbreaks,
which is a key public health issue.

The rest of this paper is organized as follows. First of all, we introduce all data sets used in
this study, including weekly reported human cases of A(H7N9) from the department of the Centre
for Health Protection and the Global Animal Disease Information System, meteorological factors,
the number of LPMs, population density and media coverage. We then use a statistical description for
the collected data at the individual level and map the annual cumulative number of A(H7N9) cases
and the number of LPMs in affected regions by GIS to characterize the spatial–temporal distribution of
A(H7N9) outbreaks. Further, wavelet analysis is used to decompose the time series (A(H7N9) and
meteorological factors) into the time–frequency space and then detect the variation of periodicity
between them over time. Moreover, a Poisson regression model which explores the relationship among
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A(H7N9) cases and measurements of meteorological factors, the number of LPMs, population density
and media coverage is introduced and investigated, and the GEE method is employed to obtain the
best-fit parameter values and consequently identify the risk factors of A(H7N9) outbreak.

2. Materials and Methods

2.1. Data Source

2.1.1. Surveillance for A(H7N9)

Data regarding weekly reported human cases of A(H7N9) in this study were obtained from
the department of the Centre for Health Protection [18] and the Global Animal Disease Information
System [19] in mainland China (including 23 provinces, 4 municipalities, and 5 autonomous regions),
Hong Kong, Macao and Taiwan, from 31 March 2013 to 13 May 2017, as shown in Figure 1A. Individual
case information includes the geographic location, age, gender, clinical condition, date of report and
whether or not the person ever had contact with live poultry. A confirmed case was defined according
to the World Health Organization criteria [20] and national authorities.
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Figure 1. Time series plots of weekly reported human cases of A(H7N9), meteorological factors and
media coverage from 31 March 2013 to 13 May 2017 for the provinces Zhejiang, Guangdong, Jiangsu,
Fujian, Anhui, Hunan, Shanghai and Jiangxi. (A) Weekly reported human cases of A(H7N9); (B) weekly
maximum temperature; (C) weekly average temperature; (D) weekly minimum temperature; (E) weekly
total precipitation for Zhejiang, Guangdong, Jiangsu, Fujian, Anhui and Jiangxi; (F) maximum relative
humidity, average relative humidity, minimum relative humidity for Hunan and Shanghai; and (G) the
number of weekly news items relevant to A(H7N9).

2.1.2. Data for Other Variables

Data concerning meteorological factors, the number of LPMs and population of each region,
and media coverage were collected from websites. The data of meteorological variables including
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weekly temperature (maximum temperature, average temperature and minimum temperature) and
weekly total precipitation (or maximum relative humidity, average relative humidity and minimum
relative humidity) were obtained from Weather Underground [21] during the study period, as shown
in Figure 1B–F. We extracted the data associated with LPMs with information on the name and location
in each city from Baidu Map API (Baidu, Beijing, China) using the JavaScript language. The search
terms in JavaScript language included “city name”, “live poultry/poultry” and “trade/wholesale/retail”.
Then, in order to ensure the accuracy of the obtained data, we sorted and screened results manually.
The population size of each province/autonomous region was obtained from the National Bureau of
Statistics of China [22], from which population densities were calculated based on the area of each
region, as shown in Figure 2. In addition, the number of weekly news items relevant to the A(H7N9)
was calculated from Baidu News [23], as shown in Figure 1G.

2.2. Thematic Map of A(H7N9)

To characterize the spatial–temporal distribution of A(H7N9) outbreaks, a thematic map of the
cumulative A(H7N9) cases each year in affected regions was produced in ArcGIS 10.2 software (Esri,
Redlands, CA, USA) during the study period; also, the LPMs were mapped. Due to the prevalence in
provinces including Zhejiang, Guangdong, Jiangsu, Fujian, Anhui, Hunan, Shanghai, Jiangxi being
relatively severe, in the following, we mainly focus on investigating the impact of meteorological and
other factors on the A(H7N9) prevalence in these provinces.

2.3. Wavelet Analysis

Wavelet analysis can be used to decompose a time series into the time–frequency space and then
detect the variation of periodicity over time [24]. Therefore, wavelet coherence, one class of the wavelet
transform method, was used to examine the association of two time series in time and frequency;
i.e., whether two time series oscillate simultaneously. The level of wavelet coherence indicates the
capability of one time series to predict the other, and the phase relationship between the series indicates
the expected causality links [25]. The detailed descriptions of the method are shown in Supplementary
Materials A.

Since the A(H7N9) virus is a low pathogenic avian influenza A virus and does not cause identifiable
illness or death in poultry, and the source of A(H7N9) virus infection in the confirmed cases who had
exposure to animals cannot be verified, only laboratory testing can identify poultry infections; as an
additional challenge, only a small number of identifiable infected individuals have had contact with
live birds [2]. However, many studies have identified visiting LPMs as a risk factor, and Yu et al. [9]
estimated that the closure of LPMs reduced the mean daily number of A(H7N9) virus infections in the
four most affected cities (including Shanghai, Hangzhou, Huzhou and Nanjing) by 97% to 99% [9].
This further confirms that it is necessary to consider LPMs as a risk variable to study their impact on
A(H7N9) outbreaks.

2.4. Poisson Regression

Poisson regression models are widely used to examine the relationship between time-series count
data and ambient environmental factors, including weather and other time-varying confounders [26,27].
Therefore, the relationships among reported human cases of A(H7N9) and measurements of
meteorological factors, the number of LPMs, population density and media coverage were explored by
Poisson regression. We assumed the reported human cases of A(H7N9) follow a Poisson distribution
with mean E(Yi,t) (the Yi,t is the A(H7N9) observations in the i-th province on the t-th week per annum
from the 31 March 2013). Furthermore, in order to account for the time-delay effect of temperature,
precipitation and humidity, we used cross-correlation analysis to determine the appropriate time lag to
be used in our model [28]. The results show that there is a statistically significant cross-correlation
(r = −0.232) between the temperature and reported human cases of A(H7N9) at a lag of 3 weeks, but no
statistically significant cross-correlation between the precipitation/humidity and reported human cases
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of A(H7N9). Additionally, we used a trigonometric model-harmonic cycle plus a linear function
(c0 + c1t sin 2π

52 t+ c2t cos 2π
52 t) to capture the trend and seasonal pattern in the observed weekly data [29].

Compared with the magnitude of temperature, precipitation, and media coverage, the magnitudes of
the population density (pop) and the number of live poultry markets (LPMs) are very large. In order
to increase the estimation accuracy of the parameters, we used a logarithmic change in population
density and LPMs. Thus, we obtain the following model:

Log[E(Yi,t)] = α+ c1t sin 2π
52 t + c2t cos 2π

52 t + β1Ti,t−3 + β2Pi,t + β3Ti,t−3Pi,t + δlog10(popi)

+γlog10(LPMsi) + λMt, i = 1, · · · , 8; t = 1, · · · , 52.
(1)

where α is a constant parameter (including c0); Ti,t−3, Pi,t and Ti,t−3Pi,t refer to temperature, precipitation
and their interaction effects in the i-th province on the (t−3)-th (t-th) week, respectively; popi and LPMsi
refer to population density and the total number of LPMs in the i-th province, respectively; and Mt

refers to the number of media reports on the t-th week.

2.5. Generalized Estimating Equation

The generalized estimating equation (GEE) has been widely used to estimate parameters of the
generalized linear model based on longitudinal data sets [30,31]. The GEE allows us to specify a
working correlation matrix that accounts for the form of the within-subject correlation of responses on
dependent variables of the exponential distribution family [30–32]. Besides this, one advantage of GEE
is that it is not necessary to specify the working correlation matrix correctly to obtain a consistent and
asymptotically Gaussian estimation for parameters. Therefore, the GEE was employed to estimate
parameters of model (1). Furthermore, considering that there are five sorts of working correlation
matrix (independent, exchangeable, first-order autoregression (AR(1)), M-dependent and unstructured),
the quasi-likelihood under independence model criterion (QIC) was employed to select the appropriate
correlation. The working correlation matrix with the minimum QIC value will be optimal.

3. Results

3.1. Distribution Characteristics of Reported A(H7N9) Cases and LPMs

A total of 1486 cases infected with A(H7N9) virus were confirmed by laboratory tests and
reported from the department of the Centre for Health Protection since its announced emergence on
31 March 2013. The statistical description for the collected data at the individual level is shown in
Table 1, from which we can see that, for the long-term data, the male patients also predominated in
number over female infected individuals, with a sex ratio of approximately 2:1; the majority of cases
are in middle-aged and elderly individuals, making up about 46.30% and 24.70% of the total number,
respectively. Besides this, the middle-aged and elderly infected individuals accounted for a large part
of the detected male population, with the proportion being as high as 81.79%.

Table 1. The statistical description for the collected data at the individual level.

Variable No. (2013) No. (2014) No. (2015) No. (2016) No. (2017) Total no.

Sex
Male 218 148 84 456 906

Female 105 63 39 196 403
Unknown 147 0 3 12 15 177

Age (Total (Male+ Female))

0~6 14(4 + 10) 14(6 + 8) 0(0 + 0) 4(1 + 3) 32(11 + 21)
7~17 7(3 + 4) 2(1 + 1) 1(0 + 1) 4(3 + 1) 14(7 + 7)

18~40 62(46 + 16) 25(14 + 11) 19(15 + 4) 104(72 + 32) 210(147 + 63)
41~65 142(99 + 43) 117(84 + 33) 63(39 + 24) 366(256 + 110) 688(478 + 210)
≥66 98(67 + 21) 53(43 + 10) 40(29 + 11) 176(124 + 52) 367(263 + 104)

Unknown 147 0 3 12 13 175
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In addition, we draw time series of weekly reported human cases of A(H7N9), meteorological
factors and media coverage from 31 March 2013 to 13 May 2017 in Figure 1, from which we can see that
almost all meteorological factors have a one-year cycle, which is similar to the variations shown in the
A(H7N9) cases. Moreover, there are five A(H7N9) outbreak peaks during the period from 31 March
2013 to 13 May 2017, roughly within the time intervals [0, 4], [41, 49], [93, 103], [145, 149] and [195, 206],
respectively. Moreover, Figure 1 shows that the weekly maximum (average, minimum) temperature,
total precipitation, and average (minimum) relative humidity reach their minimums within those
intervals, which indicates that the low temperature and dry climate are associated with the incidence of
A(H7N9). However, media coverage may have little or no correlation with the incidence of A(H7N9).

By using GIS technologies, maps of A(H7N9) cases for each year and LPMs were created for
mainland China, as shown in Figure 2. As can be seen in the maps in Figure 2A–E, the A(H7N9)
prevalence of infection became worse, except for in 2016, and the spreading trend was from southeast
to northwest. In particular, the epidemic was especially severe in 2017, spreading from southeast to
north to Liaoning, west to Tibet, and northwest to Gansu. Provinces with relatively severe epidemics
were Zhejiang, Guangdong, Jiangsu, Fujian, Anhui, Hunan, Shanghai and Jiangxi. By 13 May 2017,
the cumulative number of A(H7N9) cases for the province with the most severe A(H7N9) prevalence
(Zhejiang) had reached 307, and the province with the lowest number of reported cases within the above
8 provinces was Jiangxi (52 cases). Note that it follows from Figure 2E,F that the spatial distributions of
the A(H7N9) prevalence and LPMs have similar patterns, which indicates that the number of LPMs
and A(H7N9) cases may have relevance. To confirm this, the correlation between the cumulative
number of A(H7N9) cases and the number of LPMs of each province in 2017 was analyzed, and the
Pearson correlation coefficient was 0.826, which was statistically significant. However, the Pearson
correction coefficients were not calculated due to the small numbers of reported cases in each province
from 2013 to 2016.
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Figure 2. The map of reported human cases of A(H7N9) prevalence and the number of live poultry
markets (LPMs) in China. (A)–(E) Distribution of cumulative numbers of A(H7N9) cases each year
from 31 March 2013 to 13 May 2017 in mainland China (including 23 provinces, 4 municipalities, and 5
autonomous regions), Hong Kong, Macao and Taiwan. The number of cases at the region level is
reflected by colored gradients, as shown in the legend. (F) Distribution of LPMs for regions in 2017.
The map was plotted in ArcGIS 10.2 software (Esri, Redlands, CA, USA).
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3.2. Wavelet Coherence between Weekly Reported Human Cases of A(H7N9) and Meteorological Factors

To explore whether the meteorological factors affect the strong seasonality of A(H7N9) cases
for the above eight provinces, all data sets were normalized before employing wavelet analyses.
Wavelet coherence was used to examine the connection between A(H7N9) cases and meteorological
factors, especially to depict the phase relationships between these series, which can reveal the expected
causality links. The results for the Zhejiang province are shown in Figure 3.
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Figure 3. The wavelet coherence between weekly reported human cases of A(H7N9). (A) Weekly
maximum temperature; (B) weekly average temperature; (C) weekly minimum temperature; and (D)
weekly total precipitation for Zhejiang province.

We found that weekly maximum temperature, average temperature, minimum temperature and
total precipitation presented a consistently significant coherence with weekly A(H7N9) cases between
the 32- and 64-week (approximately annual cycle) band (p < 0.05) throughout the study period. At the
annual time scale, these factors were negatively correlated with A(H7N9) cases, as shown in Figure 3.
For lunar time scales, such as periods shorter than 32 weeks, significant coherence between A(H7N9)
cases and meteorological factors were incompletely consistent but mostly negative.

The strong correlation between meteorological factors and A(H7N9) cases on an annual scale
can be depicted based on the fact that the total number of A(H7N9) weekly reported cases in hot and
rainy summers is significantly less than that in cold and dry winters for the Zhejiang province [33],
which was partially addressed in previous studies [34]. The negative correlation indicates that rising
temperatures can help suppress the spread of the avian influenza virus, which is more likely to survive
in a low-temperature and humid environment. For example, previous studies and experiences in
fighting influenza have shown that avian influenza virus can survive for a week at low temperature
in the stool, and can survive for a month in 4 ◦C water; as the temperature increases, the virus will
gradually lose its activity.

Similarly, we analyzed the connection between A(H7N9) cases and meteorological factors for
another seven provinces, as shown in Supplementary Figures S1–S7. The main results indicate that
the impact of temperature on A(H7N9) prevalence in these provinces (including Guangdong, Jiangsu,
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Fujian, Anhui and Shanghai) is similar to that in Zhejiang; i.e., both on the annual scale and lunar
scales, the temperature can have significant effects on the A(H7N9) weekly reported cases. However,
the effects of the temperature on the A(H7N9) prevalence for Jiangxi and Hunan can only be found at
some short time scales. Moreover, the effects of total precipitation (relative humidity) on the A(H7N9)
prevalence are quite different.

The reasons for the above difference could be useful in mitigating A(H7N9) outbreaks, and are
as follows: (i) the quite different climate factors in different geographical regions; (ii) the different
economic and traffic levels—for instance, Guangdong, Shanghai etc. are coastal provinces/cities, while
Jiangxi and Hunan are landlocked provinces, which leads to a big difference in breeding, transporting,
slaughtering and processing modes of live poultry; (iii) the number of LPMs is very large in Zhejiang
and Guangdong, while it is small in Jiangxi and Hunan; (iv) the numbers of weekly reported cases
in Jiangxi and Hunan provinces were very small within a short period, which may result in some
deviations for long-term data analyses.

3.3. Main Results Based on GEE

The GEE was used to analyze the relationship between reported human cases of A(H7N9) and
measurements of meteorological factors, the number of LPMs, population density and media coverage
by Poisson regression, and a working correlation matrix with AR(1) was selected for the minimum QIC
value. The results are shown in Table 2. They present the point estimators of GEE (β̂), the corresponding
exponential quadratic (eβ̂) and the confidence interval (eβ̂LB , eβ̂UB) of β̂ for model (1).

Table 2. Parametric estimated value based on the collected data including A(H7N9) cases, meteorological
factors, the number of LPMs, population density and media coverage and Poisson regression model.

Parameter ^
β e

^
β e

^
βLB e

^
βUB

α −9.149 * 0.000 1.298 ×10−6 0.009
c1 0.022 * 1.022 1.008 1.036
c2 −0.008 * 0.992 0.985 1.000
β1 −1.082 * 0.339 0.272 0.422
β2 −0.157 0.845 0.730 1.000
β3 −0.164 0.849 0.683 1.055
δ −0.405 0.667 0.256 1.737
γ 2.804 * 16.510 5.404 50.442
λ 0.001 1.001 1.001 1.001

* Represents that the parameter has a statistically significant different from zero.

From Table 2, we conclude that the Poisson regression model (1) based on the A(H7N9) cases
identifies the number of LPMs as the most significant risk factor according to Wald’s test [35]. The rate
is 16.510 (95% CI [5.404, 50.442]), meaning that the expected number of A(H7N9) infections in humans
increases 16.51 for each additional logarithm of the number of LPMs. In other words, if the number of
LPMs decreases by 10%, 20%, 50%, 70% and 90%, then the expected number of A(H7N9) infection
in humans will decrease by 0.755 (95% confidence interval (CI) [0.247, 2.308]), 1.600 (95% CI [0.524,
4.888]), 4.970 (95% CI [1.627, 15.185]), 8.633 (95% CI [2.828, 26.375]) and 16.51 (95% CI [5.404, 50.442]),
respectively. Besides this, the weekly average temperature has a statistically negative effect on incidence
of A(H7N9), with a rate of 0.339 (95% CI [0.272, 0.422]); that is, the expected number of A(H7N9)
infections in humans decreases by 0.722 (95% CI [0.579, 0.899]) as the temperature increases by 1 ◦C at
an average temperature level of 18.6 ◦C. Moreover, the trend and seasonality of the weekly time series
are two significant risk factors. Furthermore, the results reveal that the interaction between average
temperature and total precipitation, the total precipitation, population density and media coverage
have a certain impact on A(H7N9) prevalence but are not statistically significant.

Based on the above sensitivity analyses, we can conclude that both the number of LPMs and
temperature have a great impact on the A(H7N9) prevalence. Besides this, seasonal changes also have
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a certain impact on the A(H7N9) prevalence. Therefore, in order to control the A(H7N9) prevalence
and to take into account the comprehensive benefits of the economy, government departments can take
measures to close LPMs and monitor and provide an early warning of environmental factors (including
temperature) which can effectively change people’s behavior in areas with a high risk of an epidemic.

4. Discussion

It is well established in the epidemiological literature that some risk factors have effects on the
outcome of A(H7N9) infection (based on short-term data). However, the combination of the GIS,
wavelet analysis and GEE (based on long-term data) is important to explore and explain the following
possible causes for the distribution characteristics of A(H7N9) cases: (i) personal immune levels for the
A(H7N9) virus may be affected by the nature of the work undertaken [2,4]; (ii) the negative impact of
temperature on the A(H7N9) prevalence was confirmed based on long-term observation data; and (iii)
the number of LPMs is the most significant factor for outbreaks of A(H7N9). These results show the key
risk factors, and thus aid in designing public health communication strategies and disease mitigation
measures for health-policy-makers.

Initially, we infer that personal immune level for the A(H7N9) virus may be affected by the nature
of the person’s work based on the characteristics they have in common with others at the individual
level and the spatial-temporal distribution of A(H7N9) cases. For example, it is obvious that the
number of males under 18 years old was equal to or even smaller than that of women, while the
number of males over 18 years old was about 2 times as large as that of females in Table 1. Besides this,
an interesting phenomenon is observed in which males accounted for the majority of A(H7N9) infected
individuals, and most of the males are middle-aged and elderly. The main reason for the above
phenomenon is that, while it may be not inherently true that males are “less immune than females”,
males are more likely to be infected with A(H7N9) virus because of their careers, work environment,
physical fitness, smoking behavior, etc. For example, males may be more likely to engage in poultry
farming, trafficking, selling, slaughtering, processing and so on; males who are smokers are susceptible
individuals because of their pulmonary dysfunction associated with smoking; middle-aged and elderly
infected individuals may frequently go shopping in LPMs; the majority of people who run LPMs may
be middle-aged and elderly people; and elderly persons may have an increased risk of coexisting
illnesses and are thus more susceptible to severe disease than younger persons.

Next, the negative impact of temperature on the A(H7N9) prevalence was confirmed based
on long-term observation data by wavelet analysis and GEE method. Wavelet coherence between
temperature and A(H7N9) cases in the time–frequency space show that the temperature was negatively
correlated with A(H7N9) cases both at an annual scale and lunar scale (mostly negative), with a
correlation size varying in different provinces except for in Jiangxi and Hunan. The GEE analysis
results show that the temperature has a significantly negative effect on the A(H7N9) prevalence based
on the overall long-term data. Furthermore, sensitivity analysis reveals that the expected number of
A(H7N9) infection in humans decreases by 0.722 (95% CI [0.579, 0.899]) as the temperature increases
by 1 ◦C at an average temperature level of 18.6 ◦C.

Therefore, we conclude that the main results obtained here are different from the previous studies
into the effects of LPMs and temperature [8,12,13,33] since long-term data are employed; i.e., the impact
factors for the A (H7N9) prevalence are manifold instead of single, and the number of LPMs and
weekly average temperature are the two factors that most significantly positively and negatively affect
the A(H7N9) prevalence, respectively. This reveals the importance of data integrity, using wavelet
techniques for long-term data and considering the impact of the seasonality in this study. Furthermore,
these results show that the A(H7N9) virus has a great risk of transmission at the appropriate temperature
range, which indicates that the monitoring and early warning of environmental factors (including
temperature) can effectively change people’s behavior in areas with a high risk of epidemics and
consequently help us to mitigate A(H7N9) human infection.
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More importantly, data analyses depict that the most serious outbreaks for A(H7N9) occurred
at the time about 20 days before and after the Spring Festival each year for the eight provinces
with the highest number of LPMs (especially in Zhejiang, Guangdong, Jiangsu province, where
China’s economic development zone and the largest poultry processing plants are), which has been
confirmed by the report of the Food and Agriculture Organization of the United Nations [36]. Therefore,
to mitigate emerging infectious diseases including A(H7N9), the following control strategies could be
proposed: (i) because the number of LPMs is the most significant factor for outbreaks of A(H7N9),
the management of LPMs during holiday seasons should be strengthened, such as by strictly checking
poultry and prohibiting infected poultry; (ii) based on the result that personal immune level for the
A(H7N9) virus may be affected by the nature of a person’s work, live poultry-breeding personnel,
transporting personnel, and slaughtering personnel and workers should be subject to good protective
measures, including wearing protective equipment, cleaning the environment in a timely manner,
and good personal hygiene; (iii) since the most serious outbreaks for A(H7N9) occurred at the time
about 20 days before and after the Spring Festival each year, and as LPMs are the most significant
factor for outbreaks, some behavior-changing measures should be taken for the public, such as people
trying to avoid LPMs and paying attention to their diet (eating high-temperature processed meat and
poultry related products) during the Spring Festival. On the other hand, Chinese eating habits can be
easily changed due to media reporting on the severity of infectious disease, and consequently people
could change their behavior and not visit or reduce the frequency of their visits to poultry markets
during the high-risk period of disease transmission. Therefore, under properly guided media publicity
by the government, the risk of transmission can be effectively mitigated.

However, when we omit the temperature and total precipitation (in Figure 1B–E) in the time
period of the five peaks corresponding to the maximum number of A(H7N9) cases in Figure 1A
(as shown in Supplementary Figure S8), we find that both the temperature and the number of A(H7N9)
cases were the lowest in 2016; the possible reasons for this are as follows: (i) strong measures to restrict
and prohibit live poultry trading were implemented. Taking Guangzhou as an example, live poultry
trading was held for three days before and after the Spring Festival [37–39]; (ii) the Agriculture, Trade,
Health, Food and Drug Administration and other departments have jointly supervised LPMs [38];
(iii) some departments have sought new development opportunities such as developing chilled
chicken. For example, Shenzhen has carried out the operation of “centralized slaughtering, cold chain
distributing, fresh listing” and so on [40]. Unfortunately, on the one hand, live poultry trading was
frequent, and there were loopholes in the supervision [38]. On the other hand, chilled chicken was
developed and has begun to take shape in the first and second-tier cities only, but was still not present
in the third or fourth-tier cities [40]. These could be the two main reasons for the A(H7N9) outbreak in
2017 being persistent in underdeveloped areas.

Our study has several limitations. First, as the collected data lack detailed information from
all infected individuals regarding exposures (including the times, frequency, intensity, and duration
of exposures) and coexisting illnesses (such as coronary heart disease, cerebrovascular disease, etc.),
the impact of these factors on the incidence of A(H7N9) at the individual level were not evaluated.
Second, since we do not know when and how the LPMs might be closed, the effects of closing LPMs
on A(H7N9) prevalence in the long run cannot be exactly analyzed.

5. Conclusions

This study presented a novel methodology by studying A(H7N9) prevalence on the individual level
and population level by GIS, wavelet analysis, and GEE, and the main results reveal that a combination
of individual and population levels is beneficial for analyzing the impact of possible risk factors on
disease outbreaks. It demonstrated that A(H7N9) prevalence was affected by a number of factors;
in particular, the number of LPMs has the most significant impact on A(H7N9) prevalence, followed by
the effect of temperature. Furthermore, the interaction effects between average temperature and total
precipitation, the total precipitation, population density and media coverage have impacts on A(H7N9)
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prevalence, but their effects are not statistically significant. Therefore, for mitigating and controlling
A(H7N9) prevalence, public health departments should take corresponding management measures
based on the number of LPMs and the forecast of the temperature by meteorological observatories.
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