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Abstract

Receptive fields acquired through unsupervised learning of sparse representations of natural scenes have similar properties
to primary visual cortex (V1) simple cell receptive fields. However, what drives in vivo development of receptive fields
remains controversial. The strongest evidence for the importance of sensory experience in visual development comes from
receptive field changes in animals reared with abnormal visual input. However, most sparse coding accounts have
considered only normal visual input and the development of monocular receptive fields. Here, we applied three sparse
coding models to binocular receptive field development across six abnormal rearing conditions. In every condition, the
changes in receptive field properties previously observed experimentally were matched to a similar and highly faithful
degree by all the models, suggesting that early sensory development can indeed be understood in terms of an impetus
towards sparsity. As previously predicted in the literature, we found that asymmetries in inter-ocular correlation across
orientations lead to orientation-specific binocular receptive fields. Finally we used our models to design a novel stimulus
that, if present during rearing, is predicted by the sparsity principle to lead robustly to radically abnormal receptive fields.
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Introduction

Simple cells in the mammalian primary visual cortex (V1) are

among the cells in the brain that are best functionally

characterised [1–3]. They have also been used as a key model

system for studying the complex interplay of intrinsic and extrinsic

factors, i.e., nature and nurture, in controlling development. For

instance, there is ample evidence that receptive field structure

exists prior to eye-opening [e.g. 4–6], being significantly present in

dark-reared animals [7,8]. Yet numerous studies, many taking

advantage of the fact that simple cells are the earliest in the visual

pathway to encode input from both eyes [9], have demonstrated

that receptive field properties are modified by visual experience

during development [e.g. 10–20].

Developing a general theory of sensory coding has been an

important goal of computational neuroscience. One famously

powerful idea, Barlow’s efficient coding hypothesis, is that early

sensory coding attempts to remove redundancy by representing

input in informationally optimal ways [21]. Among other

achievements, this hypothesis has provided compelling explana-

tions for the characteristics of retinal receptive fields [22].

However, redundancy reduction may be only a first step in

sensory processing [23]. For instance, V1 is many times over-

complete in its representation of input [24], a fact that, on the

surface at least, increases rather than decreases the redundancy in

the encoding of the input [25].

One possibility is that V1 is attempting to code visual input

sparsely [26]. Many variants of sparse coding have been mooted

[27–35], and, when tailored for natural scene input, almost

ubiquitously lead to units with response properties similar to V1

simple cells. Other work has extended sparse coding models of V1

to complex cells [36], the dimension of time [37] and color [38,39]

[reviewed in 33]. Sparse learning schemes often trade off the

amount of sparsity and the error in the encoding. The justification

for sparse coding has ranged from the energetic grounds of being

metabolically efficient [40], to the statistical grounds of exposing

underlying latent structure in the input [24,31].

The boldest claim of the sparse coding hypothesis is that it offers

more than just an interpretation of simple cell receptive fields, but

rather that it can account for the outcome (if not necessarily the

time-course) of cortical plasticity. Showing this would offer a more

stringent response to criticisms about the utility of these forms of

unsupervised learning models for understanding visual develop-

ment [20,41], and also license applications of the same principles

at more advanced stages of sensory processing. However, bar some

notable exceptions [e.g. 35,42], models based on precepts such as

sparse coding have typically been applied to the development

under normal input, for which the role of nurture can be

questioned, rather than under abnormal input, for which it

cannot. Furthermore, apart from notable exceptions such as

Hoyer and Hyvärinen [39], the models have typically focused on
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monocular rather than binocular receptive fields, thus not

addressing many of the most important experimental conditions.

Here we tested whether receptive field changes in six abnormal

rearing conditions applied to cats (table 1) can be captured by

binocular versions of sparse coding models of receptive field

development. The cat was chosen as the model organism to match

since all the conditions have been examined experimentally by

several different groups, leading to broad agreement in the results.

The more limited range of experiments that have been conducted

in other species, notably macaques, have led to similar results, as in

[43].

To ensure the outcomes were due to the general principle of

sparsity, rather than the specifics of a particular algorithm, we used

three different generative models for learning sparsity: product of

experts [44], k-means clustering and independent component

analysis [45]. We found that all three models qualitatively

reproduced the receptive field changes observed in experiment

in every rearing condition considered, and provided a good

quantitative match in cases in which there was sufficiently ample

sampling of receptive fields in the relevant experiments. This

agreement provides evidence that receptive fields are indeed

optimized during development in response to input statistics.

Further, we used our models to design a novel rearing condition

that we propose offers a strong test of the explanatory power of

sparse coding. This involves presenting white noise with sparsity

greater than that of natural scenes such that, even when

augmented with natural input, it is still expected to lead to the

development of highly localized receptive fields that are quite

different from those of normal simple cells.

Overall, we suggest that examining abnormal rearing conditions

will offer tests of functional accounts of development that are

revealing and stringent, and look forward to the prospect of their

application to higher visual areas and other sensory modalities.

Results

We examined whether simple unsupervised learning models

could capture the receptive field structures observed in abnormally

reared animals. The models learn sparse responses which are

conditionally independent given the input. We considered normal

rearing, along with six abnormal rearing conditions (summarised

in table 1).

All three unsupervised learning models gave qualitatively similar

results across the rearing conditions. Figures shown in the main

text, starting from the bottom rows in each column in Figure 1

which show sample receptive fields for each rearing condition, are

for the results found using the product of experts model [44]. In

Text S1/S2 we provide the same figures with the results for

independent components analysis/k-means clustering. Where

there are notable differences between the models we mention this

is the main text.

To facilitate a direct comparison between models and

experiment, in each of the subsequent sections we first provide a

brief literature review of the relevant experimental work for that

condition, and then present the results of our models. Although

some conditions required specialised additional comparisons,

changes were observed in every condition in receptive field

binocularities (figure 2), the fraction of oriented receptive fields

devoted to each eye (figure 3) and the joint orientation-

binocularity distribution (figure 4). These figures are referred to

in each section. In sum, all three models are able to match the

changes in receptive field properties observed across all the

conditions considered.

Normal rearing (figures 1A, 2A, 4A)
As expected from previous work in the monocular case

[27,28,31,32], the binocular receptive fields learned based on

normal input were Gabor-like edge detectors (figure 1A). This

property broadly survived the modified rearing conditions, up to

some degradation and broadening. Given normal input, receptive

fields were distributed over the full range of orientations (figure 4A)

with primarily binocular responses (figure 2A). Note that the

quantification of binocularity in some early experimental results is

somewhat subjective, which complicates quantitative comparison.

For example, most experimental groups classify monocular cells as

ones which respond solely to one eye, which is difficult to define

theoretically, since learned receptive fields are never entirely

empty.

One salient feature of the orientation distribution is the over-

representation of cardinal orientations. There is evidence that

some degree of cardinal over-representation is present in normally

reared animals [46] and in the visual environment [47], although

it may be accentuated in our work due to the pixel representation

of the training images (see later for further discussion and

references).

An additional feature of note is the relationship observed in the

normal rearing condition between orientation and binocularity. Li

and Atick [48] examined 2nd-order correlations in visual input

and predicted that vertically oriented receptive fields should be

more monocular than horizontally oriented ones due to the

asymmetry in inter-ocular correlations with horizontal disparity.

This asymmetry in encoding can be seen in the normal case

(figure 4A), with significantly more monocular receptive fields for

vertical orientations. We are not aware of detailed experimental

investigation of this phenomena (see Discussion).

One concern we examined for the case of normal input was the

robustness of the models to training set size. This is particularly

important since, for computational reasons, we trained our models

with 100000 training examples, which is approximately a factor of

four less than the number of degrees of freedom of the

overcomplete models. By inspection, receptive fields appeared

Author Summary

The responses of neurons in the primary visual cortex (V1),
a region of the brain involved in encoding visual input, are
modified by the visual experience of the animal during
development. For example, most neurons in animals
reared viewing stripes of a particular orientation only
respond to the orientation that the animal experienced.
The responses of V1 cells in normal animals are similar to
responses that simple optimisation algorithms can learn
when trained on images. However, whether the similarity
between these algorithms and V1 responses is merely
coincidental has been unclear. Here, we used the results of
a number of experiments where animals were reared with
modified visual experience to test the explanatory power
of three related optimisation algorithms. We did this by
filtering the images for the algorithms in ways that
mimicked the visual experience of the animals. This
allowed us to show that the changes in V1 responses in
experiment were consistent with the algorithms. This is
evidence that the precepts of the algorithms, notably
sparsity, can be used to understand the development of
V1 responses. Further, we used our model to propose a
novel rearing condition which we expect to have a
dramatic effect on development.

Sparse Coding Predicts Receptive Field Changes
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similar for different training set sizes. To test this more

quantitatively, we examined the dependence on size of a key

statistic of the receptive fields, namely orientation selectivity

(figure 5). We found no dependence. Thus, the sparse constraints

of the model result in a fit that is robust to training set size, even in

the under-constrained regime.

Stripe rearing (figures 1B, 2B, 4B, 6)
Stripe rearing refers to the condition in which animals are raised

with visual experience consisting primarily of a single orientation.

This can be achieved by the use of cylindrical lenses, lenses painted

with stripes, or rearing chambers with striped walls. Early

electrophysiological studies on the effects of stripe rearing conflict,

with some reports of a complete absence of receptive fields

responsive to the unexperienced orientations [49,50], while others

found no effect on receptive field distribution [51], and Freeman

and Pettigrew [52] found a more limited over-representation of the

experienced orientation and reduced selectivity to the unexper-

ienced orientations. Later experiments found significant over-

representation of the experienced orientation [53,54] and reduced

orientation selectivity for unexperienced orientations. Unlike the

other studies, Freeman and Pettigrew [52] and Blasdel et al. [53]

reported a reduction in binocular responses; however Freeman

and Pettigrew [52] attributed this to misalignment in the oriented

lines between the two eyes. Blakemore [55] found that stripe

reared animals have normal levels of binocularity.

More recently, optical imaging techniques have allowed

simultaneous characterisation of large regions of V1. Using optical

imaging, Sengpiel, Stawinski and Bonhoeffer [15] found a roughly

60% increase in the cortical area devoted to the over-represented

orientation, with no change in the orientation selectivity between

the experienced and unexperienced orientations. Tanaka et al.

[56,57] used exclusive goggle rearing with cylindrical lenses and

found a much more dramatic 3–6 fold over-representation and

increased selectivity (and reduced variance) of the exposed

orientation. Tanaka and colleagues also noted that older animals

exhibited reduced over-representation despite continued goggle

rearing, and that increased dark exposure limited the effect of the

goggle rearing.

There are several possible explanations for some of the

differences between studies. The method of over-representation

varied: some studies used stripe-cylinders, while others used

goggles containing lines or strong cylindrical lenses. The age and

duration of exposure also varied, and some early studies may have

suffered from sampling biases. However, there is broad agreement

between studies that stripe rearing leads to increased binocularity

and significant increases in over-representation of the exposed

orientation. Further, several studies found increased selectivity of

the exposed orientation.

We modeled stripe-rearing by filtering the input using oriented

Gaussian blurring designed to attenuate the power of off-axis

orientations sharply. To maintain stability of the algorithm, 10%

normal images were included in the training mixture (as in [42],

see Discussion). The output of the models was consistent with the

experimental observations. Receptive fields trained on striped

input showed increased binocularity (figure 2B, 8% monocular

cells in the stripe-reared condition compared with 17% monocular

cells in normal condition, pv10{5 two-sided t-test). As in the

experiments, there was a slight reduction in the number of

orientation selective responses (figure 3), and the over-exposed

orientation (in our case, horizontal) had sharper tuning curves

(figure 6) with a smaller variance in their tuning. The size of these

changes was dependent on the strength of the input filtering (data

not shown), which is another possible explanation for the differing

effect sizes seen between groups using different rearing techniques.

These changes collectively meant that many receptive fields were

less Gabor-like, although orientation selectivity was largely

preserved. Since we could not find empirical studies employing

methods such as reverse correlation against which to compare our

results, it is difficult to determine how faithful this result is.

Table 1. Rearing conditions.

Rearing Description of visual input Salient changes in receptive fields References

Normal Normal visual input. n/a [1,153,154]

Stripe Animals were exposed to a single
orientation in both eyes using goggles
or a striped environment.

Over-representation of the reared orientation.
A reduced number of neurons were strongly
orientation selective. Increased binocularity.

[15,49–57]

Orthogonal Animals were exposed to horizontal
orientations in one eye and vertical
orientations in the other eye using goggles.

Increased monocularity. Reduced number of
neurons with well-defined orientation
preferences. Over-representation of the
reared orientation in each eye.

[52,54,55,58–61]

Monocular Animals were reared with one eye occluded. Majority of neurons were responsive to the
non-occluded eye. A small minority were
responsive to the occluded eye, almost all
neurons were extremely monocular.

[12–14,16,55,62–73,76,78]

Alternating-monocular Animals were reared with only one eye
open at any time, but the occluded eye
was regularly alternated.

Strongly monocular receptive fields but with
equal representation of both eyes and all
orientations.

[10,55,74–76,79–81,84]

Partial-monocular Animals were reared with one eye occluded
but were given a small amount of binocular
experience.

Recovery of near-equal representation of
both eyes, but with few binocular responses
and poor depth perception.

[16–19,75,78,82–84]

Strabismic Nonparallel visual axis (achieved artificially
by severing extra-ocular muscles or with prisms).

Normal orientation coverage but with few
binocular responses

[10,12,18,55,74,87,89–96]

We modelled receptive field development in normal and six abnormal rearing conditions. This table provides a summary of the receptive field changes observed in each
condition along with references to the original experiments. In our model, abnormal conditions were simulated by filtering the binocular training input to be consistent
with the visual experience of the abnormally reared animals.
doi:10.1371/journal.pcbi.1003005.t001

Sparse Coding Predicts Receptive Field Changes
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However, the loss of structure of some receptive fields is at least

qualitatively consistent with the experimental finding of reduced

orientation selectivity in stripe rearing.

Orthogonal rearing (figures 1C, 2C, 4C)
Orthogonal rearing is a binocular extension of stripe rearing in

which the two eyes are exposed to orthogonal orientations. Hirsch

and Spinelli [58,59] found that orthogonally reared animals had

reduced binocularity and almost exclusively monocular responses

for cells with well-defined orientations. They also found an almost

perfect correlation between receptive field ocular and orientation

preferences along with an overall reduction in the fraction of

oriented responses. Subsequent groups found similar results

although the quantitative changes reported varied, possibly due

again to differences in the type of filtering and the strength of the

manipulation between experiments. Freeman and Pettigrew [52]

noticed reduced binocularity (25–35% binocular cells for orthog-

onally reared animals compared with 85% for normally reared

animals) and a strong correlation between orientation and ocular

preference along with broader orientation tuning away from the

over-exposed orientations. Blakemore [55] also noted reduced

binocularity (53% monocular responses).

Leventhal and Hirsch [60] observed a difference between

horizontal and vertical orthogonal rearing and orthogonal rearing

with oblique angles. In the cardinal case, they found a strong

correlation between ocular and orientation preference. With

oblique angles they found a continued dominance of horizontal

and vertical orientations, but little response to the non-exposed

non-cardinal orientation. In all cases they noted a reduction in

binocularity. Stryker et al. [54] also found a reduction in the

number of oriented responses (50% of cells were not responsive or

not selective to orientation) and strong correlation between eye

and orientation preference. They also observed over-representa-

tions of approximately two-fold for the exposed orientations and

almost no binocular cells. More recently, albeit as yet only in

abstract form, Tani and Tanaka [61] confirmed the over-

representation of the exposed orientations using optical imaging.

As in the stripe reared case, we modelled orthogonal rearing by

oriented Gaussian blurring. However, in this condition, the left eye

viewed horizontally filtered images while the right eye viewed

vertically filtered images. This led to similar results as in the

experiments. When trained on this orthogonally filtered input,

model receptive fields were significantly more monocular

(figure 2C, 31% monocular compared with 17% in the normal

case, pv10{5, two-sided paired ttest), although this effect was not

as pronounced as reported experimentally. Responses showed a

strong correlation between ocular and orientation preference

(figure 4C). Additionally, there was a reduced fraction of oriented

responses compared with the normal case (figure 3, 37%

compared with 63% in the normal case, pv10{11). The results

were similar when oblique rearing orientations are considered,

although in this case there was also a smaller, cardinal over-

representation effect (data not shown). This cardinal over-

representation is presumably driven by the same causes as in

normal case (discussed further below): cardinal over-representation

in the input and the square pixel representation.

Monocular rearing (figures 1D, 2D, 4D)
Monocular deprivation, in which one eye is deprived of visual

input, is perhaps the best-studied manipulation. There is

substantial variation in deprivation length and daily visual

Figure 1. Example receptive fields (PoE model). Representative examples of the V1 receptive fields over both eyes that result for the PoE model
(lower 18 pairs). Subsequent figures quantify the changes in receptive field structure and distribution induced in each rearing condition. See table 1
for a summary of the receptive field changes seen experimentally for each condition. We model rearing with (A) normal (unfiltered) visual input, (B)
stripe rearing, i.e. a single dominant orientation (in this case horizontal), (C) orthogonal stripe rearing, i.e. dominant orientations differing by 90
degrees between the two eyes (in this case horizontal and vertical), (D) monocular deprivation, i.e. one eye occluded, (E) one eye occluded but
alternating the eye randomly during training, (F) one eye occluded most of the time, and (G) artificial strabismus (direction of gaze offset between
the two eyes).
doi:10.1371/journal.pcbi.1003005.g001

Sparse Coding Predicts Receptive Field Changes
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exposure between different studies. We only considered results

based on experiments with no recovery period with normal visual

input. We examine the recovery of binocular fields later in the

section on partial monocular rearing.

Early work by Wiesel and Hubel [62,63] using electrophysiol-

ogy found almost no response to the deprived eye (1/84 cells

responded). Similarly, Hubel and Wiesel [64] observed only 7% of

cells responsive to the deprived eye after 3 months of deprivation

(all cells were classified as having ocular dominance values of 6 or

7 on a scale of 0–7). Blakemore and Van Sluyters [65] also

demonstrated almost complete domination of V1 by the deprived

eye, with normal levels of orientation selectivity in the non-

deprived eye. Using autoradiography, Shatz, Lindstrom and

Wiesel [12], Stryker [14] and Shatz and Stryker [13] found

shrinkage of the deprived eye’s territory with only 22–25% cortical

area labelled by the deprived eye. Olson and Freeman [66]

Figure 2. Degree of binocularity for rearing conditions (PoE model). Binocularity was measured on a 7 point scale as in Shouval et al. [150].
Values 1 and 7 represent completely monocular responses while values in the middle correspond to at least somewhat binocular responses. (A) In the
normal rearing condition, neurons had a range of binocular responses, although there were few completely monocular neurons. (B) In the stripe-
reared condition, binocularity increased due to higher inter-ocular correlation caused by the reduction in off-axis spatial frequencies. Experiments
have also reported varying amounts of increases in binocular responses. (C) In the orthogonal-reared condition, binocularity decreased. Experiments
have also reported such a decrease. (D) In the monocular-reared condition, neurons developed responses primarily for the unoccluded eye, which led
to strongly monocular responses for this eye. The primary experimental finding in this rearing condition has been the absence of responses to the
occluded eye. (E) Alternating monocular rearing removes inter-ocular correlation as each eye is presented with stimuli only when the other eye is
occluded. In the PoE model, this led to strongly monocular responses distributed equally between eyes. Experimentally, the primary finding has been
a paucity of binocular responses, but equal responses to each eye. (F) Partial monocular rearing resulted in recovery of receptive fields for both eyes,
albeit with fewer binocular neurons. Experimentally, a small amount of binocular experience has been found to result in a significant recovery of
responses to the occluded eye, but also an increased degree of monocularity. (G) Strabismus decreases inter-ocular correlation, and thus led in the
PoE model to increased monocularity. An increase in monocularity is the primary experimental finding of the effects of strabismus. Errorbars show the
SEM. Each condition was repeated n~25 times. The binocularity distribution of all the modified rearing conditions were significantly different from
the normal rearing condition (pv10{7 , Kolmogorov-Smirnov).
doi:10.1371/journal.pcbi.1003005.g002

Sparse Coding Predicts Receptive Field Changes
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considered the effects of shorter periods of deprivation, finding

pronounced decreases in binocularity after just 2.5 days of

deprivation, and almost total loss of responsiveness to the deprived

eye after longer periods, compared with 80% binocular responses

in the normal animals. Similarly, Peck and Blakemore [67] found

that, with just 20 hours of monocular deprivation, all oriented cells

had ocular dominances in the range 4–7. Only a small number of

unoriented responses remained exclusive to the deprived eye.

Schechter and Murphy [68] noted 86% of cells responded

exclusively to the open eye, 3% to the deprived eye, 3% had

binocular responses and 7% were unresponsive. Kratz and Spear

[69] observed a reduced number of orientation selective cells (65%

compared with 85% in normal) and reduced direction selectivity

(70% compared with 90% in normal). Blasdel and Pettigrew [70]

found that 3 weeks of molecular deprivation led to most cells

having ocular dominances of 7, with a small number reported as

being 5 and 6. Olson and Freeman [71] also noted that only 3% of

cells responded to the deprived eye (87% in normal) after 10 days

of monocular deprivation. Singer et al. [72] found that the

majority of cells were responsive only to the open eye.

Some variations have added insight about the changes

occurring during monocular deprivation. Blakemore [55] and

Wilson, Webb and Sherman [73] demonstrated that there was

little difference between monocular deprivation with the nictitat-

ing membrane or the full eye-lids, showing that the loss of spatial

patterns, rather than the change in luminance, is the critical

component of deprivation. Blakemore and Hillman [74] showed

that the open eye dominated whether optically stimulated, or

driven electrically. Olson and Freeman [75] interspersed dark-

reared intervals during the deprivation and continued to find

almost no response to the deprived eye. Tumosa, Tieman and

Hirsch [76] used behavioral assays to show that the animals had

no functional visual acuity in the deprived eye. Mitchell [77]

demonstrated that recovery was improved when the non-deprived

eye was occluded during the recovery period. More recent

experiments have used optical imaging, and found only 14–18%

of cortex responded to the occluded eye [16] and confirmed that

little functional visual acuity remains in the deprived eye [78].

We used the observation from Wilson, Webb and Sherman [73]

that it is the spatial pattern of the input associated with the

deprived eye that matters rather than the overall power to realize a

stringent test of the model. We simulated this by using an

extremely low-pass boxcar filter on the right eye’s input, so that

almost all contrast was destroyed. The model reproduced the

experimental findings, producing primarily cells with ocular

dominance values of 2, and none greater than 4 (figure 2D),

indicating no cell responded more strongly to the deprived eye

than the open eye. No oriented response was assigned to the

deprived eye (figure 3).

Alternating monocular rearing (figures 1E, 2E, 4E)
In alternating monocular rearing, animals are monocularly

deprived, but which eye is deprived is alternated regularly (every

few hours of visual experience). This removes all inter-ocular

correlations, while not favouring the development of either eye.

Hubel and Wiesel [10] first performed this experiment and found

that 91% of the resulting cells had monocular responses, evenly

distributed between the two eyes. Behaviourally, the animals

appeared to have normal spatial acuity in each eye. Blake and

Hirsch [79] also measured normal acuity in each eye but observed

defects in stereopsis. They also noted an almost complete absence

of binocular responses even after animals were reared with normal

input for a year after the critical period. Blakemore [55] found

alternating monocular rearing resulted in 55% of neurons

responding monocularly, similar to a strabismic animal. Blasdel

and Pettigrew [80] also found reduced binocularity (&50%
binocularity) except when they used a mechanised device to

reduce the alternation interval to less than 1 second. They also

observed a low correlation in orientation tuning between the two

eyes (r~0:44 versus 0:88 in normal animals). Tumosa, Tieman

and Hirsch [76] used behavioural assays and found normal visual

acuity in each eye, and equal cortical coverage devoted to each eye

[81]. In all of these experiments, alternating monocular rearing

had a similar effect to strabismic rearing: reduced binocularity

while retaining an equal number of neurons devoted to each eye.

We simulated this condition in a similar way to monocular

rearing, with the blind eye having its input low-pass filtered so that

little contrast remained. The difference from monocular rearing

was that the eye that was blind was alternated for each patch. This

resulted in quantitative agreement with experiment. The PoE

model predicted (figure 2E) 89% monocular responses (compared

with 17% in the normal case, pv10{5, two-sided paired t-test)

and a symmetrical ocular dominance distribution. There was also

a reduced fraction of oriented responses (figure 3).

Partial-monocular rearing (figures 1F, 7, 8)
Monocular rearing leads to almost complete loss of function in

the deprived eye. There has thus been substantial interest in the

question as to what features of the input are necessary for preventing

this. Partial-monocular rearing, in which animals are exposed to a

small fraction of binocular experience, allows the amount of normal

input needed for the maintenance of responses to both eyes to be

determined.

Olson and Freeman [75] monocularly deprived kittens for

4 hours while providing 14–20 hours of binocular experience per

day. They found this limited deprivation had little effect. Similarly,

Kind et al. [16] examined the effect of monocular deprivation for

10 days (at 5 weeks old) followed by binocular exposure for 14

days. Again, these kittens had nearly normal visual development,

although non-aligned binocular input (i.e. strabismic) led to only

34% coverage for the deprived eye, demonstrating that correlated

visual input may be important for recovery. Conversely, Malach

Figure 3. Orientation selectivity across rearing conditions (PoE
model). As in experiment, filtering the visual input resulted in a
decrease in the fraction of orientation selective neurons (each eye
shown separately). Neurons were considered selective when their
circular variance was v0:6 [3]. Errorbars show the SEM. All modified
rearing conditions had a significantly different fraction of orien- tation
selective neurons compared with the normal condition (pv10{8 ,
Kolmogorov-Smirnov, each eye tested separately).
doi:10.1371/journal.pcbi.1003005.g003
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and Van Sluyters [82] found that strabismic binocular input did

lead to recovery of binocular responses, but this may be because

the animals were dark-reared for 18 hours per day, a manipula-

tion that is known have a protective effect [56].

Follow-up experiments interleaved binocular experience with

monocular deprivation. Mitchell et al. [78] found that even

0.5 hours of binocular experience with 6.5 hours monocular

deprivation preserved moderate spatial acuity in the deprived eye

and 2 hours binocular experience with 5 hours monocular

experience resulted in normal acuity. Again, they found the

inter-ocular correlations were vital, as binocular experience in

which artificial strabismus had been induced by prisms resulted in

Figure 4. Orientation preference distributions (PoE model). Only neurons that had a well defined orientation preference (circular variance
v0:6) in at least one eye were included. The color in the bars indicates the ocular dominance of the responses. (A) In the normal reared condition,
there was a large over-representation of vertical orientations (90u), and, to a lesser degree, horizontal orientations (0u). Nonetheless, the full
range of orientation preferences developed. This over-representation of the cardinal orientations has been reported in experiment, although not
always to the same degree (see the Discussion). (B) In the stripe reared condition, there was a significant over-representation of neurons
responding to horizontal lines (00). These horizontal neurons were also strongly binocular (i.e. mostly green shading). The over-representation of
vertical orientations also persisted. The over-representation of the reared orientation is the primary experimental finding in this rearing
condition. Cardinal over-representation has not been examined closely in stripe-rearing. (C) In the orthogonally reared condition, there was
over-representation of horizontal neurons in the left eye and vertical neurons in the right eye. As found experimentally, these neurons were
strongly monocular for the eye that was over-exposed to their preferred orientation. (D) In the monocular reared condition, there was a broad
representation of orientation preferences but only for the unoccluded eye. Experimentally, monocular reared animals have normal visual acuity
with the non-deprived eye. (E) In the alternating monocular reared case, there is an even distribution of orientation selectivity and strong
monocularity. Experimentally, alternate blind reared animals represent all orientations well. (F) In the partial monocular reared condition, there
was a recovery of responsivity for both eyes across the full range of orientations. Experimentally, partial monocular reared animals have been
demonstrated to have normal visual in each eye (but to suffer from defects in stereo vision). (G) In the strabismic case, there was an increase in
monocularity, but with normal orientation coverage. This is in agreement with experiments which have not noted any orientation deficits in
strabismic animals. Errorbars show the SEM. All modified rearing cases, except strabismus (p~0:32) had orientation preference distributions
significantly different from the normal case (pv0:01, Kolmogorov-Smirnov).
doi:10.1371/journal.pcbi.1003005.g004
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poor recovery of visual acuity. Mitchell et al. [83] found that

splitting the binocular experience into discontiguous blocks

impeded recovery.

Later experiments explored the neural basis of these changes.

Schwarzkopf et al. [17] found normal cortical coverage of both

eyes for animals with more than 30 minutes daily binocular

experience, whether this was matched with 3.5 or 7 hours of

monocular deprivation. Vorobyov et al. [18] examined interocular

phase selectivity (a measure of disparity tuning) and found reduced

phase selectivity in the partial monocularly reared animals.

Mitchell et al. [19] demonstrated that, while partial monocularly

reared animals recovered normal levels of spatial acuity in each

eye, most had severe deficits in binocular depth perception (unlike

normal animals, their depth estimates did not improve when they

were allowed to use both eyes). Mitchell et al. [84] showed that

animals developed normal spatial acuity provided they received at

least 30% binocular experience (regardless of total exposure

length) [85]. These results broadly agree that a significant response

to the deprived eye recovers with as little as &15% binocular

input, and that normal levels of spatial acuity occur with 30%

binocular input. However, significant deficits in binocular

integration remain even with 30% binocular experience.

We simulated this condition by including a fraction of normal

visual input along with the same boxcar filtered input used for

monocular rearing. This resulted in significant recovery of

deprived eye responses with just 10% binocular input (figure 7B),

and recovery of equal representation of each eye with 40%

binocular input (figure 7E) with the PoE model. However, as in the

experiments, recovered responses tended to be monocular, with

fewer (67% compared with 83% in normal, pv10{5 two-sided

paired ttest) strongly binocular responses. The deprived eye rapidly

recovered responses to the full range of spatial frequencies (figure 8)

which corresponds well with the behavioural experiments.

This experimental condition was the only one which showed

qualitative differences between the different unsupervised learning

models. With the ICA model (Text S1) the recovery from

monocular deprivation is much weaker than with the PoE (figure 6)

or kmeans clustering (Text S2). Unlike the other models the ICA

model is not overcomplete: it has half as many receptive fields to

allocate, and may therefore be more susceptible to allocating

receptive fields only to the majority input statistics. As we discuss

later, there is much evidence that biological V1 is substantially

overcomplete.

Figure 5. Model is robust to training set size (PoE model). The PoE model has approximately 400000 degrees of freedom. However, for
computational reasons, we trained the model with only 100000 training examples (each training example is projected onto 150 principal
components). We therefore examined the effect of increasing the training set size (for the case of normal input). The receptive field orientation
selectivity was robust to changes in training set size. There was also no obvious visual change in receptive field structure (data not shown). This
demonstrates that the sparsity constraints result in receptive field formation robust to training set size.
doi:10.1371/journal.pcbi.1003005.g005

Figure 6. Tuning width in stripe-rearing (PoE model). In the PoE
model, horizontal stripe rearing resulted in significantly sharper
orientation tuning for the over-exposed orientation (pv10{12 Krus-
kal-Wallis). Experimentally, there are conflicting results regarding the
tuning of neurons representing the exposed orientation. Tuning width
was measured as the full width at half maximum (FWHM) of the tuning
curve.
doi:10.1371/journal.pcbi.1003005.g006
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This recovery appears counterintuitive as it seems the normal

input is exerting a disproportionate effect on receptive field

development. One explanation may be that, since the sparse

coding model strongly penalises representations which are

insufficiently sparse, only a small amount of binocular experience

is necessary before a significant number of receptive fields are

allocated to the deprived eye. As we discuss later, this result

suggests that a preferential mechanism for normal input may not

be required to explain the recovery observed in partial monocular

rearing: rather, it may be a natural consequence of development

prior to patterned input.

Strabismic rearing (figures 1G, 2G, 4G)
Strabismus is of both clinical interest [86], as a condition which

affects a significant fraction of the population, and theoretical

interest, as it lowers inter-ocular correlations. The effects of

Figure 7. Binocular recovery in partial monocular deprivation (PoE model). This figure shows the ocularity of the receptive fields learned
from input with varying fractions of binocular experience (0% corresponds to complete monocular deprivation, 100% to normal binocular
experience). (A) Complete monocular deprivation resulted in receptive fields unresponsive to the occluded eye. (B) Just 10% binocular experience led
to a substantial recovery of response to the occluded eye. However, the recovered receptive fields were more monocular than in the normal case. (C–
J) Further increases in the fraction of binocular experience caused a slow recovery of the number of binocular receptive fields. However, even with
90% normal visual experience, neurons were still significantly more monocular than in the normal case. (K) Full binocular integration requires normal
visual input. Errorbars show the SEM. All the partial monocular rearing conditions had binocularity distributions significantly different from the
monocular case (pv10{12, Kolmogorov-Smirnov). Additionally, all cases with partial monocular experience had significantly different binocularity
distributions from the normal case (pv10{12, Kolmogorov-Smirnov).
doi:10.1371/journal.pcbi.1003005.g007
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convergent or divergent stabismus are similar [87,88]. Hubel and

Wiesel [10] used electrophysiology to show that kittens raised with

200 divergent strabismus develop a majority of neurons which are

responsive to only a single eye. This finding was reinforced by

Shatz, Lindstrom and Wiesel [12] who used histology to

demonstrate that strabismic kittens have more bimodal distribu-

tion of ocular dominance columns. Chino et al. [89], using animals

with strabismus greater than 10u, found no neuron in ocular

dominance category 4 (strongly binocular). Unlike other investi-

gators, they also found reduced spatial acuity in the deviating eye

and a reduced contrast response. Yinon and Auerbach [87] found

that approximately 70% of cells were monocular, and noted an

increased number of unresponsive neurons. Similarly, Blakemore

[55] measured 76% monocular responses. In a follow-up

experiment they observed no strong binocular response when

neurons were stimulated optically, and only a small fraction with

direct electrophysiological stimulation [74]. Van Sluyters and

Levitt [90] used prisms rather than surgical manipulation, which

allowed them to create symmetric strabismus. In both divergent

and convergent conditions, they found a loss of binocularity with

the majority of neurons being assigned ocular dominance

categories 1, 2, 6 or 7.

Later results confirmed these findings. Levitt and Van Sluyters

[91] found that kittens raised with strabismus during the critical

period (2–4 weeks) had cells that were primarily monocular.

Grunau [92] measured 80% binocular responses in normal

animals and 26% in strabismic. Berman and Murphy [93] also

noted a loss of binocularity (v10% binocular simple cells,

compared with 65% for controls), and also observed increased

receptive field sizes. Kalil, Spear and Langsetmo [94] found only

7% binocular cells in strabismus. They also reported that animals

with divergent strabismus had equal representation of each eye

while convergent strabismus resulted in a slight reduction in the

representation of the periphery of the deviating eye. Eschweiler

and Rauschecker [95] and Schmidt, Singer and Galuske [96] both

confirmed that the majority of neurons were monocular. Schmidt

Singer and Galuske [96] also found similar orientation preference

map characteristics between normal and strabismus (and between

maps measured in the deviant and normal eye). Vorobyov et al.

[18] also noted a significant decrease in binocular responses

compared with control in strabismic animals.

In sum, there is substantial agreement about the effects of

strabismus. With 10–20u deviance, whether divergent or conver-

gent, animals develop 80% monocular responses, no strongly

binocular response at all, and a reduced number of responsive cells

overall. There are mixed reports regarding preferences for the

non-deviating eye.

We simulated the effect of strabismus in the models by choosing

visual scene patches independently in each eye (focal points were

still identical in each). This disrupts inter-ocular correlations, as

each eye views different parts of the scene, and led to similar

results to those found in the experiments. With the PoE model,

only 2% of cells were in ocular dominance category 4, with the

majority being in categories 2 and 6 (figure 2G). Additionally,

there was a significant reduction in the total number of orientation

selective cells responding to either eye (figure 3). The full range of

orientation preferences continued to be expressed (figure 4G).

Sparse rearing
We have shown above that sparse coding provides an

explanation for the RFs that result from several different abnormal

rearing conditions. We therefore considered whether there was a

Figure 8. Recovery of spatial acuity in partial monocular deprivation (PoE model). Spatial acuity in the deprived eye recovered rapidly
when a small amount of binocular experience was provided. Even 10% binocular experience (orange) was enough to lead to coverage of higher
spatial frequencies. However, full binocular experience was required for complete recovery (blue).
doi:10.1371/journal.pcbi.1003005.g008
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novel experiment which could directly address the importance of

sparsity in RF envelopment. To do this we exploited that fact that

advances in experimental technology have made it possible to rear

animals with visual experience which is almost entirely computer-

driven (e.g. [97]). This provides nearly unconstrained scope for

modification of visual experience after eye-opening.

We sought a stimulus for which sparsity was central, and that we

would predict would lead to markedly different receptive fields

from normal animals when used as input. It was important that the

difference would persist even if some more naturalistic input was

additionally provided, for instance from retinal waves present

before eye-opening, or from small amounts of natural visual input

that cannot be completely controlled in a practical experiment

[98]. We also required the stimulus to be statistically stationary in

space, so that it would not be necessary to track eye position in

presenting the stimulus.

We constructed stimuli by independently sampling each pixel of

the patch from a sparse distribution (student-t with 2 degrees of

freedom). This is intentionally close to the distribution of

coefficients (rather than pixels) in natural scenes, so as to push

the model towards learning the Cartesian basis. As a control, we

also considered stimuli with a uniform or Gaussian distribution of

coefficients. We examined the receptive fields predicted by the

model when trained on mixtures of natural scenes and these noise

stimuli. All input data were normalized to have the same mean

and variance before combination.

We found that sparse noise provoked a disproportionately

strong response in the receptive field development of the models

(PoE results in figure 9). Even when trained on a mixture of 50%

natural scenes, sparse noise resulted in strongly localized and

distinctive receptive fields (figure 10). This effect was particular to

sparse noise, as Gaussian or uniform noise had substantially less

influence on receptive field development (figure 10).

In this one instance, the k-means clustering model results (text

S1) contained some deviation from the results of the other two

models. In particular, the development of orientation selectivity

was impeded more strongly than in the other models by Gaussian

and flat noise, and the mixtures of sparse noise and natural scenes

developed a high proportion of low-frequency spatial fields. The

exact reasons for these deviations are unclear. However, even with

k-means clustering the modification to receptive fields trained with

sparse input is large, and robust to the inclusion into the training

set of a substantial fraction of natural scene input.

Discussion

We have shown that sparse coding models can simulate the

structure of the V1 simple cell receptive fields that arise when

animals are reared with normal and abnormal visual input.

Receptive field structure exists prior to eye-opening, and there is

ample evidence that important aspects of development are driven

by intrinsic factors. However, that dramatic changes in receptive

field properties occur that depend on the nature of the input

suggests that substantial plasticity remains after eye opening. The

account of these changes in our model provides evidence of a

causal link between receptive field structure and optimal

representations of visual input. This directly answers questions

[99] that have been directed at models of purely normal

development [26,27,30,32,37,100] about the necessity or suffi-

ciency of an impetus towards sparsity. We suggest that sparse

coding provides a unifying framework for modelling receptive field

changes under a wide variety of rearing conditions.

Understanding the mechanisms by which visual responsivity can

be harmed and indeed potentially cured by aberrant or benificent

input has important implications. Take, for instance, the case of

partial monocular rearing [11,16–19]. Monocularly deprived

animals do not develop substantial V1 responses to the occluded

eye [13,14,63,64]. Recent experiments have demonstrated the

recovery of near-normal visual acuity in animals allowed only a

small fraction (1/7) of binocular experience. If this result depended

on some intrinsic mechanism for detecting and reacting to this

small amount of experience, then it might not generalize. Contrary

to this, our findings suggest the enticing possibility that improve-

ments may arise as a natural consequence of developmental

optimisation of V1 coding.

Our results regarding the development of receptive fields in

abnormal rearing conditions are in agreement with previous

results which have examined other modalities and a more limited

range of visual rearing conditions. Hsu and Dayan [42] showed

that a monocular version of the products of experts model

matched the over-representation observed in stripe rearing when

trained on stripe filtered input, and a similar result has been found

for other algorithms based on sparseness [35]. Saxe et al. [35] also

demonstrated that unsupervised learning algorithms could match

receptive field changes in abnormal rearing conditions across a

range of different sensory modalities.

We used three unsupervised learning methods – independent

component analysis [33], product of experts [101] and k-means

clustering [102] to acquire sparse codes, thus ensuring that our

results did not depend on the specifics of one particular algorithm.

As in Saxe et al. [35], we found that all these algorithms learned

qualitatively similar sparse codes. One advantage of k-means

clustering and the product of experts is that they can readily learn

over-complete codes. This is important as V1 is indeed signifi-

cantly over-complete [23,28,42]. Due to the limitations of the

experimental data, it is difficult to make any strong claims about

which particular unsupervised learning approach provides a better

fit. Although the mechanics of these algorithms are not biologically

realistic, similar sparse learning algorithms have been implement-

ed in neurobiologically realistic terms [103,104].

We interpret our results, and those of others based on normal

input, as placing the focus on the nature of the efficiency afforded

by sparsity [21,26,105–107]. One notion is that sparse codes may

represent a trade-off between the metabolic costs associated with

neurons that are firing versus those that are quiescent (and

maintaining their membrane potentials; [108]). Of more wide-

spread note is the ability of sparse codes to capture the sort of

latent statistical structure in input that can then underpin visual

comprehension [105,109,110]. The idea is that sensory input

arises from the superposition of causes that themselves occur only

sparsely. These causes are what it is important to determine. Then,

finding a sparse representation of the input in a computationally

suitable context (formally, in the recognition component of a pair

of recognition and generative models; [110]) can unearth those

causes.

The agreement between the experimental results and the output

of sparse coding models trained on visual input is perhaps

surprising. V1 consists of much more than the feature detectors we

have modelled it as here. Real V1 neurons incorporate temporal

integration [3], bottom-up and top-down attentional modulation

[20,111–113], lateral connections between columns [114–116],

feature maps [117,118], and significant feedback from other

cortical areas [119]. Additionally, our model does not include the

influence of intrinsic activity which is known to be necessary for

normal receptive field development [120], wiring constraints

[121], and hemispheric asymmetries [16,79]. These mecha-

nisms may explain the presence of structured receptive fields in

dark-reared animals, particularly as spontaneous retinal waves
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have statistical similarities to natural visual input [122].

However, the success of the model is evidence that, despite

many mechanistic differences between the model and V1,

sparse codes are good predictors of receptive field changes

during the critical period.

Our models favor nurture at the expense of nature. One hint in

our results that this favoritism may be too extreme comes from the

critical importance of the 10% binocular input in the partial

monocular rearing case (and thus the 10% normal input mixed in

the stripe and orthogonal rearing conditions). From a technical

viewpoint, the primary effect of the normal input is to avoid the

collapse of the principal component step which results in the

almost complete loss of oriented responses [42], figure 2b. The

choice of 10% is somewhat flexible, and Hsu and Dayan [42]

found that 75–95% stripe reared input resulted in strong over-

representation without a collapse in oriented responses. It could be

argued that the 10% is a stand-in for the ineluctable effects of the

neural structures established prior to eye-opening, although

further work would be required to establish this claim. In the

models, the effect of normal input on stripe rearing appears to be

more proportionate than in blind rearing; we are not aware of

experimental tests of partial stripe rearing for comparison.

Figure 9. Example receptive fields learned with mixtures of natural scenes and noise (PoE model). We created very sparse noise
patterns, with only few pixels with substantial input, and mixed those in various proportions with natural scene input (or other distributions in G, H)
for input to unsupervised learning. (A) Training the PoE model with 100% sparse noise resulted in highly-localized receptive fields. (B–F) Sparse noise
continued to have a marked effect on the learned receptive fields even in the presence of natural scene input. With 50% natural input, receptive fields
remained strongly localized (D), and even with 90% natural scenes, some pixel localization is still discernable (F). (G–H) This result was specific to
sparse noise with a coefficient distribution near that of natural scenes. Training the PoE model with a mixture of natural scenes and either uniform
white noise (G) or Gaussian (H) mixtures produced weaker perturbations of the receptive fields (cf panel D).
doi:10.1371/journal.pcbi.1003005.g009
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Trained with normal input, the models over-represented

cardinal orientations. There is evidence that cardinal axes are

indeed slightly over-represented in real animals [46,123–127],

presumably due to a prevalence of cardinal edges in natural scenes

[125,128,129]. The degree of over-representation was in reason-

ably good agreement with a recent study of natural scenes [47].

However, the over-representation in the model may be accentu-

ated because biological retinas are not arranged on a square

lattice, unlike most digital representations of images. Such

differences in representation are known to exert a small effect on

the results of sparse coding models [130].

Modeling binocularity allowed us to observe an effect on coding

due to the asymmetry of inter-ocular correlations in visual input

that was predicted by Li and Atick [48]. They showed that,

Figure 10. Quantification of receptive field changes with noise (PoE model). (A) The fraction of orientation selective responses (defined as
circular variance v0.6) as a function of the fraction of noise input during training (the remaining input always consisted of natural images). When
sparse input constituted greater than 50% of the input, very little orientation selectivity remained. Uniform and Gaussian input also impacted the
development of orientation selectivity; however, unlike sparse noise, this impact was more gradual. (B) To quantify the extreme localization that is
visually apparent in the sparse noise receptive fields, we examined the fractions of weights in each receptive field that were more than 1 standard
deviation from the mean of each filter. As with orientation selectivity, when sparse input constituted greater than 50% of the input to the model,
most receptive fields were strongly localized to a small number of pixels. The opposite effect occurred with Gaussian and uniform noise, presumably
because this input impaired the convergence of the model.
doi:10.1371/journal.pcbi.1003005.g010
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because inter-ocular correlation decays more rapidly with

horizontal edges than vertical edges, a redundancy reducing code

should have an increased number of monocular receptive fields for

vertical edges and an increased number of binocular receptive

fields for horizontal edges. In our models, despite higher order

interactions not considered by Li and Atick, this effect is observed.

Hoyer and Hyvärinen [39] have previously examined binocular

encoding and reported that learned receptive fields had similar

disparity preferences to experiment, but did not report on any

relationships between orientation and ocularity. To our knowledge

this asymmetry has not been observed in experiment. It is possible

that supervised constraints on depth estimation [131] explain why

this has not been observed in experiment.

We modelled the six conditions that have been the subject of the

most intense investigation. Various other experimental manipula-

tions of visual input have been performed in cats including rearing

with random spots [132], exposure to constant speed and direction

of motion [133–135], astigmatism [136] and opposite rotations of

visual input in each eye [137]. We have not attempted to model

these results here, either because the studies have not been

replicated by other groups or because the effects involved temporal

manipulation. In order to constrain the problem size, our models

did not include the temporal dimension in receptive field

responses, although previous work indicates that this is unlikely

to change the results dramatically [37].

However, we did use the models to design a rearing regime that

might provide a novel and strong test of the predictive power of

sparse coding. According to our models, animals reared with

exposure primarily to sparse white noise (similar to that used as a

test of the sparse coding algorithm in Olshausen and Field [27]),

should develop strongly localized receptive fields. This should be

discernable with electrophysiological or optical imaging of

receptive fields. Our models predict that the developed receptive

fields will be small and mostly non-oriented. This effect is specific

to noise with a sparsity near that of natural scenes, and Gaussian

noise or distributions with a sparsity much greater than that of

natural scenes (such as the spot stimuli examined in Ohshiro,

Hussain and Weliky [97]) are predicted to have much less

influence, particularly if the animal also receives some naturalistic

input [98]. An experimental test of this prediction would provide

evidence that sparse coding is a key driver of early receptive field

development, or alternatively provide insights into the limits of

plasticity during early visual development.

Our models consider only a single cortical area. It would be

interesting to look systematically at the effects of the abnormal

input statistics on the responses of neurons in higher cortical areas

and, concomitantly, on the receptive fields and responses of units

in multi-layer, hierarchical [138,139] unsupervised learning

models of those higher areas [35,140–146].

Unsupervised learning can only take us so far in understanding

brain function. At some point, brains have goals, seek rewards and

avoid punishments. However, transforming high-dimensional

input into representations that are more useful is an essential part

of artificial forms of machine learning [147], and has offered a

critical and realisable metaphor for understanding representations

in the brain and the way that they are malleable to changes in the

input.

Methods

Stereo visual input
We acquired a training set of naturalistic binocular image

patches from eighteen stereo images of high-quality, binocular

images of natural scenes (from http://home.comcast.net/

,toeppen/, this image library was the same as used in Hoyer

and Hyvärinen [39]). Each image was photographed using a

binocular camera with lenses spaced approximately a pair of

human eye’s distance apart at varying focal distances. As in Hoyer

and Hyvärinen [39], 5 focal points were chosen randomly in each

image, the two stereo images were aligned at the focal point and

then stereo image patches were acquired in a 3006300 pixel

square around the focal point. This has the effect of approximating

the view of an observer focussing at 5 different points in the scene.

Each patch was 2625625 pixels. These patches naturally contain

varying degrees of disparity. All images were first converted from

color to greyscale. A total of 100,000 training patches were created

for each rearing condition.

To model modified rearing conditions, the training input was

filtered to match the visual experience of the animals. For stripe

and orthogonal rearing the off-axis spatial frequencies were

attenuated by using an oriented Gaussian filter [as in 42]. For

monocular rearing and alternating monocular rearing the

occluded eye’s images were convolved with a square kernel with

a length of 150 pixels, which removed all but extremely low spatial

frequencies. To simulate strabismus, the focal points were chosen

independently for each eye. In keeping with previous work, 10% of

the training input was unfiltered in the stripe and orthogonal

rearing conditions. Hsu and Dayan [42] found that retaining 10%

normal input gave a better match with experiment because it

reduced the ‘‘collapse’’ of receptive field structure that occurred in

the absence of any normal input.

Learning algorithms
We used three different models for learning sparse codes:

product of experts, k-means (which is also known as k-nearest

neighbour) and independent component analysis. In all cases, the

training data was whitened and dimension reduced using principal

component analysis. We retained the first 150 principal compo-

nents.

We used FastICA [148] to learn independent components and

the built-in MATLAB ‘kmeans’ function to learn k-means

clustering. Since these algorithms are well-known we do not

describe them further here.

The product of experts model [44,149] models the input

distribution as a product of Student-t distributions. Representing

each input patch as a column vector x, and the ensemble average

over all training examples as S:Tdata, the probability of input x is

modelled (with n neurons) as:

p(x)~
1

Z(h)
P

n

i~1 1zy2
i =2

� �{ai ð1Þ

yi~wT
i x ð2Þ

The parameters of this model (encapsulated in the term h) describe

the receptive field wi and the sparseness ai of each neuron i. The

normalisation constant Z is dependent on h. The model is trained

by maximising the log-likelihood of the data Slog p(x)Tdata with

respect to the model parameters h. When the number of neurons is

equal to the dimensionality of the input there is a closed-form

solution for log Z and the model performs independent compo-

nent analysis [44]. However, when over-completeness is intro-

duced there is no general closed-form solution for the normalisa-

tion constant log Z. Contrastive divergence [101], which performs

gradient descent on a cost function that is within a small constant

of the log-likelihood function, was used to fit the model with a
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learning rate of 10{3 and a batch size of 200. We used an over-

completeness factor of 2, as in [42].

Characterisation of receptive field properties
Binocularity was quantified using the index described in Hoyer

and Hyvärinen [39]:

b~
DDwleftDD{DDwrightDD
DDwleftDDzDDwrightDD

ð3Þ

where wleft and wright refer to the portions of the receptive field

corresponding to each eye and DD:DD is the l2 norm. For comparison

with experiment we binned the values of b into 7 bins with

boundaries at ½{0:85,{0:5,{0:15,0:15,0:5,0:85� [as in 150].

Bins 1 or 7 correspond to highly monocular responses while values

in the middle correspond to binocular responses.

The orientation and spatial frequency preferences for each

receptive field was calculated as in Hyvärinen, Hurri and Hoyer

[33, ch. 6]. Each eye was treated separately. The response of the

receptive field to a quadrature sinusoidal grating over a range of

spatial frequencies and orientations was recorded. We examined

spatial frequencies between 0 and 0.5 cycles/pixels with spacing of

0.02 cycles/pixels and all orientations with a spacing of 1u. This

provided an orientation response curve from which the circular

variance [151], which is a measure of the orientation selectivity, could

be determined. Circular variance is defined as V~1{DRD where:

R~

P
krkei2hk
P

krk

ð4Þ

rk is the response of the neuron to stimuli of orientation hk. When

plotting distributions of orientation preference we only included

receptive fields which had a circular variance w0:6, as receptive

fields with low circular variance cannot be reliably assigned an

orientation.

Statistics. In order to test whether the changes observed in

the receptive fields under different model conditions were

significant, each condition was repeated 25 times with a different

pseudo-random seed. The seed affected both the model fitting and

the sampling of the training images. Error bars are shown as the

standard error of the mean. Except where noted otherwise, tests

were performed with a two-sided Kolmogorov-Smirnov test [152].

This test makes only the assumption that the distributions are

finite, and tests for differences in both distribution mean and

shape.
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