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Dietary deoxynivalenol (DON) impairs the intestinal functions and performance in broiler

chickens, whereas little is known about the effect of DON on the gastrointestinal

microbiota. This study evaluated the impact of graded levels of dietary DON

contamination on the cecal bacterial microbiota, their predicted metabolic abilities and

short-chain fatty acid (SCFA) profiles in chickens. In using a single oral lipopolysaccharide

(LPS) challenge we further assessed whether an additional intestinal stressor would

potentiate DON-related effects on the cecal microbiota. Eighty 1-day-old chicks were

fed diets with increasing DON concentrations (0, 2.5, 5, and 10mg DON per kg

diet) for 5 weeks and were sampled after half of the chickens received an oral

LPS challenge (1mg LPS/kg bodyweight) 1 day before sampling. The bacterial

composition was investigated by Illumina MiSeq sequencing of the V3–5 region of

the 16S rRNA gene. DON-feeding decreased (p < 0.05) the cecal species richness

(Chao1) and evenness (Shannon) compared to the non-contaminated diet. The phyla

Firmicutes and Proteobacteria tended to linearly increase and decrease with increasing

DON-concentrations, respectively. Within the Firmicutes, DON decreased the relative

abundance of Oscillospira, Clostridiaceae genus, Clostridium, and Ruminococcaceae

genus 2 (p < 0.05), whereas it increased Clostridiales genus 2 (p < 0.05). Moreover,

increasing DON levels linearly decreased a high-abundance Enterobacteriaceae genus

and an Escherichia/Shigella-OTU (p < 0.05). Changes in the bacterial composition and

their imputed metagenomic capabilities may be explained by DON-related changes in

host physiology and cecal nutrient availability. The oral LPS challenge only decreased

the abundance of an unassigned Clostridiales genus 2 (p = 0.03). Increasing dietary

concentrations of DON quadratically increased the cecal total SCFA and butyrate

concentration (p < 0.05), whereas a DON × LPS interaction indicated that LPS mainly

increased cecal total SCFA, butyrate, and acetate concentrations in chickens fed the
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diets that were not contaminated with DON. The present findings showed that even

the lowest level of dietary DON contamination had modulatory effects on chicken’s cecal

bacterial microbiota composition and diversity, whereas the additional oral challenge with

LPS did not potentiate DON effects on the cecal bacterial composition.

Keywords: broiler, 16S RNA sequencing, cecum, deoxynivalenol, lipopolysaccharide, microbiota

INTRODUCTION

The gut microbiota plays a crucial role in host health through
various functions like vitamin synthesis, digestion of dietary
fiber, modulation of the gut epithelial barrier, and inflammatory
responses as well as protecting against colonization with
pathogens (Maslowski and Mackay, 2011; Kogut and Arsenault,
2016). In chickens, the ceca are the gut site with the highest
microbial colonization (Oakley et al., 2014), with Bacteroidaceae,
Ruminococcaceae, Lachnospiraceae, and Clostridiaceae being the
dominating bacterial taxa (Oakley et al., 2014). Moreover, the
longer retention time of digesta in the ceca allows for a more
complete microbial breakdown of complex fiber and enhances
short-chain fatty acid (SCFA) production compared to the other
gut sites (Oakley et al., 2014).

Because of the widespread contamination of cereal grains with
the Fusarium toxin deoxynivalenol (DON) combined with the
vast use of cereal grains in livestock diets worldwide, DON-
contaminated feed is a very harmful factor for animal health
(Escrivá et al., 2015), and causes substantial economic losses in
poultry production (Awad et al., 2013). Chickens are believed to
be sensitive to moderate DON levels that compromise growth
performance (Andretta et al., 2011) and functioning of the
immune system (Awad et al., 2013). The current guidance value
of the European Union that is applicable for complete feed for
poultry is 5mg DON/kg feed (12% moisture) (2006/576/EC,
2006). Consumption of DON impairs the intestinal morphology,
nutrient absorption, barrier function, and the innate immune
response in chickens (Awad et al., 2011b; Osselaere et al., 2013),
whereas the interaction between DON and the chicken gut
microbiota has been hardly elucidated (Ghareeb et al., 2015).
Evidence from other species (e.g., pigs, human microbiota-
associated rats) demonstrates that exposure to DONmodifies the
gut bacterial community (Waché et al., 2009; Saint-Cyr et al.,
2013; Piotrowska et al., 2014). Accordingly, DON increased the
genera Bacteroides and Prevotella while decreasing Escherichia
coli in a human microbiota-associated rat model (Saint-Cyr
et al., 2013). Moreover, the gut microbiota has been reported to
metabolize mycotoxin compounds, which may alter the identity
and toxicity of metabolites for the host (Gratz et al., 2013, 2017).
Due to the role that the gut microbiota plays in priming of
gut functions and immune development (Schokker et al., 2015),
DON-induced alterations in the gut bacterial composition and
microbe-host interactions may account for some of the adverse
effects reported for DON (Robert et al., 2017).

The gut microbiota itself releases immune-stimulatory
compounds, such as lipopolysaccharides (LPS) (Saadia et al.,
1990; Ge et al., 2000; Ghareeb et al., 2016), which are part

of the outer membrane of Gram negative bacteria and may
depress growth performance in poultry by diverting energy for an
elevated immune response (Ghareeb et al., 2016). Oral challenges
with LPS have been reported to cause gut mucosal tissue damage
(Wu et al., 2013) and modify mucus secretion and composition
in vitro (Dohrman et al., 1998; Smirnova et al., 2003; Cornick
et al., 2015; Zhang et al., 2017). Moreover, evidence suggests that
LPS can interfere with the response to other xenobiotic agents.
In doing so, LPS has been shown to increase the toxicity of
trichothecenes such as DON in rodent models (Zhou et al., 2000;
Ganey and Roth, 2001; Islam and Pestka, 2006). Damage to the
gut barrier in duodenum and jejunum may modify intestinal
nutrient flows with consequences for the microbial composition
and metabolism in the ceca. Therefore, gaining knowledge about
potential interactions between common stressors, such as DON
and LPS, on gut microbial profiles may help in the development
of effective strategies to reduce their deleterious effects in broiler
production.

The main objective of the present study was to investigate the
effects of a chronic exposure to graded levels of dietary DON
contamination on the cecal bacterial microbiota, their predicted
metabolic functions and SCFA profile in broiler chickens. Our
hypothesis was that the exposure to increasing levels of DON
from the first day of life would alter the bacterial community
composition and metabolic capabilities in growing chickens,
leading to alterations in metabolic fermentation profile and host
performance and health. In using a single oral LPS-challenge we
further aimed to assess whether an additional stressor for the gut
would potentiate DON-related effects on the cecal microbiota.
The dietary levels of DON used in this study were chosen on
the basis of the current guidance values in the European Union
and are therefore of practical relevance. Data of feed intake and
performance can be found in our companion paper (Lucke et al.,
2017a).

MATERIALS AND METHODS

Ethics Statement
The animal procedures were approved by the institutional ethics
committee of the University of Veterinary Medicine Vienna and
the Austrian national authority according to paragraph 26 of Law
for Animal Experiments, Tierversuchsgesetz 2012—TVG 2012
(GZ 68.205/0062–WF/V/3b/2015).

Experimental Design
The feeding experiment, housing conditions and diets are
described in detail in Lucke et al. (2017a). Briefly, a total of
80 one-day-old broiler chicks (ROSS 308) obtained from a
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commercial hatchery (Brüterei Schlierbach GmbH, Pettenbach,
Austria) were randomly allocated to four feeding groups:
(1) control diet without DON (0 DON), (2) control diet
experimentally contaminated with 2.5mg DON/kg diet (2.5
DON; Romer Labs, Tulln, Austria; Supplementary Table S1), (3)
control diet with 5mg DON/kg diet (5 DON), and (4) control
diet with 10mg DON/kg diet (10 DON). The natural DON
contamination in the control diet amounted to 0.16 mg/kg diet
(Lucke et al., 2017a). The diets were fed from the first day of life
until the end of the experimental period (d 34–37 of life). The
chickens were housed in flatdeck cages (0.36 m2 each) in groups
of 2–4 animals per cage fromweek 1 to 3 of the experiment and 1–
2 birds per cage for the remaining time of the experiment (Lucke
et al., 2017a,b). Cage floors were covered with clean cardboard
paper every 2 days. One day before (d 33–36) cecal digesta
collection, half of the chickens orally received 1mg LPS per kg
body weight (LPS L2880 from E. coli O55:B5, Sigma-Aldrich,
St. Louis, Missouri, USA) dissolved in distilled water, via crop
gavage, whereas the other half received distilled water as placebo
(negative control). This resulted in the following eight treatment
groups: 0 DON+con, 0 DON+lps, 2.5 DON+con, 2.5 DON+lps,
5 DON+con, 5 DON+lps, 10 DON+con, 10 DON+lps. On d
34–37, chickens were euthanized by an overdose of Thiopental
(50–100 mg/kg body weight medicamentum pharma GmbH,
Allerheiligen im Mürztal, Austria) into the wing vein followed
by exsanguination. Immediately thereafter, the entire intestine
was carefully removed from the abdomen and the ceca were
separated. The ceca were opened longitudinally and cecal digesta
were collected, homogenized with a sterile spatula, transferred
to CryoPure Tubes (Sarstedt AG + Co., Nümbrecht, Germany),
snap-frozen in liquid nitrogen and stored at−80◦C until analysis.

Genomic DNA Isolation and 16S rRNA
Gene Sequencing
Total DNA was isolated from 250 to 300mg of frozen cecal
digesta using the Power Soil DNA Isolation Kit (MoBio
Laboratories Inc., Carlsbad, CA, USA) with few modifications as
described previously (Metzler-Zebeli et al., 2016). The isolated
DNA was stored at −20◦C. The DNA concentration was
measured using the Qubit 2.0 Fluorometer (Life Technologies,
Carlsbad, CA, USA) and the Qubit dsDNA HS Assay Kit (Life
technologies, Carlsbad, CA, USA).

The 16S rRNA gene PCR of the V3–V5 hypervariable
region (primer set 357F_hmp (CCTACGGGAGGCAGCAG)
and 926R_hmp (CCGTCAATTCMTTTRAGT), product length
∼570 bp), library preparation and Illumina MiSeq sequencing
were carried out by Microsynth AG (Balgach, Switzerland)
(Metzler-Zebeli et al., 2015). Libraries were constructed by
ligating sequencing adapters and indices onto purified PCR
products using the Nextera XT sample preparation kit (Illumina
Inc., San Diego, CA, USA) according to the recommendations
of the manufacturer. For each of the libraries, equimolar
amounts were pooled and sequenced on an Illumina MiSeq
Personal Sequencer using a 300 bp read length paired-
end protocol. The resultant overlapping paired-end reads
were demultiplexed, trimmed using cutadapt (Martin, 2011;

https://cutadapt.readthedocs.org/), stitched using Fast Length
Adjustment of SHort reads (FLASH; http://www.cbcb.umd.edu/
software/flash; Magoč and Salzberg, 2011) by Microsynth. In
total, 3,627,930 stitched reads for the 80 cecal samples with a
mean Phred score of 34–36 were obtained from the commercial
provider.

Bioinformatic Analysis
Sequencing data were analyzed using QIIME (version 1.9.1;
Siegerstetter et al., 2017). Fastq files were quality filtered
using a quality score of 15. Chimera were detected and
removed by the UCHIME method using the 64-bit version
of USEARCH and the GOLD database (drive5.com; Edgar,
2010; Edgar et al., 2011). Open-reference operational taxonomic
unit (OTU) picking was performed at 97% similarity level
using UCLUST (Edgar, 2010). OTU taxonomy was assigned
against the Greengenes database (gg_13_8; http://qiime.org/
home_static/dataFiles.html). Rare OTUs with less than 10
sequences were removed. After quality control and removal
of chimeras, 2,860,912 sequences remained, with a mean of
35,761 reads per sample and mean read length of 536 bp which
were classified into 2,989 OTUs. For α-diversity analyses a
rarefaction depth of 17,500 sequences per sample was used. OTUs
being differently abundant between treatments were additionally
checked using the Greengenes database (http://greengenes.lbl.
gov). Proposed species obtained by BLAST sharing the highest
percentage of similarity were reported. The raw sequence reads
were uploaded to the NCBI BioProject databank under the
project ID: PRJNA419703.

Microbial function prediction for each cecal sample based
on 16S rRNA gene sequencing data was determined using
Phylogenetic Investigation of Communities by Reconstruction
of Unobserved States (PICRUSt; Langille et al., 2013). For this,
closed-reference OTU picking was performed at 97% similarity
level against the Greengenes database (downloaded from http://
greengenes.secondgenome.com/downloads/database/13_5),
clustered based on a 0.03 distance limit, and processed in the
online Galaxy PICRUSt interface (http://galaxyproject.org/)
with a workflow described by the developers (http://picrust.
github.com/picrust/tutorials/quickstart.html#quickstartguide).
Sequences were categorized by function based on cluster of
orthologous groups of proteins (COG) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways in PICRUSt. Non-
bacteria related COG and KEGG orthology functions were
dismissed.

Microbial Fermentation
The SCFA (i.e., acetic acid, propionic acid, isobutyric acid, n-
butyric acid, isovaleric acid, n-valeric acid, and caproic acid)
in cecal digesta were determined using gas chromatography
(GC). For this, 0.5 g of cecal digesta was mixed with 0.5 g
H20 (double-distilled), 200 µl phosphoric acid (25%), and 300
µl of an internal standard (4-methylvalerian acid). Samples
were vortexed and centrifuged at 16,300 × g for 20min. The
supernatant was collected into a fresh tube. Centrifugation steps
were repeated until the supernatant became clear. Afterwards,
the supernatant was stored at −80◦C and analyzed on the GC
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(Fisons GC Model 8060MS DFPC, Rodano, Italy) equipped
with a 30m × 0.53mm × 0.5µm capillary column, a flame-
ionization detector (Fisons EL980) and an autosampler (Fisons
autosampler Modell AS 800C.U.). Helium was used as carrier
gas (flow rate: 2 ml/min) and the temperatures of the injector
and detector were set at 170 and 190◦C, respectively. The GC
oven program was defined as follows: The starting temperature
was set at 65◦C and was heated with a heating rate of 15 K/min
to 170◦C. The program continued with a heating rate of 35
K/min to 190◦C and afterwards with a heating rate of 40 K/min
to 200◦C.

Statistical Analysis
The Shapiro-Wilk test was firstly used to test for normality of
data distribution for all variables using the PROC UNIVARIATE
procedure in SAS (version 9.4; SAS Inst. Inc., Cary, NC). After
establishing normality for all data, relative bacterial abundances,
relative predicted microbial function abundances and SCFA
concentrations were analyzed by ANOVA using the MIXED
procedure of SAS. DON treatment, LPS and their interaction
were considered as fixed effects. The experimental run was
included as random effect with chicken nested within group
and day as the experimental unit. Orthogonal contrasts were
used to test linear and quadratic relationships between control
feeding and the 3 increasing levels of DON as well as the overall
difference of 0 DON vs. all DON groups. Degrees of freedom
were approximated using Kenward-Rogers method (ddfm =

kr). Least squares means and the standard error of the mean
are presented. Pairwise comparisons among least squares means
were performed using the probability of difference (pdiff) option
in SAS. Significance was declared if p < 0.05 and a trend was
reported if p < 0.10. Fold-changes were calculated by dividing
the difference between a treatment and the control by the value
of the respective control. Pearson’s correlations were calculated
with the CORR procedure of SAS. Only significant correlations
are reported and correlation matrices were visualized using the
corrplot package in R Studio version 3.4.1 (Wei and Simko,
2016).

RESULTS

Overall Bacterial Community Composition
Across all treatment groups (Figure 1), Firmicutes (86.0%)
and Proteobacteria (13.2%) were the most abundant phyla
in cecal digesta. At family level, the cecal community
was dominated by an unassigned family of the order
Clostridiales (38.1%) and Ruminococcaceae (30.6%) followed
by Enterobacteriaceae (13.2%), Turicibacteriaceae (8.8%),
and Lachnospiraceae (7.0%) (Table 1). Correspondingly,
the predominating genera were an unassigned genera of
the order Clostridiales (38.1%), Ruminococcaceae (20.7%),
and Enterobacteriaceae (12.5%, largely represented by the
Escherichia/Shigella OTU2; Table 2, Supplementary Tables S2,
S3), Turicibacter (8.8%), Ruminococcus (5.8%), an unassigned
genus of the family Lachnospiraceae (3.0%), and Oscillospira
(2.4%).

FIGURE 1 | Microbiome composition at phylum level for 16S rRNA

sequences in cecal digesta of broiler chickens fed diets with increasing levels

of deoxynivalenol (DON; 0, 2.5, 5, or 10mg DON/ kg diet). Values are

presented as least squares means ± standard error of the mean (SEM); n =

20 broilers per feeding group. Presented data include both animals with and

without oral lipopolysaccharide challenge (LPS) 1 day prior to slaughter within

the respective feeding group. Data were not affected by LPS and DON×LPS

(p > 0.10). * Linear contrast: p < 0.10.

Effects of DON and LPS Treatment on
Bacterial Composition
The exposure to increasing levels of DON decreased (p < 0.05)
the cecal species richness (Chao1) and evenness (Shannon) by up
to 0.2- and 0.1-fold, respectively, compared to 0 DON (Figure 2).
Increasing DON levels also affected the bacterial community
composition as high as the phylum level. The greatest alterations
were observed within the predominant phyla Firmicutes and
Proteobacteria which tended (p < 0.10) to linearly increase and
decrease by up to 0.1- and 0.4-fold with increasing DON-levels,
respectively (Figure 1). Accordingly, the ratio of Firmicutes to
Proteobacteria tended to linearly increase (p = 0.08) by up to
0.9-fold with increasing DON-concentrations (Supplementary
Table S2). The most pronounced DON-induced changes at
family level were a 0.6-fold decrease in the relative abundance
of Clostridiaceae in the DON groups (p < 0.01) and a linear
increase in an unassigned Clostridiales family 2 by 0.5-fold with
increasing DON concentrations (p = 0.04). This was reflected at
genus level where Oscillospira, Clostridiaceae genus, Clostridium,
and the unassigned Ruminoccaceae genus 2 were decreased by
the DON treatment (p < 0.05). Oscillospira and the unassigned
Ruminoccaceae genus 2 decreased by 0.2- and 0.5-fold in the
DON groups compared to the 0 DON group, respectively,
whereas Clostridium linearly decreased by up to 0.7-fold with
increasing DON concentrations. DON further quadratically
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TABLE 1 | Relative abundance (%) of families in cecal digesta of broiler chickens fed diets with increasing levels of deoxynivalenol (DON; 0, 2.5, 5, or 10mg DON/kg diet)

and with or without oral lipopolysaccharide challenge (LPS) 1 day prior slaughter1.

no LPS LPS Fixed effect, Contrasts,

p-values p-values2

DON (mg/kg feed) 0 2.5 5 10 0 2.5 5 10 SEM DON LPS DON

× LPS

0 vs.

DON

lin. quad.

Clostridiales family 1 34.99 39.00 31.83 47.66 29.74 37.48 39.09 45.33 8.39 0.38 0.94 0.89 0.26 0.14 0.66

Ruminococcaceae 31.12 32.97 31.30 30.09 34.06 28.87 25.32 30.85 4.55 0.82 0.62 0.74 0.47 0.54 0.55

Enterobacteriaceae 15.44 12.49 12.43 8.88 14.61 15.44 17.36 8.63 3.06 0.14 0.43 0.76 0.32 0.07 0.24

Turicibacteraceae 9.51 7.09 10.90 5.68 11.58 9.61 8.75 6.93 3.75 0.69 0.73 0.92 0.44 0.35 0.80

Lachnospiraceae 5.71 6.84 10.88 6.03 7.57 6.58 7.07 5.59 1.78 0.33 0.60 0.46 0.72 0.97 0.20

Lactobacillaceae 0.58 0.45 0.47 0.37 0.44 0.90 0.60 0.28 0.22 0.48 0.59 0.55 0.97 0.34 0.23

kingdom unassigned 0.61 0.30 0.30 0.35 0.33 0.39 0.32 0.37 0.07 0.13 0.46 0.06 0.02 0.11 0.08

Clostridiaceae 0.47 0.14 0.25 0.14 0.32 0.11 0.07 0.14 0.08 <0.01 0.12 0.66 <0.01 0.01 0.03

Clostridiales family 2 0.15 0.18 0.15 0.20 0.11 0.12 0.12 0.17 0.02 0.08 0.03 0.97 0.14 0.04 0.38

Coriobacteriaceae 0.11 0.10 0.07 0.14 0.10 0.21 0.09 0.15 0.05 0.31 0.33 0.54 0.58 0.80 0.83

Erysipelotrichaceae 0.13 0.06 0.06 0.07 0.11 0.11 0.08 0.15 0.04 0.60 0.32 0.67 0.34 0.72 0.20

Corynebacteriaceae 0.00 0.28 0.06 0.10 0.11 0.03 0.03 0.03 0.08 0.52 0.26 0.17 0.60 0.79 0.51

Enterococcaceae 0.02 0.04 0.05 0.01 0.02 0.02 0.08 0.02 0.02 0.14 0.74 0.79 0.42 0.77 0.09

Peptostreptococcaceae 0.02 0.02 0.02 0.01 0.03 0.03 0.04 0.01 0.01 0.14 0.16 0.69 0.46 0.29 0.25

1 Data are presented as least squares means ± standard error of the mean (SEM); n = 10 per treatment group.
2 P-values for orthogonal contrasts to test linear (lin.) and quadratic (quad.) relationships between control feeding and the 3 increasing levels of DON as well as the overall difference of

0 DON vs. all DON groups (0 vs. DON).

increased the relative abundance of Blautia (p = 0.01) and
Anaerotruncus (p = 0.05) by up to 1.4- and 1.1-fold with the
highest abundance in the 5 DON group.Moreover, an unassigned
Enterobacteriaceae genus 1 linearly decreased (p < 0.05) with
increasing DON-concentrations by up to 0.4-fold. Within these
genera, the DON treatment affected 38 of the 120 most abundant
OTUs (relative abundance > 0.05; Supplementary Figure S1).
Among those, 5 OTUs could be assigned to >95% similarity
to reference strains (Supplementary Table S3). Increasing DON
levels linearly decreased Escherichia/Shigella-OTU2 by up to 0.5-
fold and two Salmonella-OTUs (OTU 70 and 73) by up to 0.7-
and 0.5-fold, respectively (p < 0.05). Two Anaerotruncus-OTUs
(OTU 18 and 22) tended to be quadratically affected by the
increasing DON levels, reaching their highest abundance in cecal
digesta of chickens in the 5 DON group.

The oral LPS challenge decreased the relative abundance of
an unassigned Clostridiales genus 2 by 0.2-fold compared to the
negative control (p= 0.03). At OTU level, the relative abundance
of only 4 out of the 120 most abundant OTUs were modified by
the LPS treatment.

Moreover, the DON × LPS interaction (p = 0.01) for the
genus Dorea indicated that there was a quadratic response of
Dorea to the increasing DON concentrations in chickens that did
not receive the LPS challenge. In chickens that were additionally
challenged with LPS increasing DON levels did not modify the
relative abundance of Dorea.

Effects of DON and LPS Treatment on
Short-Chain Fatty Acids
Increasing dietary concentrations of DON quadratically
affected the cecal total SCFA and butyrate concentration

(p < 0.05, Figure 3), with the highest concentration in the
2.5 DON group (Figure 3). The DON × LPS interactions
for total SCFA (p = 0.01) and butyric acid (p < 0.01)
further indicated that those effects were only observed in
chickens that were not challenged with LPS. In chickens that
received the LPS, SCFA concentrations linearly decreased with
increasing DON concentrations. Furthermore, an opposite
quadratic relationship between iso-valerate and increasing
DON concentrations was observed (p = 0.01), with the lowest
concentration of iso-valerate being found in the 2.5 and 5 DON
groups.

Effect of DON and LPS Treatments on
Functional Metagenome Prediction
Functional metagenome prediction was used to assess potential
alterations in bacterial metabolism caused by the dietary DON
levels (Table 3; Supplementary Table S4). The relative gene
abundance of COG pathways for metabolism of co-factors and
vitamins, cell motility, and biosynthesis of other secondary
metabolites were linearly increased with increasing dietary
DON levels (p < 0.05; Table 3). The relative abundance of
COG pathway genes for lipid metabolism, genetic information
processing and glycan biosynthesis and metabolism, in turn,
were linearly decreased by increasing DON levels (p <

0.05). In total, 35 KEGG pathways were less abundant in
chickens fed the DON diets compared to the 0 DON diet,
including KEGG pathways for amino acid, carbohydrate, and
lipid metabolism and cell replication. In contrast, 21 KEGG
pathways were more abundant in chickens fed the DON diets
compared to those fed the 0 DON diet and were related
to bacterial motility, cell metabolism, amino acid, vitamin,
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TABLE 2 | Differences in relative abundance (%) of genera in cecal digesta of broiler chickens fed diets with increasing levels of deoxynivalenol (DON; 0, 2.5, 5, or 10mg

DON/kg diet) and with or without oral lipopolysaccharide challenge (LPS) 1 day prior slaughter1.

no LPS LPS Fixed effect, Contrasts,

p-values p-values2

DON (mg/kg feed) 0 2.5 5 10 0 2.5 5 10 SEM DON LPS DON

× LPS

0 vs.

DON

lin. quad.

Enterobacteriaceae genus 1 15.24 11.94 10.80 8.14 14.18 14.41 16.52 8.51 2.84 0.12 0.35 0.66 0.20 0.04 0.35

Oscillospira 3.16 1.81 2.84 2.09 2.71 1.59 2.23 2.74 0.35 0.01 0.52 0.28 0.01 0.51 0.03

Anaerotruncus 1.04 1.32 2.51 1.44 1.47 1.44 2.80 1.32 0.51 0.02 0.62 0.95 0.19 0.31 0.05

Blautia 0.33 0.76 1.23 0.54 0.54 0.99 0.86 0.72 0.21 0.03 0.69 0.43 0.02 0.26 0.01

unassigned bacterial phylum 0.61 0.30 0.30 0.35 0.33 0.39 0.32 0.37 0.07 0.13 0.46 0.06 0.02 0.11 0.08

Clostridiales genus 2 0.15 0.18 0.15 0.20 0.11 0.12 0.12 0.17 0.02 0.08 0.03 0.97 0.14 0.04 0.38

Clostridiaceae genus 0.28 0.06 0.14 0.08 0.13 0.04 0.02 0.07 0.08 0.18 0.17 0.73 0.03 0.15 0.16

Clostridium 0.20 0.08 0.10 0.06 0.19 0.07 0.05 0.06 0.03 <0.01 0.42 0.78 <0.01 <0.01 0.01

Dorea 0.07b 0.08b 0.18a 0.08b 0.14ab 0.11ab 0.08b 0.07b 0.03 0.15 0.94 0.01 0.81 0.42 0.16

Enterobacteriacee genus 2 0.015 0.013 0.016 0.036 0.010 0.016 0.017 0.019 0.007 0.14 0.38 0.50 0.22 0.04 0.36

Ruminococcaceae genus 2 0.010 0.005 0.003 0.003 0.008 0.006 0.002 0.004 0.002 0.05 0.87 0.84 0.01 0.02 0.15

1Data are presented as least squares means ± standard error of the mean (SEM); n = 10 per treatment group; only values for genera that were different (p < 0.05) are presented.
2P-values for orthogonal contrasts to test linear (lin.) and quadratic (quad.) relationships between control feeding and the 3 increasing levels of DON as well as the overall difference of

0 DON vs. all DON groups (0 vs. DON).
a,b DON × LPS interaction: Least squares means of genera with no common superscripts differ significantly between groups; p < 0.05.

FIGURE 2 | Shannon index (A), Simpson index (B), and Chao1 richness estimate (C) in cecal digesta of chickens fed diets with increasing levels of deoxynivalenol

(DON; 0, 2.5, 5, or 10mg DON/kg diet). Values are presented as least squares means ± standard error of the mean (SEM); n = 20 broilers per feeding group.

Presented data include both animals with and without oral lipopolysaccharide challenge (LPS) 1 day prior to slaughter within the respective feeding group. * Contrast

comparing the 0 DON with all DON groups (0 vs. DON): p < 0.05. ** Quadratic contrast: p < 0.05.

and antimicrobial metabolism. The LPS treatment, in turn,
did not affect the relative abundance of predicted metabolic
pathways.

Correlation Analysis
Pearson’s correlation analysis was used to characterize
associations of bacterial abundances with SCFA concentrations
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FIGURE 3 | Total short chain fatty acids (SCFA), acetate, proprionate, butyrate,

isobutyrate, valerate, isovalerate, and caproate concentrations in cecal digesta

of chickens fed diets with increasing levels of deoxynivalenol (DON; 0, 2.5, 5,

or 10mg DON/kg diet) and with or without oral lipopolysaccharide challenge

(LPS) 1 day prior to slaughter. Values are presented as least squares means ±

standard error of the mean (SEM); n = 10 broilers per treatment; n = 9 in the 5

DON+con and 5 DON+lps groups. a,b,c DON × LPS interaction: Least

squares means of total or individual SCFA with no common superscripts differ

significantly between groups; p < 0.05. **Quadratic contrast: p < 0.05.

and predicted metabolic functions in cecal digesta. In total,
15 significant correlations between bacterial genera and
SCFA could be established (Figure 4). Most correlations were
observed within the phylum Firmicutes. Ruminococcaceae
genus 2 positively correlated with valerate (r = 0.42).
Moreover, several genera positively correlated with
caproate including [Ruminococcus] (r = 0.36), Citrobacter
(r = 0.42), and Ruminococcaceae genus 2 (r = 0.44).
Furthermore, a negative correlation between body weight
at the day of sampling (Lucke et al., 2017a) and caproate
(r = −0.37) could be established. In addition, slaughter
weight positively correlated with Clostridiales genus 1 (r
= 0.38). However, correlations of slaughter weight with
Blautia (r = −0.36) and Escherichia (r = −0.36) were
negative.

Correlations between the abundances of bacterial genera
and COG or KEGG pathways were detected for the five most
abundant genera andmany low abundant genera (Supplementary
Figures S1, S2). Especially the high abundant Clostridiales
genus 1 and Enterobacteriaceae genus 1 showed opposite
relationships with several COG pathways. Clostridiales genus 1
was positively correlated with COG pathways for translation and
transcription (r > 0.70). Enterobacteriaceae genus 1, however,
was (r < −0.70) negatively correlated with the aforementioned
COG pathways. By contrast, Clostridiales genus 1 negatively

correlated (r < −0.70) with COG pathways for cellular
processes and signaling, metabolism and glycan biosynthesis
and metabolism, whereas Enterobacteriaceae genus 1 positively
correlated with these pathways. A comparable pattern was
observed for correlations between genera and respective KEGG
pathways. Clostridiales genus 1 was further highly negatively
correlated with the COG pathway for lipid metabolism (r
= −0.94). Moreover, positive correlations were also detected
for an Enterobacteriaceae genus and glycan biosynthesis and
metabolism (r = 0.92) as well as between Turicibacter and the
COG pathway for signaling molecules and interaction (r =

0.91).

DISCUSSION

The present results demonstrated that different levels of
dietary DON contamination have the potential to alter the
cecal bacterial diversity and composition in chickens, which
was especially evident within the two predominant phyla
Firmicutes and Proteobacteria, modifying the Firmicutes-to-
Proteobacteria ratio toward more Firmicutes bacteria. DON-
related changes in predicted bacterial metagenomic functions
and cecal SCFA concentrations reflected the alterations in
the bacterial community composition. Notably, unclassified
members of the order Clostridiales benefited from the increasing
dietary DON levels, which may have benefited from the
opening intestinal niche due to the DON-related decline in
the Enterobacteriaceae population. Nevertheless, the decreased
bacterial richness and diversity suggested that certain taxa within
the bacterial community may have had growth advantages due
to the DON exposure which may have lowered the total number
and abundance of species. There is some debate whether a
reduced bacterial diversity is detrimental for the host or not.
Previously, it was thought that high species diversity may reflect
a more stable microbiota by preventing the colonization of
pathogens (Han et al., 2017). However, a less diverse, but more
specialized bacterial community was proposed to use limiting
resources more efficiently and promote the energy acquisition
of the host (Lozupone et al., 2012; Siegerstetter et al., 2017).
Chickens were fed the contaminated diets from the first day of
life. Therefore, it is conceivable that DON may have modified
the initial bacterial colonization of chicken’s gut. Also, chickens
receiving the higher DON contamination levels reduced their
feed intake (Lucke et al., 2017a), which may partly explain
the quadratic effects of dietary DON on the cecal microbiota
composition and α-diversity in the present study. The additional
oral challenge with a highly immunogenic E. coli-LPS only
little modulated the DON effects on the bacterial community.
However, the LPS challenge appeared to enhance microbial
activity, as indicated by the cecal SCFA concentrations, but
only in chickens receiving the non-contaminated diet. This
finding may have been related to LPS effects on mucin secretion
as well as on digestion and absorption in the small intestine
and consequently intestinal nutrient flow (Smirnova et al.,
2003; Amador et al., 2007; Mani et al., 2012; Zhang et al.,
2017).
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TABLE 3 | Differences in relative abundance (%) of COG pathways (Cluster of orthologous groups of proteins) in cecal digesta of broiler chickens fed diets with increasing

levels of deoxynivalenol (DON; 0, 2.5, 5, or 10mg DON/kg diet) and with or without oral lipopolysaccharide challenge (LPS) 1 day prior slaughter1.

no LPS LPS Fixed effect, Contrasts,

p-values p-values2

DON (mg/kg feed) 0 2.5 5 10 0 2.5 5 10 SEM DON LPS DON

×

LPS

0 vs.

DON

lin. quad.

CELLULAR PROCESSES

Cell motility 2.94 3.47 3.20 3.68 2.98 3.42 3.44 3.67 0.27 0.08 0.77 0.95 0.02 0.02 0.73

Transport and catabolism 0.18 0.17 0.17 0.17 0.18 0.17 0.16 0.17 0.01 0.10 0.70 0.67 0.02 0.05 0.13

METABOLISM

Metabolism of cofactors and vitamins 3.87 4.05 4.00 4.08 3.92 4.02 4.01 4.05 0.07 0.08 0.96 0.94 0.01 0.03 0.41

Lipid metabolism 2.92 2.87 2.89 2.82 2.93 2.86 2.85 2.81 0.04 0.12 0.73 0.97 0.05 0.03 0.96

Enzyme families 2.13 2.11 2.12 2.11 2.14 2.10 2.10 2.11 0.01 0.13 0.54 0.70 0.02 0.09 0.12

Glycan biosynthesis and metabolism 1.68 1.62 1.61 1.58 1.68 1.67 1.65 1.59 0.04 0.16 0.40 0.92 0.09 0.03 0.84

Metabolism of terpenoids and polyketides 1.58 1.53 1.54 1.51 1.55 1.53 1.53 1.51 0.02 0.05 0.58 0.83 0.01 0.02 0.60

Biosynthesis of other secondary metabolites 0.74 0.79 0.79 0.79 0.77 0.78 0.77 0.79 0.01<0.01 0.88 0.09 <0.01 <0.01 0.37

UNCLASSIFIED

Poorly characterized 5.00 4.84 4.88 4.79 4.97 4.93 4.92 4.82 0.07 0.10 0.51 0.88 0.04 0.02 0.93

Genetic information processing 2.78a 2.70bc 2.69b 2.71bc 2.73abc 2.76ac 2.73abc 2.71bc 0.02 0.08 0.43 0.04 0.02 0.02 0.37

1Data are presented as least squares means ± standard error of the mean (SEM); n = 10 per treatment group; only values for COG pathways that were different (p < 0.05) are

presented.
2P-values for orthogonal contrasts to test linear (lin.) and quadratic (quad.) relationships between control feeding and the three increasing levels of DON as well as the overall difference

of 0 DON vs. all DON groups (0 vs. DON).
a,b,c DON × LPS interaction: Least squares means of COG pathways with no common superscripts differ significantly between groups; p < 0.05.

Because DON largely impacts the feed intake (Lucke et al.,
2017a) as well as digestive, absorptive and immune functions in
the small intestine of chickens (Awad et al., 2011b; Ghareeb et al.,
2013; Osselaere et al., 2013), DON-effects on the cecal bacterial
microbiota were probably rather indirect effects due to changes
in cecal nutrient flow and mucus secretion (Antonissen et al.,
2015). In line with that, only about 20% of the dietary DON
were reported to reach the chicken ceca (Awad et al., 2011a) due
to mucosal absorption, sulfation and bacterial de-epoxidization
(Gratz et al., 2013; Schwartz-Zimmermann et al., 2015). Bacterial
isolates from the chicken intestine, being able to transform
DON to deepoxy-deoxynivalenol (DOM-1), were reported to
belong to Clostridiales, Anaerofilum, Collinsella, and Bacillus (Yu
et al., 2010). In the present study, the dietary exposure to DON
specifically promoted the relative abundance of an unclassified
Clostridiales genus. This genus was comprised by OTUs which
showed 83.4% sequence similarity to proteolytic species within
Clostridium sensu strictu. However, due to the high versatility
within the order Clostridiales, the low taxonomic resolution at
species level rendered it difficult to deduce specific metabolic
abilities; particularly, as many members within Clostridiales
have been poorly described and the need to re-annotate many
Clostridium species within the 16S rRNA gene tree (Stackebrandt
et al., 1999; Biddle et al., 2013). Therefore, we can only speculate
that changes in the cecal mucin expression or increased protein
flow to the ceca may explain the increased abundance of these
taxa. In this context, results of DON-effects on the branched-
chain fatty acids were less conclusive to indicate whether more or
less substrate was available in the cecal lumen for bacterial protein

fermentation. Nevertheless, due to the low similarities to cultured
strains and the DON-related decrease in the genus Clostridium, it
remains speculative which species were affected and whether this
increase was related to DON-degrading capabilities, changes in
cecal physiology or competition for intestinal niches with other
bacteria. Concurrently, we observed a decrease in the relative
abundance of the predominant Enterobacteriaceae genus and
within it Escherichia/Shigella-OTU2, which is adept at utilizing
host mucus as substrate (Zhu and Joerger, 2003; Tenaillon et al.,
2010; Conway and Cohen, 2015). Lower cecal mucin production
as cause for the reduced Enterobacteriaceae abundance with
increasing DON levels was supported by the positive correlation
between the unclassified Enterobacteriaceae genus and the COG
pathway of glycan biosynthesis and metabolism as well as by the
lower abundances of metabolic pathways for glycosaminoglycan
degradation and amino acid metabolism after DON exposure.
As Enterobacteriaceae, such as E. coli, belong to the commensal
intestinal microbiota in chickens but also comprise pathobionts
(Dozois et al., 2003; Smati et al., 2015), it is difficult to
deduce whether this decrease was beneficial for or disturbed
the cecal bacterial homeostasis. By contrast, the lower relative
abundance of Proteobacteria, in general, and more specifically
of Enterobacteriaceae with increasing dietary DON levels may
have lowered the cecal mucosal exposure to LPS of high
immune reactivity (Gronbach et al., 2014), as indicated by the
lower abundance of the KEGG pathway of LPS biosynthesis
proteins. This may have reduced the LPS-related mucosal
innate immune response (Yang and Jobin, 2014). DON-related
alterations within the Ruminococcaceae and Lachnospiraceae
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may be due to DON-related changes in intestinal nutrient flow
and availability in chickens (Awad et al., 2011b). Moreover,
correlation analysis with SCFA and the relative abundance of the
KEGG pathway of fatty acid biosynthesis indicated that members
of the families Ruminococcaceae and Lachnospiraceae (Flint et al.,
2015; Polansky et al., 2015) may have been associated with the
observed DON-related changes in cecal SCFA concentrations.
In this regard, Ruminococcaceae and Lachnospiraceae, including
Blautia, Dorea, and Ruminococcus, are known for their capability
to degrade cellulose and hemicelluloses (Biddle et al., 2013). DON
may have affected the cross-feeding of primary fermentation
metabolites, such as lactate or succinate (Flint et al., 2015), or
metabolism of gases among microbes in cecal digesta (Rajilić-
Stojanović and De Vos, 2014), which may have modified
Ruminococcaceae and Lachnospiraceae abundances as well.
Corresponding to our findings, Oscillospira, a predominant
genus in chicken cecal microbiota (Wang et al., 2016) has been
previously found to decrease in inflammatory diseases in humans
(Zhu et al., 2013; Walters et al., 2014; Gophna et al., 2017),
whereas Anaerotruncus was positively associated with intestinal
inflammatory diseases, such as colorectal cancer (Chen et al.,
2012).

Due to its lipid A moiety linked to an antigenic O-
polysaccharide (Heinrichs et al., 1998), the currently used
LPS from E. coli O55:B5 was a highly immunogenic antigen
capable to induce an intestinal inflammatory response after
repeated oral application of 250 µg/kg BW in chickens (Wu
et al., 2013). The related mucosal immune response may have
therefore potentiated the effects of increasing DON levels on gut
physiology (e.g., mucin expression) and digestive processes with
consequences for microbial colonization in the present study.
The latter assumption may explain the higher relative abundance
of Clostridiales-OTU24 and the decrease in Ruminococcaceae-
OTU67 and OTU93 after the LPS administration across all
DON levels. However, the strongest effect of LPS was found for
Clostridiales-OTU12 and SCFA concentrations, mainly acetate
and butyrate, but only in chickens receiving the 0 DON
diet. This may indicate that DON and LPS exposure (e.g.,
nutrient flow and mucin secretion) may have caused similar
environmental conditions for bacterial proliferation and activity
in cecal digesta.

In conclusion, the present results demonstrated that the
different DON contamination levels of chicken feed substantially
modulated the cecal bacterial microbiota composition and
decreased the bacterial diversity. DON-related alterations in the
bacterial community were especially evident by an increase in
an unclassified Clostridiales genus and a decrease in the family
Enterobacteriaceae. Changes in host digestive physiology and
mucin expression as reason for the altered intestinal bacterial
abundances were indicated by DON-related alterations in KEGG
pathway abundance genes related to glycoprotein and amino
acid metabolism and increased cecal SCFA concentrations.
Further studies are needed to clarify which DON-related
changes in the cecal microbiota and SCFA were caused by
bacterial DON degradation and those which were due to
DON-induced changes in host physiology. The additional oral
challenge with a highly immunogenic E. coli-LPS showed the
strongest effect in chickens that received the diet without DON

FIGURE 4 | Correlation matrix between short chain fatty acid (SCFA)

concentrations and relative abundance of bacterial genera in cecal digesta of

chickens fed diets with increasing levels of deoxynivalenol (DON; 0, 2.5, 5, or

10mg DON/kg diet) and with or without oral lipopolysaccharide challenge

(LPS) 1 day prior to slaughter. Colors refer to the degree of correlation.

contamination and mainly responded with an increased cecal
SCFA concentration.
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