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Injuries to the nervous system can result in a debilitating neuropathic pain state that is

often resistant to treatment with available analgesics, which are commonly associated

with several side-effects. Growing pre-clinical and clinical evidence over the last two

decades indicates that immune cell-mediated mechanisms both in the periphery and

in the Central Nervous System (CNS) play significant roles in the establishment and

maintenance of neuropathic pain. Specifically, following peripheral nerve injury, microglia,

which are CNS resident immune cells, respond to the activity of the first pain synapse

in the dorsal horn of spinal cord and also to neuronal activity in higher centres in

the brain. This microglial response leads to the production and release of several

proinflammatory mediators which contribute to neuronal sensitisation under neuropathic

pain states. In this review, we collect evidence demonstrating the critical role played

by the Fractalkine/CX3CR1 signalling pathway in neuron-to-microglia communication in

neuropathic pain states and explore how strategies that include components of this

pathway offer opportunities for innovative targets for neuropathic pain.
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INTRODUCTION

Neuropathic pain is a devastating condition which affects around 7–10% of the general population
globally, predominantly diagnosed in patients above 50 years of age (1). It is a chronic secondary
pain condition, either as a result of peripheral (mechanical trauma, metabolic diseases, infection,
etc.) or central (spinal cord injury, stroke or multiple sclerosis) nervous (somatosensory) system
lesions or diseases (2). After peripheral nerve damage, both activation of sensory neurons and
local inflammation occur at the site of injury. The presence of immune cells, such as macrophages
(3), which release pro-inflammatory mediators and alter nociceptors’ excitability (specialised
sensory neurons that respond to noxious stimuli), facilitates ectopic firing and ongoing nociceptive
transmission. With persistent and constant neuronal input from the periphery, dorsal horn
nociceptive circuits in the spinal cord are activated, sensitised and undergo plastic changes in the
CNS. Such maladaptive plasticity in the nociceptive system correlates with altered behavioural
responsiveness to innocuous and noxious stimuli (4, 5). In the dorsal horn of the spinal
cord, sensitisation of the first sensory synapse is characterised by a complex set of changes in
synaptic efficacy, increased receptor expression and an imbalance of descending facilitatory and
inhibitory modulation (6–9). Another active component to the generation of neuropathic pain
involves immune cells, especially dorsal horn microglia which amplify and actively contribute to
mechanisms of chronic pain (10, 11).

Data from our group and others have revealed that, after peripheral nerve damage, spinal cord
microglia accumulate and proliferate in the superficial dorsal horn within the termination area
of the injured peripheral nerve fibres (12–14). Peripherally injured sensory afferents instigate the
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change of microglial cells morphology to an activated state
(15). Microglial activation is followed by the release of
proinflammatory cytokines and chemokines which interact with
dorsal horn neurons and modulate neurotransmission (16). As
a result, these proinflammatory cytokines and chemokines are
believed to contribute to increased nociceptive hypersensitivity
and to the development of allodynia (response to innocuous
stimuli) and hyperalgesia (enhanced response to noxious
stimuli). Animal studies have spawned great interest in using
glial inhibitors since blockade of microglial activity reduces
nociceptive behaviours in models of neuropathic pain (14, 17,
18). Although significant spinal microgliosis is evident in both
sexes of rodents after injury (19, 20), the interruption of spinal
microglial activity following neuropathic injury, preferentially
attenuates allodynia in male mice (19). Given the critical role
of the immune system in the pathophysiology of neuropathic
pain, an improved understanding of the pathways which regulate
the communication between microglial and neuronal cells will
shed light on innovative microglial targets for the treatment of
neuropathic pain.

The identification of such bi-directional signalling pathways
between CNS immunocompetent cells and neurons is critical
to underpin the mechanisms underlying this interaction. Some
of the major signalling pathways that mediates neuroimmune
interface at the spinal cord dorsal horn level are mediated by
chemokine signalling (21–23). Chemokines belong to a large
superfamily of small molecules (from 8–15 kDa) and are believed
to be key mediators of the interaction between neurons and
neighbouring glial cells, and some chemokines exert potent
chemotactic and pro-inflammatory functions. The scientific
community has uncovered more than 50 chemokine ligands
so far, out of which fractalkine (FKN) and its sole receptor
(CX3CR1) require and deserve special attention. In this review
we will examine pre-clinical evidence and focus on the role of
FKN and CX3CR1 in neuron-to-microglial cell communication
in neuropathic pain states and reflect on the pharmacological
potential of interfering with this signalling pathway.

FKN/CX3CR1 Pathway
FKN is a transmembrane chemokine constitutively expressed in
the CNS and found in intrinsic neurons of the dorsal horn of
spinal cord (24). It belongs to the CX3C subfamily (25) and binds
to the CX3CR1 receptor. This receptor is mainly expressed by
microglia in the CNS (24, 26). FKN, in its membrane-bound
form, consists of an extracellular N-terminal chemokine domain,
with a mucin-like stalk connecting with the cell membrane plus
a transmembrane hydrophobic region and an intracellular C-
terminal domain (27). FKN is also found in soluble forms,
which contains the mucin stalk and the N-terminal chemokine
domain, and it is released by proteolysis at a membrane-
proximal region (28). This enzymatic cleavage is mediated by
either the TNF-α converting enzyme (TACE, ADAM17) (28)
or the metalloprotease ADAM10, which are transmembrane
proteins similarly to FKN (29). FKN cleavage from neuronal
membranes can also be mediated by the microglial-derived
cysteine protease cathepsin S (CatS). Despite these differences
in structure between full-length and soluble forms of FKN, the

affinity of the chemokine for the CX3CR1 receptor is suggested to
be identical (30).

A wealth of data from ours and other groups show that
FKN binding to microglial CX3CR1 induces the activation of
several downstream signalling pathways, especially the activation
of intracellular p38 MAPK pathway that leads to the release
of CatS and IL-1β (26, 31). The activation of this pathway is
linked to nociceptive facilitation after nerve injury (18, 32–
34). Similar outcome has been reported in bone cancer pain
models which have a neuropathic pain component (35). Pain
development in this model correlates with an increased dorsal
horn microgliosis and increased expression of p-p38 in microglia
(36). Indeed, this chemokine pair FKN/CX3CR1 is involved in
neuropathic pain development and maintenance via neuron-
microglia interaction in the dorsal horn, and upregulation of
CX3CR1 expression is observed when microgliosis is present
(21, 37–40). Despite differences observed, sexual dimorphism in
FKN/CX3CR1 pathway in the spinal cord is yet to be established.

FKN/CX3CR1 Pathway and Pain
Accumulating evidence over the last fifteen years suggest an
important role of microglia in the pathogenesis of neuropathic
pain (41, 42). Following peripheral nerve injury, upregulation
of CX3CR1 (24) is observed in spinal microglia in association
with marked mechanical allodynia (43). Thermal hyperalgesia
and mechanical allodynia can also be elicited in naïve animals
by an intrathecal injection of FKN (44) and both effects are
abrogated in CX3CR1 knockout mice (34, 45). In addition, the
administration of a neutralizing antibody against CX3CR1 (46,
47) reduces pain-like behaviours in neuropathic pain models,
indicating that microglia-mediated mechanisms contribute to
nociceptive hypersensitivity. Injection of FKN, after unique
binding to CX3CR1, activates p38MAPK signalling pathway (34).
Selective inhibition of p38-MAPK with skepinone or SB20358
through intrathecal delivery reduced mechanical allodynia in
male rodent models of neuropathic pain (48) highlighting the
role of phosphorylated p38 MAPK in neuropathic pain. In
addition, a study published by Bäckryd and co-workers has
found that FKN and CatS levels are higher in the cerebrospinal
fluid (CSF) of fibromyalgia patients when compared to healthy
individuals (49).

Besides a well-established role in neuropathic pain at spinal
cord level and increased FKN in the CSF, some reports have
elucidated the FKN/CX3CR1 role at a supraspinal level. In the
brain, increased microglial expression has been reported in pain-
related areas such as the thalamus (50) or the periaqueductal
grey area (PAG) (51). In a recent study, an upregulation of
CatS, CX3CR1 and FKN mRNA and CX3CR1 protein expression
was observed in the ventral posterolateral thalamic nucleus
after spinal nerve ligation (SNL) in rodent models (52). This is
further supported by a study examining patients suffering from
lumbar chronic pain in which evidence for microglial activation
in the thalamus is noticed (53). Evidence also shows that
intracerebroventricular administration of FKN causes thermal
hyperalgesia in rodents and is accompanied by an increase in p38
MAPK phosphorylation (54).
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These data provide a better understanding of the
pathophysiological processes in the spinal cord and in the
brain highlighting the potential of the FKN/CX3CR1 system as a
target for the treatment of neuropathic pain.

CatS/FKN/CX3CR1 Pathway and Pain
CatS is a lysosomal enzyme belonging to the papain family of
cysteine proteases (55) preferentially expressed in mononuclear
phagocytic cells (56). CatS expression has been observed in
dendritic cells, B cells, macrophages and microglia, which act
as antigen presenting cells (APCs) (57). The activity of CatS is
not restricted to intracellular compartments since the release of
enzymatically active protease has been observed in a number
of cell types, including macrophages and microglia (26). Due
to its expression in immune cells and the direct involvement of
CatS in antigen presentation, this enzyme has been linked to
several autoimmune conditions such as multiple sclerosis (58)
and rheumatoid arthritis (59, 60).

Like most cathepsins, CatS is a small and monomeric
endopeptidase (61). It is synthesized as an inactive zymogen
in the lysosomal compartment (62). After removal of the
pro-peptide by other proteases, CatS becomes enzymatically
active (63). This protease plays an important role in adaptive
immune responses by regulating MHC class II surface expression
and by cleaving the invariant chain p10 (Lip10)—a fragment
of the MHC class II-associated invariant chain peptide (64).
Mice lacking the Ctss gene display diminished MHC class II
(MHCII) antigen presentation (65). In comparison tomany other
cysteine cathepsin family members, CatS tissue expression is very
restricted. Biochemically, this endopeptidase has the ability to
retain activity at a neutral pH and this property showcases its
increased potential to be involved in extracellular proteolytic
activities (63).

In addition to the intracellular function, CatS also shows
extracellular activity when it is released by macrophages and
microglia. As reported by Clark and co-workers, upon release
of CatS, the latter interacts with FKN on neurons, cleaving
into its soluble form that further binds to the CX3CR1 receptor
located on microglia. The activation of this receptor leads to
the phosphorylation of p38 MAPK pathway contributing to
the release of proinflammatory cytokines, such as IL-1β to the
extracellular environment (66). These can activate neighbouring
neurons and contribute to increased neuronal excitability (67,
68). However, the CatS/FKN/CX3CR1 signalling pathway is
only fully operational in the presence of high concentrations
of adenosine tri-phosphate (ATP) which contributes to the
activation of the P2X7 receptor (69), reflecting the critical role of
ATP to induce the release of CatS (Figure 1).

CatS expression is upregulated after peripheral nerve injury
in the spinal cord dorsal horn and is accompanied by an
increase in mechanical sensitivity. This is abrogated by the
administration of a neutralizing antibody against FKN suggesting
that CatS requires CX3CR1 to exert pro-nociceptive activity
(34). This suggestion is further validated by the observation that
CatS intrathecally injected in CX3CR1 knockout mice fails to
induced and mechanical allodynia (34). In addition, a recent
study has shown that one day post peripheral nerve injury

CatS mRNA levels are upregulated in the ipsilateral side of
the spinal cord and similar observations could be verified after
intrathecal administration of colony-stimulating factor 1 (CSF1)
(70). This interaction between CSF1 and CatS sheds light into
new players that contribute to microglial activation and CatS
release. Notably, this further reinforces the idea that CatS is a pro-
nociceptive contributor for the central mechanisms underlying
neuropathic pain. Despite playing an undeniable pro-nociceptive
role centrally, it is important to note that CatS also exerts effects
in the periphery by acting on targets such as the protease-
activated receptor 2 (PAR2) (71). Activation of this receptor by
CatS through enzymatic cleavage has been shown to contribute
to preclinical pain (72) and reflects the versatile nature of CatS,
emphasizing its powerful potential as a therapeutic target.

Regulation of CatS/FKN/CX3CR1 Pathway
Through miRNAs
Several studies have demonstrated that noncoding RNAs,
especially microRNAs, are altered in pain-related regions and
these changes are linked with neuropathic pain pathology
(73, 74). Several microRNAs have been linked to chemokine
signalling. For instance, miR-23a is downregulated in the
spinal cord after nerve injury and an increase of the expression
of this noncoding RNAs reduces CXCR4 expression and
attenuates pain-like behaviours (75). More recently, in a
model of bone cancer pain (BCP), the expression of cx3cr1
mRNA expression was upregulated along with increased
microglial activation in the spinal cord. Computational
analysis revealed that cx3cr1 is a target gene for miR-184
and by activating miR-184, microglial CX3CR1 expression
is downregulated (76). Furthermore, in models of ischemia-
reperfusion (IR)-induced pain hypersensitivity, downregulation
of P2X7 receptor expression by an intrathecal injection
of the mimic-187-3p was associated with reduced pain
hypersensitivity as well as reduction in cleaved caspase-
1 and IL-1β protein levels in the spinal cord (77). By
blocking, inactivating, or reducing the expression of P2X7

receptors, our prediction is that CatS release by microglial
cells would be halted and, consequently, FKN would not be
cleaved into its soluble form (Figure 1). Therefore, miRNAs
constitute an innovative and effective strategy to target
several players within a pathway involved in neuropathic
pain mechanisms.

CatS/FKN/CX3CR1 Pathway: Therapeutic
Approaches and Limitations
Based on the emerging appreciation for the role of P2X
receptors in mediating nociceptive neurotransmission,
several P2X receptors have advanced into clinical trials
for inflammation and pain. For instance, intraperitoneal
administration of A-438079, a selective competitive P2X7

antagonist and CNS penetrant compound (78), reduces pain-
like behaviours in three different rodent animal models of
neuropathic pain (79). Regardless of all the promising results
obtained in the pre-clinical setting, most of the P2X7 receptor
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FIGURE 1 | Schematic illustrating neuron-to-glia interaction through the CatS/FKN/CX3CR1 pathway in the spinal cord dorsal horn. ATP released by damaged primary

afferents and dorsal horn neurons (A) lead to the activation of P2X7 receptors. The activation of these receptors phosphorylates p38 MAPK signalling pathway and

phospholipase A2 (cPLA2 ) (B) resulting in the release of CatS (C). CatS cleaves FKN present in the membrane of the spinal cord dorsal horn neuron (D). The soluble

form of FKN interacts with the CX3CR1 receptor located in microglia (E) that phosphorylates p38 MAPK, induces the release of proinflammatory mediators (F) that

may sensitise spinal cord dorsal neurons and contribute to the development of central sensitisation and neuropathic pain. Mediating the expression of mir-184 inhibits

the activation of CX3CR1 (G) consequently reducing the release of proinflammatory mediators and microglial activation. On the other hand, upregulating mir-187-3p

(H) through the administration of its mimic, downregulates P2X7 expression, potentially disrupting the liberation of CatS. This figure was created with BioRender.com.

antagonists have not been approved for pain management until
today (80).

On the other hand, several pre-clinical studies have reported
a successful attenuation of allodynia and hypersensitivity by
intrathecal administration of the non-selective CatS inhibitor
LHVS as well as following administration of MIV-247, an
orally available selective CatS inhibitor that can penetrate the
CNS (34, 81). Several other CatS inhibitors (VBY-036 and
VBY-891) have gone through Phase I clinical trials and were
considered safe for further efficacy studies. Furthermore, the
development of a CatS/CatK inhibitor (SAR113137) entered
clinical trials for pain management but it was later halted due
to initial safety setbacks (82). However successful in preclinical
experiments, none of these inhibitors have yet gone through
Phase II clinical trials.

At present, molecules targeting P2X7 receptors and CatS
have not progressed in clinical trials. However, the CX3CR1

inhibitor AZD8797, which has shown efficacy in models of
multiple sclerosis resulting in reduced paralysis, is a good
candidate to be considered for treatment of neuropathic
pain (83) and its’ use for the management of pain may be
considered. However, the active involvement of this chemokine
pair in other conditions besides chronic pain indicates that
pharmacological tools that alter CX3CR1 signalling may result
in side effects. For instance, whilst the activation of FKN
and/or CX3CR1 signalling may provide novel opportunities
for the treatment of Alzheimer’s Disease (AD) (84), this
does not represent a strategy for neuropathic pain where
a blockade of FKN and/or CX3CR1 would be desirable.
Even though neurogenerative and chronic pain conditions are
both associated with neuroinflammation, including microglial
activation, the specific role of the FKN/CX3CR1 signalling
pathway in each situation may differ and thus remain to
be investigated.
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CatS/FKN/CX3CR1 Pathway: Future
Avenues
Despite great progress in the study of chemokines and
their involvement in the development of pain, especially
regarding the FKN/CX3CR1 pair, very few analgesic drugs
targeting chemokines have reached later phases of clinical
trials. Molecules that target soluble FKN, which is known to
mediate nociception, or its respective signalling, may provide
reduced side and stronger analgesic effects. Furthermore,
targeting upstream regulators of FKN transcription, such as
Stat3 (signal transducer and activator of transcription 3) could
be explored as a new avenue to regulate FKN expression
in neurons.

Considering the paucity of therapies for the treatment of
neuropathic pain, we suggest that future studies could investigate
the role of CatS/FKN/CX3CR1 in supraspinal areas which may
complement research conducted in the spinal cord and in
the dorsal root ganglion (DRG). Currently, little information
is provided regarding the effect of this signalling pathway in
supraspinal areas in a neuropathic pain context. Uncovering the
role of FKN and CX3CR1 in the pain-related areas in the brain
under neuropathic pain states may aid in the development of
innovative therapeutic approaches.

CONCLUSION

This chemokine system plays an important role in the
development of neuropathic pain in preclinical studies. The
identification of these neuron-microglia interactions during
neuropathic pain states has led to the identification of microglial
targets such as the chemokine receptor CX3CR1, the lysosomal
protease CatS and the P2X7 receptor. The inhibition or
downregulation of these microglial targets, by using different
therapeutic tools (inhibitors, miRNAs, etc.) still constitute
a powerful tool for addressing whether modulation of this
signalling pathway can attenuate neuropathic pain.
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