Article

Gold(I)-Catalyzed Aromatization: Expeditious Synthesis of Polyfunctionalized Naphthalenes

$$
+\mathrm{ArH} \mid \underset{\mathrm{Ar}}{\mathrm{X}=\mathrm{CO}}
$$

H

Cheng Zhang,
Kemiao Hong,
Shanliang
Dong, ..., Ciwang
He, Wenhao Hu,
Xinfang Xu
huwh9@mail.sysu.edu.cn (W.H.)
xinfangxu@suda.edu.cn (X.X.)

HIGHLIGHTS

A general method for the construction of multifunctionalized naphthalenes

First 6-endo-dig diazo-yne carbocyclization leading to the vinyl gold carbene

Expeditious access to naphthalenes with broad functional group compatibility

Applications for the
synthesis of chiral 1,2'binaphthalene ligands and CPHs

[^0]
Article

Gold(I)-Catalyzed Aromatization: Expeditious Synthesis of Polyfunctionalized Naphthalenes

Cheng Zhang, ${ }^{1,2}$ Kemiao Hong, ${ }^{1,2}$ Shanliang Dong, ${ }^{2}$ Chao Pei, ${ }^{2}$ Xiaolu Zhang, ${ }^{2}$ Ciwang He, ${ }^{2}$ Wenhao Hu, ${ }^{1, \star}$ and Xinfang Xu ${ }^{1,2,3, *}$

Abstract

SUMMARY A gold-catalyzed 6-endo-dig carbocyclization of alkyne with the pendent diazo group is reported. It provides an expeditious approach for the synthesis of multi-functionalized naphthalene derivatives under mild conditions. Mechanistic studies suggest that a vinyl gold carbene is generated as the key intermediate in this cascade transformation that smoothly delivers naphthalene products through an unprecedented stepwise aromatization or an intermolecular aromatic substitution process. The unique endocyclic vinyl species is inaccessible with other precursors; thus, novel carbene cascade transformations could be envisioned with the current catalytic model. Functional groups, such as alkenyl, hydroxyl, amino, and carboxyl groups, remain untouched under these conditions. In addition, the utility of these generated 2-carboxyl naphthalenes is illustrated by the synthesis of chiral 1,2'-binaphthalene ligands and π-conjugated polycyclic hydrocarbons (CPHs).

INTRODUCTION

Naphthalene derivatives are one of the most prevalent key motifs in π-conjugated polycyclic hydrocarbons (CPHs) (Frederickson et al., 2017), and polycyclic systems related to naphthalene derivatives have shown versatile applications in physical organic chemistry (Frederickson et al., 2017; Huang et al., 2016), organometallic chemistry (Edelmann, 2017), materials science (Cao et al., 2015), and bioactive molecules (Stockdale and Williams, 2015). During the past decades, a variety of approaches for aromatic ring modification either through metal- (Tanaka, 2013; Phipps and Gaunt, 2009; Meng et al., 2017; Zhu et al., 2016; Della Ca' et al., 2016) or organo-catalysis (Qi et al., 2018) have been reported. Nevertheless, most of these methods are less efficient for sterically hindered substrates including naphthalenes and usually require a pre-installation of leaving groups or directional groups (Figure 1A, path a). On the other hand, transition-metal-catalyzed aromatization reactions provide a convenient way in the practical construction of substituted naphthalenes, including but not limited to the [2+2+2]-cycloaddition of benzyne intermediates with alkynes (path b) (Pérez et al., 2013), oxidative dehydrogenation of cyclic hydrocarbons (path c) (losub and Stahl, 2016; Wu and Jiang, 2012), ring-closing metathesis followed by aromatization (path d) (Donohoe et al., 2006; van Otterlo and de Koning, 2009), the electrocyclization reactions, and others (Tanaka, 2013). Recently, alkyne benzannulation has emerged as a straightforward approach for accessing densely functionalized naphthalene compounds, complementing the above-described methods (Hein et al., 2017). Despite these advances, polyfunctionalized naphthalenes of interest are still challenging to prepare and many of the substitution patterns are beyond the scope of the current synthetic methods; these include the methods for accessing naphthalenes with versatile functional groups such as the hydroxyl, amino, and carboxyl groups (Izawa et al., 2011; Hein et al., 2017; Raviola et al., 2016). These groups not only act as the key pharmacophores in pharmaceuticals (Stockdale and Williams, 2015) but also can be used for further transformations in preparing other complex molecules. Therefore, the development of novel and practical synthetic methods to construct naphthalenes with broad functional group compatibility still remains highly desirable and appealing.

In the last two decades, gold-catalyzed alkyne carbocyclizations have experienced explosive development in the construction of cyclic molecules with structural complexity (Pflästerer and Hashmi, 2016; Chen et al., 2018; Gorin and Toste, 2007; Dorel and Echavarren, 2015; Zheng et al., 2016). After the first reports of Hashmi on benzene ring formation by gold catalysis (Hashmi et al., 2000, 2001, 2002; Zeiler et al., 2015), another early example of 5-exo-dig diazo-yne carbocyclization was disclosed by Toste for the synthesis of indanone derivatives (Witham et al., 2007; Padwa et al., 1993; Mueller et al., 1993). Recently, Hashmi (Nösel et al., 2013) and Tang (Liu et al., 2013) have reported on the catalytic oxidative diyne 5 -exo-dig cyclization in the presence of gold and rhodium catalysts, respectively. Although the catalytic 6-endo-dig carbocyclization of alkynes has also been studied (Yuan et al., 2016), no example of analogous diazo-yne cyclization has been reported for the construction of 6-membered carbocyclic rings.

[^1]

c This work: CAM strategy for the construction of naphthalenes

Figure 1. Strategy for Constructing Aromatic Rings
(A) General synthesis patterns of naphthalene.
(B) Carbene/alkyne metathesis (CAM).
(C) This work: CAM strategy for the construction of naphthalenes.

Inspired by these advances, and as the continuation of our interest in the carbene/alkyne metathesis (CAM) transformations (Figure 1B) (Pei et al., 2018; Le and May, 2015; González-Rodríguez et al., 2015; Torres et al., 2015; Zheng et al., 2015; Dong et al., 2018; Hashmi et al., 2008), we are intrigued by the possibility that nucleophilic addition of the diazo compound onto the gold-activated alkyne through an unprecedented 6-endo-dig diazo-yne carbocyclization followed by the expulsion of dinitrogen can be used to generate the endocyclic vinyl gold carbene species A (Figure 1C, path e) (Hashmi et al., 2000; Lu et al., 2010). With this concept, the side reactions in general carbene/alkyne metathesis through carbene species B (path f), and in particular the $\beta-H$ shift process of α-alkyl carbene intermediate $B(X=$ CHR) (Lonca et al., 2017; Goto et al., 2011; Zhang et al., 2019), can be avoided, which would substantially expand the chemistry of the CAM process (Lauterbach et al., 2013, 2015; Rode et al., 2018). Herein, we report our recent results in this direction: the first example of gold-catalyzed 6-endo-dig diazo-yne carbocyclization and the generated key intermediate A that is a versatile synthon for the construction of naphthalene frameworks via a stepwise aromatization or an intermolecular electrophilic aromatic substitution (Figure 1C). As a result of this new synthetic approach, naphthalene structures with a variety of

Entry	Catalyst	2a (\%) ${ }^{\text {a }}$	$3 \mathrm{a}(\%)^{\text {a }}$
1	JohnPhosAu($\mathrm{CH}_{3} \mathrm{CN}$)SbF 6	$94(91)^{\text {b }}$	<5
$2^{\text {c }}$	JohnPhosAuCl	-	<10
$3^{\text {c }}$	$\mathrm{Rh}_{2}(\mathrm{OAC})_{4}$	<5	$<5(70)^{\text {d }}$
4	$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{BF}_{4}$	<5	91
5	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	22	47
6	AgSbF_{6}	<5	96(90) ${ }^{\text {b }}$
7	JohnPhosAuCl $+\mathrm{AgSbF}_{6}$	92	< 5
8	JohnPhosAuCl $+\mathrm{AgNTf}_{2}$	90	< 5
9	$\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}$	<5	87
10	$\mathrm{PPh}_{3} \mathrm{AuSbF}_{6}$	<5	86

Table 1. Reaction Optimization
Optimization conditions: 1 a ($58 \mathrm{mg}, 0.2 \mathrm{mmol}$) and catalyst (0.01 mmol) in DCE (1,2-dichloroethane, 2.0 mL) at $25^{\circ} \mathrm{C}$ for 12.0 h , unless otherwise stated.
${ }^{\text {a }}$ Yield determined by proton NMR using 1,3,5-trimethoxybenzene as the internal standard.
${ }^{\mathrm{b}}$ Isolated yields.
${ }^{\text {c }}$ Most of 1 a (>90\%) was recovered.
${ }^{\mathrm{d}}$ The results in parentheses is the reaction that was conducted at $60^{\circ} \mathrm{C}$ instead of $25^{\circ} \mathrm{C}$.
functional groups were uncovered, such as alkenyl, hydroxyl, amino, and carboxyl groups, remaining untouched under these conditions.

RESULTS AND DISCUSSION

To test the feasibility of our proposed approach for the construction of naphthalene frameworks, o-alkynylphenyl diazoacetate 1a was used as a model substrate in the presence of various metal catalysts in 1,2dichloroethane (DCE) at $25^{\circ} \mathrm{C}$ (Table 1). With its sterically demanding ligand, JohnPhos $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ AuSbF 6 exhibited superior reactivity for the selective formation of naphthalene 2 a in 91% isolated yield (entry 1). The corresponding chloride salt, JohnPhosAuCl, showed very low reactivity, and most of 1 a was recovered (entry 2). All of the other metal catalysts including Rh-, Cu-, Pd-, and Ag-catalysts predominantly delivered the $\beta-H$ shift product 3 a (entries $3-6$). Further investigation of the ligands and counterions of the gold catalysts indicated that the steric effect of the ligand plays a crucial role in the selectivity control (entry 8 versus 9), and the gold catalyst bearing a triphenylphosphine ligand catalyzed the reaction to predominantly form the $\beta-H$ shift product alkene 3 a (entries 9 and 10). For the extensive examination of the ligand effect, see Table S2. On the other hand, the counter anion of these catalysts shows no obvious effects on the reaction outcomes (entries 7-10) (Schießl et al., 2018a, 2018b). Notably, the observed 6-endo-dig diazo-yne cyclization process shows a unique effect for the gold catalysis that preferentially activates the C-C triple bond in the presence of a diazo group (Zheng et al., 2015). Reactions with other metal catalysts formed the β-H shift product 3 a as the major/only product, indicating that the reaction mechanism of this gold-catalyzed carbocyclization is distinctly different and that initial catalytic decomposition of the diazo group to form the corresponding carbenoid intermediate does not occur in this case.

Under the optimal reaction conditions, we investigated the scope of this unprecedented 6-endo-dig diazoyne cyclization for the synthesis of 2,3-disubstituted naphthalenes (Scheme 1 A). The impact of the ester part was examined first. It was found that the reaction could be applied to alkyl, benzyl, and 3-phenylallyl esters without a noticeable yield deterioration ($2 \mathrm{a}-2 \mathrm{e}, 89 \%-92 \%$ yields). Then, the nature of the alkyne terminus was investigated. The electronic effects and the position of the substituent groups on the phenyl

(

C 1, 2, 3, 4-tetrasubstituted naphthalenes

C 1, 2, 3, 4-tetrasubstituted naphthalenes				
15a, $\mathrm{R}=\mathrm{H}, 83 \%$	15i, $\mathrm{R}=5-\mathrm{CN}, 91 \%$			

Scheme 1. Scope for the Synthesis of Naphthalenes
Reaction conditions: Method A: 1 or 4 (0.2 mmol), JohnPhosAuSbF 6 (0.01 mmol) in DCE (1,2-dichloroethane, 2.0 mL) at $25^{\circ} \mathrm{C}, 12 \mathrm{~h}$, and yields are given in isolated yields. Method B: $14(0.2 \mathrm{mmol})$, $\mathrm{Ar}-\mathrm{H}(0.3 \mathrm{mmol})$, JohnPhosAuSbF (0.01 mmol) in DCE (1,2-dichloroethane, 2.0 mL) at $60^{\circ} \mathrm{C}, 3 \mathrm{~h}$, and yields are given in isolated yields.
The reaction was conducted on a $4.0-\mathrm{mmol}$ scale.
(A) Synthesis of 2,3-disubstituted naphthalenes.
(B) Synthesis of 1,2,3-trisubstituted naphthalenes.
(C) Synthesis of 1,2,3,4-tetrasubstituted naphthalenes.
group of the substrates had little influence, and the corresponding products $2 f-2 m$ were produced in high to excellent yields ($67 \%-92 \%$). Moreover, the 1 -naphthyl-, 2 -thienyl-, and alkyl-substituted substrates underwent the reaction smoothly, leading to naphthalene products $2 n-2 q$ in $>76 \%$ yields. Subsequently, diazoketones were used instead of diazoacetates, and it was found that they were also tolerated under these conditions. The corresponding products $2 r$ and $2 s$ were isolated in 81% and 62% yields, respectively. In addition, the reaction performed well on a gram scale with 94% isolated yield (note b, on 4.0 mmol).

Encouraged by these promising results, we envisioned that this catalytic system may also facilitate other challenging substrates for the synthesis of multi-functionalized naphthalene derivatives, with the results from these investigations summarized in Scheme 1B. Initially, α-hydroxyl substrate 4a was used under the method A;

Figure 2. Synthesis of π-Conjugated Polycyclic Hydrocarbons (CPHs) and Chiral 1,2'-Dinaphthalene Ligands (A) Synthesis of polycyclic lactam 6.
(B) Synthesis of polycyclic ketone 7a.
(C) Synthesis of polycyclic ketone 7o.
(D) Synthesis of chiral 1,2'-dinaphthalene ligands.
however, no corresponding naphthalene product was observed. To our delight, when the substrates protected either with the Ts (4b) or TMS (4c) groups were used under the optimized reaction conditions, the reaction directly delivered the deprotected α-naphthol product 5 a in 76% and 91% yields, respectively. The ester variants, $4 d$ and $4 e$, also provided the corresponding 1,2,3-trisubstituted naphthalenes in high yields ($>87 \%$). Notably, naphthylamine $5 f$ was isolated in 81% yield under the current conditions from 4 f .

To further demonstrate the generality of the present transformation, 1,3-dicarbonyl diazo compound 14 without α-methylene linkage was prepared and the interception reaction of the corresponding vinyl carbene intermediate $\mathrm{A}\left(\right.$ Figure $1 \mathrm{C}, \mathrm{X}=\mathrm{CO}$) was envisioned. To our delight, the $\mathrm{C}\left(\mathrm{sp}^{2}\right)$ - H insertion products 15 were isolated in good to excellent yields (Scheme 1C, $53 \%-94 \%$ yields) when the reaction was performed at $60^{\circ} \mathrm{C}$ in the presence of nucleophiles such as indoles, furan, and pyrrole.

To demonstrate the synthetic utility of the present method, further transformations of carbocyclization products 2 were conducted for the synthesis of $\pi-\mathrm{CPHs}$. For example, the tetracyclic fused lactam 6 was generated in one-pot from 1t after the ester-amide exchange reaction with the internal amino group (Figure 2A). In addition, these 2-carbonyl naphthalenes were smoothly converted under acidic conditions to polycyclic hydrocarbons (Figures 2B and 2C), with 7a and 7o isolated in 84% and 95% yields, respectively.

Comparison experiments E

Figure 3. Control Experiments and Comparison Experiments
(A) Control reaction in the presence of dimethylsulfoxide.
(B) Control reaction with deuterated reagent.
(C) Control reaction in the presence of $\mathrm{CD}_{3} \mathrm{OD}$.
(D) Intermolecular kinetic isotope effect (KIE) experiment
(E) The comparison experiments of carbene vs non carbene process.

Notably, chiral 1,2'-binaphthalene products could be prepared in high yield and $1: 1 \mathrm{dr}$ with (-)-L-menthol derived diazo compound 1u (Figure 2D). The two diastereoisomers were separated by column chromatography with the (S)-isomer confirmed by single-crystal X-ray analysis. Moreover, the optically pure chiral phosphate derivative $(R)-10 u$ and chiral oxazole ligand $11 u$ with $1,2^{\prime}$-binaphthalene frameworks were

Figure 4. Proposed Reaction Mechanism
synthesized in high yields. Although ligands with the 1, 1^{\prime}-binaphthalene skeletons have been studied well and have broad applications, chiral ligands derived from 1,2'-binaphthalene motifs are rare, mainly because of the limited methods for access to this class of compounds (Lotter et al., 2016).

Control experiments were conducted to investigate the mechanism of this reaction. To verify the existence of the vinyl gold carbene intermediate, the interception reaction with 1 c in the presence of diphenyl sulfoxide was carried out at $-20^{\circ} \mathrm{C}$ and the corresponding ketone product 12 was isolated in 41% yield combined with 2c in 50\% yield (Figure 3A) (Witham et al., 2007; Padwa et al., 1993; Mueller et al., 1993; Nösel et al., 2013; Liu et al., 2013). Evidence for the stepwise aromatization and protodeauration process was confirmed by an isotope-labeling experiment (Figure 3B, 2a-d with 58\% D). Moreover, the deuterated product 2a was also obtained when the reaction was carried out in the presence of $C D_{3} O D$ under standard conditions (Figure 3C, with 80% D). In addition, an intermolecular kinetic isotope effect (KIE) experiment (Figure $3 \mathrm{D}, k_{H} / k_{D}=1.0$) demonstrated that the deprotonation process is not the rate-limiting step. Based on these results and previously studied gold-catalyzed transformations (Witham et al., 2007; Padwa et al., 1993; Mueller et al., 1993; Nösel et al., 2013; Liu et al., 2013; Yuan et al., 2016; Pei et al., 2018; Le and May, 2015; González-Rodríguez et al., 2015; Torres et al., 2015; Zheng et al., 2015; Dong et al., 2018; Hashmi et al., 2008; Lu et al., 2010 Lonca et al., 2017; Goto et al., 2011; Qiu et al., 2016; Hashmi, 2010), a possible reaction mechanism is proposed in Figure 4. Initially, the gold catalyst coordinates the π-bond of alkyne to form a gold π-complex followed by a 6-endo-dig cyclization with the carbon on the diazo group to generate intermediate I that delivered the vinyl gold carbene II followed by a stepwise aromatization (deprotonation, $X=C H R$) and protodeauration process to form the naphthalene product 2 or 5 via III. Alternatively, direct formation of the key intermediate III from I through deprotonation with synchronous dinitrogen extrusion is also possible. Intermolecular electrophilic aromatic substitution interception of the vinyl gold carbene II would lead to the formation of $\mathrm{C}\left(\mathrm{sp}^{2}\right)$-H insertion product 15 . It should be noted that the reaction pathway through direct catalytic gold carbene formation followed by cyclopropenation and gold-catalyzed rearrangement of the cyclopropene to form the vinyl gold carbene intermediate II was ruled out in this reaction (Hashmi et al., 2000, 2001; 2002; Zeiler et al., 2015; Archambeau et al., 2015; Hoye et al., 1990; Bauer et al., 2008; Xu et al., 2013), which is consistent with the results of the comparison experiments (Figure 3E). For example, no corresponding direct carbene insertion product via IV was obtained when the reaction was carried out in the presence of MeOH or anisole, and the carbocyclization product 21 was isolated as the only product in 83% and 80% yields, respectively. In addition, using the catalysts that prefer to activate the diazo group instead of the alkyne part, such as $\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}$ and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$, the formation of carbene intermediate IV would occur initially (Figure 4, side reactions in dotted box), and the β-H shift product 3 I and O-H insertion product 13I were generated predominantly via common carbene intermediate IV (Figure 3E).

Conclusion

In summary, we have developed a gold-catalyzed 6-endo-dig carbocyclization of alkyne with the pendent diazo groups that provides an expeditious approach for the synthesis of multi-functionalized naphthalene derivatives in high to excellent yields under mild conditions with broad substrate scope; functional groups, such as alkenyl, hydroxyl, amino, and carboxyl groups, are well tolerated under current conditions. The generated 2-carboxyl naphthalenes are useful for further diversification, as exemplified by the synthesis of chiral 1,2'-binaphthalene ligands and π-CPHs. Mechanistic studies indicate that the naphthyl-gold complex and the vinyl gold carbene species are the key intermediates in this cascade transformation, and side reactions in the usual carbene/alkyne metathesis process can be avoided under the current conditions, particularly for the $\beta-H$ shift process. Synthetic applications based on the interception of these unique on-ring vinyl carbene intermediates, including the development of novel cascade reactions and synthesis of aromatic products with structural diversity, could be expected in due course.

Limitations of the Study

The asymmetric version for the formal C-H insertion reaction has not been realized, which is the main challenge in gold catalysis.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY

The crystallography data have been deposited at the Cambridge Crystallographic Data Center (CCDC) under accession number CCDC: 1828269 ((S)-2u) and can be obtained free of charge from www.ccdc.cam.ac. uk/getstructures.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.10.042.

ACKNOWLEDGMENTS

This project was supported by National Natural Science Foundation of China (21602148), and the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (No. 2016ZT06Y337) is greatly acknowledged.

AUTHOR CONTRIBUTIONS

X.X. supervised the project. C.Z., K.H., S.D., C.P., X.Z., and C.H. conducted the experimental work. C.Z., W.H., and X.X. co-wrote the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: July 13, 2019
Revised: August 21, 2019
Accepted: October 22, 2019
Published: November 22, 2019

REFERENCES

Archambeau, A., Miege, F., Meyer, C., and Cossy, J. (2015). Intramolecular cyclopropanation and C-H insertion reactions with metal carbenoids generated from cyclopropenes. Acc. Chem. Res. 48, 1021-1031.

Bauer, J.T., Hadfield, M.S., and Lee, A. (2008)
Gold catalysed reactions with cyclopropenes.
Chem. Commun. 44, 6405-6407.

Cao, J., London, G., Dumele, O., Rekowski,
V.W.M., Trapp, N., Ruhlmann, L., Boudon, C.,

Stanger, A., and Diederich, F. (2015). The impact of antiaromatic subunits in [$4 n+2$] π-systems: bispentalenes with [$4 n+2] \pi$-electron perimeters and antiaromatic character. J. Am. Chem. Soc. 137, 7178-7188.

Chen, L., Chen, K., and Zhu, S. (2018). Transition-metal-catalyzed intramolecular nucleophilic addition of carbonyl groups to alkynes. Chem. 4, 1208-1262.

Della Ca', N., Fontana, M., Motti, E., and Catellani, M. (2016). Pd/Norbornene: a winning combination for selective aromatic functionalization via $\mathrm{C}-\mathrm{H}$ bond activation. Acc Chem. Res. 49, 1389-1400.

Dong, K., Pei, C., Zeng, Q., Wei, H., Doyle, M.P., and $X u, X$. (2018). Selective C(sp3)-H bond insertion in carbene/alkyne metathesis reactions. enantioselective construction of dihydroindoles. ACS Catal. 8, 9543-9549.

Donohoe, T.J., Orr, A.J., and Bingham, M. (2006). Ring-closing metathesis as a basis for the construction of aromatic compounds. Angew. Chem. Int. Ed. 45, 2664-2670.

Dorel, R., and Echavarren, A.M. (2015). Gold(I)catalyzed activation of alkynes for the construction of molecular complexity. Chem. Rev. 115, 9028-9072.

Edelmann, F.T. (2017). Lanthanides and actinides: Annual survey of their organometallic chemistry covering the year 2016. Coord. Chem. Rev. 338, 27-140.

Frederickson, C.K., Rose, B.D., and Haley, M.M. (2017). Explorations of the indenofluorenes and expanded quinoidal analogues. Acc. Chem. Res. 50, 977-987.

González-Rodríguez, C., Suárez, J.M., Varela, J.A., and Saá, C.C. (2015). Nucleophilic addition of amines to ruthenium carbenes:
ortho-(alkynyloxy)benzylamine cyclizations towards 1,3-benzoxazines. Angew. Chem. Int. Ed. 54, 2724-2728.

Gorin, D.J., and Toste, F.D. (2007). Relativistic effects in homogeneous gold catalysis. Nature 446, 395-403.

Goto, T., Takeda, K., Shimada, N., Nambu, H., Anada, M., Shiro, M., Ando, K., and Hashimoto, S. (2011). Highly enantioselective cyclopropenation reaction of 1 -alkynes with
α-alkyl- α-diazoesters catalyzed by
dirhodium(II) carboxylates. Angew. Chem. Int. Ed. 50, 6803-6808.

Hashmi, A.S.K. (2010). Homogeneous gold catalysis beyond assumptions and proposalscharacterized intermediates. Angew. Chem. Int. Ed. 49, 5232-5241.

Hashmi, A.S.K., Frost, T.M., and Bats, J.W. (2000), Highly selective gold-catalyzed arene synthesis. J. Am. Chem. Soc. 122, 1553-11554.

Hashmi, A.S.K., Frost, T.M., and Bats, J.W. (2001). Gold catalysis: on the phenol synthesis. Org. Lett. 3, 3769-3771.

Hashmi, A.S.K., Frost, T.M., and Bats, J.W. (2002) Homogeneous gold-catalyzed synthesis of biphenyls and furfuryl-substituted arenes. Catal. Today 72, 19-27.

Hashmi, A.S.K., Rudolph, M., Siehl, H.-U., Tanaka, M., Bats, J.W., and Frey, W. (2008). Gold catalysis: deuterated substrates as the Key for an experimental insight into the mechanism and selectivity of the phenol synthesis. Chem. Eur. J. 14, 3703-3708.

Hein, S.J., Lehnherr, D., Arslan, H., Uribe-Romo, F.J., and Dichtel, W.R. (2017). Alkyne benzannulation reactions for the synthesis of novel aromatic architectures. Acc. Chem. Res. 50, 2776-2788.

Hoye, T.R., Dinsmore, C.J., Johnson, D.S., and Korkowski, P.F. (1990). Alkyne insertion reactions of metal-carbenes derived from enynyl α-diazo ketones $\left[\mathrm{R}^{\prime} \mathrm{CN}_{2} \mathrm{COCR}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv\right.$ $\mathrm{C}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}-2} \mathrm{CH}=\mathrm{CH}_{2}$]. J. Org. Chem. 55, 45184520.

Huang, R., Phan, H., Herng, T.S., Hu, P., Zeng, W., Dong, S.-Q., Das, S., Shen, Y., Ding, J., Casanova,
D., and Wu, J. (2016). Higher order π-conjugated polycyclic hydrocarbons with open-shell singlet ground state: nonazethrene versus nonacene. J. Am. Chem. Soc. 138, 10323-10330.
losub, A.V., and Stahl, S.S. (2016). Palladium catalyzed aerobic dehydrogenation of cyclic hydrocarbons for the synthesis of substituted aromatics and other unsaturated products. ACS Catal. 6, 8201-8213.

Izawa, Y., Pun, D., and Stahl, S.S. (2011). Palladium-catalyzed aerobic dehydrogenation of substituted cyclohexanones to phenols. Science 333, 209-213.

Lauterbach, T., Gatzweiler, S., Nçsel, P., Rudolph, M., Rominger, F., and Hashmia, A.S.K. (2013). Carbene transfer - a new pathway for propargylic esters in gold catalysis. Adv. Synth. Catal. 355 2481-2487.

Lauterbach, T., Higuchi, T., Hussong, M.W., Rudolph, M., Rominger, F., Mashima, K., and Hashmi, A.S.K. (2015). Gold-catalyzed carbenoid transfer reactions of diynes-pinacol
rearrangement versus retro-Buchner reaction. Adv. Synth. Catal. 357, 775-781.

Le, P.Q., and May, J.A. (2015). Hydrazoneinitiated carbene/alkyne cascades to form polycyclic products: ring-fused cyclopropenes as mechanistic intermediates. J. Am. Chem. Soc. 137, 12219-12222.

Liu, R., Winston-McPherson, G.N., Yang, Z.-Y., Zhou, X., Song, W., Guzei, I.A., Xu, X., and Tang, W. (2013). Generation of rhodium(I) carbenes from ynamides and their reactions with alkynes and alkenes. J. Am. Chem. Soc. 135, 8201-8204.

Lonca, G.H., Tejo, C., Chan, H.L., Chiba, S., and Gagosz, F. (2017). Gold(I)-catalyzed
6-endo-dig azide-yne cyclization: efficient access to $2 \mathrm{H}-1,3$-oxazines. Chem. Commun. 53, 736-739.

Lotter, D., Neuburger, M., Rickhaus, M.,
Häussinger, D., and Sparr, C. (2016).
Stereoselective arene-forming aldol
condensation: synthesis of configurationally stable oligo-1,2-naphthylenes. Angew. Chem. Int. Ed. 55, 2920-2923.

Lu, B., Li, C., and Zhang, L. (2010).
Gold-catalyzed highly regioselective oxidation of C-C triple bonds without acid additives: propargyl moieties as masked α, β-unsaturated carbonyls. J. Am. Chem. Soc. 132, 14070-14072.

Meng, Q.-Y., Gao, X.-W., Lei, T., Liu, Z., Zhan, F., Li, Z.-J., Zhong, J.-J., Xiao, H., Feng, K., Chen, B., et al. (2017). Identifying key intermediates generated in situ from $\mathrm{Cu}(\mathrm{II})$ salt-catalyzed C-H functionalization of aromatic amines under illumination. Sci. Adv. 3, e1700666.

Mueller, P.H., Kassir, J.M., Semones, M.A. Weingarten, M.D., and Padwa, A. (1993). Rhodium carbenoid mediated cyclizations. Intramolecular cyclopropanation and C-H insertion reactions derived from type II o-alkynyl substituted α-diazoacetophenones. Tetrahedron Lett. 34, 4285-4288.

Nösel, P., Comprido, L.N.S., Lauterbach, T., Rudolph, M., Rominger, F., and Hashmi, A.S.K. (2013). 1,6-Carbene transfer: gold-catalyzed
oxidative diyne cyclizations. J. Am. Chem. Soc. 135, 15662-15666.

Padwa, A., Chiacchio, U., Fairfax, D.J., Kassir, J.M., Litrico, A., Semones, M.A., and Xu, S.L. (1993). A comparative study of the decomposition of o-alkynyl-substituted aryl diazo ketones. synthesis of polysubstituted β-naphthols via arylketene intermediates. J. Org. Chem. 58, 6429-6437.

Pei, C., Zhang, C., Qian, Y., and Xu, X. (2018). Catalytic carbene/alkyne metathesis (CAM): a versatile strategy for alkyne bifunctionalization. Org. Biomol. Chem. 16, 8677-8685.

Pérez, D., Peña, D., and Guitián, E. (2013). Aryne cycloaddition reactions in the synthesis of large polycyclic aromatic compounds. Eur. J. Org. Chem. 2013, 5981-6013.

Pflästerer, D., and Hashmi, A.S.K. (2016). Gold catalysis in total synthesis-recent achievements. Chem. Soc. Rev. 45, 1331-1367.

Phipps, R.J., and Gaunt, M.J. (2009). A metaselective copper-catalyzed C-H bond arylation. Science 323, 1593-1597.

Qi, L.-W., Mao, J.-H., Zhang, J., and Tan, B. (2018). Organocatalytic asymmetric arylation of indoles enabled by azo groups. Nat. Chem. 10, 58-64.

Qiu, H., Srinivas, H.D., Zavalij, P.Y., and Doyle, M.P. (2016). Unprecedented intramolecular [4 + 2]-cycloaddition between a 1,3-diene and a diazo ester. J. Am. Chem. Soc. 138, 1808-1811.

Raviola, C., Protti, S., Ravelli, D., and Fagnoni, M. (2016). (Hetero)aromatics from dienynes, enediynes and enyne-allenes. Chem. Soc. Rev. 45, 4364-4390.

Rode, N., Marinelli, F., Arcadi, A., Adak, T., Rudolph, M., Rominger, F., and Hashmi, A.S.K. (2018). Sequential gold-catalyzed carbene transfer/ring closure: oxidative cyclization of β-(2-alkynylphenyl)- α, β-ynones to indenofuranones. Adv. Synth. Catal. 360, 4790-4794.

SchießI, J., Schulmeister, J., Doppiu, A., Wörner, E., Rudolph, M., Karch, R., and Hashmi, A.S.K. (2018a). An industrial perspective on counter anions in gold catalysis: on alternative counter anions. Adv. Synth. Catal. 360, 3949-3959.

SchießI, J., Schulmeister, J., Doppiu, A., Wörner, E., Rudolph, M., Karch, R., and Hashmi, A.S.K. (2018b). An industrial perspective on counter anions in gold catalysis: underestimated with respect to "ligand effects". Adv. Synth. Catal. 360, 2493-2502.

Stockdale, T.P., and Williams, C.M. (2015).
Pharmaceuticals that contain polycyclic hydrocarbon scaffolds. Chem. Soc. Rev. 44, 77377763.

Tanaka, K. (2013). Transition-metal-mediated Aromatic Ring Construction (John Wiley \& Sons, Hoboken, Wiley-VCH).

Torres, Ó., Parella, T., Solà, M., Roglans, A., and Pla-Quintana, A. (2015). Enantioselective rhodium(I) donor carbenoid-mediated cascade triggered by a base-free decomposition of arylsulfonyl hydrazones. Chem. Eur. J. 21, 1624016245.
van Otterlo, W.A.L., and de Koning, C.B. (2009).
Metathesis in the synthesis of aromatic
compounds. Chem. Rev. 109, 3743-3782.
Witham, C.A., Mauleón, P., Shapiro, N.D., Sherry, B.D., and Toste, F.D. (2007). Gold(I)-catalyzed oxidative rearrangements. J. Am. Chem. Soc 129, 5838-5839.

Wu, W., and Jiang, H. (2012). Palladium-catalyzed oxidation of unsaturated hydrocarbons using molecular oxygen. Acc. Chem. Res. 45, 17361748.

Xu, X., Zavalij, P.Y., and Doyle, M.P. (2013). A donor-acceptor cyclopropene as a dipole source for a silver(I) catalyzed asymmetric catalytic [3+3]-
cycloaddition with nitrones. Chem. Commun. 49 10287-10289.

Yuan, Z., Cheng, R., Chen, P., Liu, G., and Liang S.H. (2016). Efficient pathway for the preparation of aryl(isoquinoline)iodonium(III) salts and synthesis of radiofluorinated isoquinolines. Angew. Chem. Int. Ed. 55, 11882-11886.

Zeiler, A., Ziegler, M.J., Rudolph, M., Rominger, F., and Hashmi, A.S.K. (2015). Scope and limitations of the intermolecular furanyne cyclization. Adv. Synth. Catal. 357, 1507-1514.

Zhang, C., Li, H., Pei, C., Qiu, L., Hu, W., Bao, X., and Xu, X. (2019). Selective vinylogous reactivity of carbene intermediate in gold-catalyzed alkyne
carbocyclization: synthesis of indenols. ACS Catal. 9, 2440-2447.

Zheng, Y., Mao, J., Weng, Y., Zhang, X., and Xu, X. (2015). Cyclopentadiene construction via Rhcatalyzed carbene/alkyne metathesis terminated with intramolecular formal [3+2] cycloaddition. Org. Lett. 17, 5638-5641.

Zheng, Z., Wang, Z., Wang, Y., and Zhang, L. (2016). Au-Catalysed oxidative cyclisation. Chem. Soc. Rev. 45, 4448-4458.

Zhu, R.-Y., Farmer, M.E., Chen, Y.-Q., and Yu,
J.-Q. (2016). A simple and versatile amide directing group for $\mathrm{C}-\mathrm{H}$ functionalizations, Angew. Chem. Int. Ed. 55, 10578-10599.

Supplemental Information

Gold(I)-Catalyzed Aromatization: Expeditious

Synthesis of Polyfunctionalized Naphthalenes

Cheng Zhang, Kemiao Hong, Shanliang Dong, Chao Pei, Xiaolu Zhang, Ciwang He, Wenhao Hu, and Xinfang Xu

Supplemental Figures

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{2 a}$ in CDCl_{3}, related to Table 1 and Scheme 1.

Figure S2. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of 2a in CDCl_{3}, related to Table 1 and Scheme 1.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{3 a}$ in CDCl_{3}, related to Table 1.

Figure S4. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{3 a}$ in CDCl_{3}, related to Table 1.
Oct17-2017-h400-zc1017-5

2b
Oct17-2017-h400-zc1017-5

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{2 b}$ in CDCl_{3}, related to Scheme 1.

$\stackrel{8}{\stackrel{8}{4}}$

2b

Figure S6. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{2 b}$ in CDCl_{3}, related to Scheme 1.

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{2 c}$ in CDCl_{3}, related to Scheme 1.

Figure S8. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{2 c}$ in CDCl_{3}, related to Scheme 1.

2d

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of 2d in CDCl_{3}, related to Scheme 1.

$\begin{array}{llllllllllllllllllllllllllll}130.0 & 129.8 & 129.6 & 129.4 & 129.2 & 129.0 & 128.8 & 128.6 & 128.4 & 128.2 & 128.0 & 127.8 & 127.6 & 127.4 & 127.2 & 127.0 & 126.8 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

Figure S10. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{2 d}$ in CDCl_{3}, related to Scheme $\mathbf{1}$.

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz) of $\mathbf{2 e}$ in CDCl_{3}, related to Scheme 1.

Figure S12. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{2 e}$ in CDCl_{3}, related to Scheme $\mathbf{1}$.

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{2 f}$ in CDCl_{3}, related to Scheme 1.

Figure S14. ${ }^{13} \mathrm{C}$ NMR spectra (400 MHz) of $\mathbf{2 f}$ in CDCl_{3}, related to Scheme 1.

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz) of $\mathbf{2 g}$ in CDCl_{3}, related to Scheme 1.

2g

¢	\%ু	N¢¢		$\stackrel{\stackrel{\infty}{\circ}}{\stackrel{1}{2}}$
$\stackrel{\square}{\square}$	$\stackrel{\square}{-1}$	NัNָN	NiNo	$\stackrel{\circ}{\sim}$
T	-	1<1	¢55	

Figure S16. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{2 g}$ in CDCl_{3}, related to Scheme 1.
 $\stackrel{\infty}{\infty}$ $\stackrel{\overline{1}}{\stackrel{7}{1}}$

2h

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz) of $\mathbf{2 h}$ in CDCl_{3}, related to Scheme 1.
Sep30-2017-c400-zc-0929-8

$\underset{\substack{\text { N } \\ \stackrel{y}{n} \\ \text { i }}}{ }$

2h

Figure S18. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{2 h}$ in CDCl_{3}, related to Scheme $\mathbf{1}$.

 l

Figure S19. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{2 i}$ in CDCl_{3}, related to Scheme 1.

ल̃
18
10

$\begin{array}{lllllllllllll}140 & 138 & 136 & 134 & 132 & 130 & 128 & 126 & 124 & 122 & 120\end{array}$

Figure S20. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{2 i}$ in CDCl_{3}, related to Scheme 1.

Figure S21. ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz) of $\mathbf{2} \mathbf{j}$ in CDCl_{3}, related to Scheme 1.

Figure S22. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{2 j}$ in CDCl_{3}, related to Scheme 1.

2j

Figure S23. ${ }^{19} \mathrm{~F}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{2 j}$ in CDCl_{3}, related to Scheme 1.

Figure S24. ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz) of $\mathbf{2 k}$ in CDCl_{3}, related to Scheme 1.

2k

Figure S25. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{2 k}$ in CDCl_{3}, related to Scheme $\mathbf{1}$.

21

Figure S26. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{2 I}$ in CDCl_{3}, related to Scheme 1.

Figure S27. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $2 \mathbf{l}$ in CDCl_{3}, related to Scheme 1.

Figure S28. ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz) of $\mathbf{2 m}$ in CDCl_{3}, related to Scheme $\mathbf{1}$.

Figure S29. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{2 m}$ in CDCl_{3}, related to Scheme $\mathbf{1}$.

Oct10-2017-f400zcl010-3

ϱ
$\stackrel{0}{0}$
ϱ

$2 m$

Figure S30. ${ }^{19}$ F NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{2 m}$ in CDCl_{3}, related to Scheme 1.

$2 n$

Figure S31. ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz) of $\mathbf{2 n}$ in CDCl_{3}, related to Scheme 1.

Figure S32. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{2 n}$ in CDCl_{3}, related to Scheme 1.

Figure S33. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{2 o}$ in CDCl_{3}, related to Scheme 1.

Figure S34. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{2 o}$ in CDCl_{3}, related to Scheme 1.

Figure S35. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{2 p}$ in CDCl_{3}, related to Scheme 1.

$\underset{\infty}{\underset{\infty}{2}}$

$\stackrel{\Omega}{\stackrel{\Omega}{\square}}$
$\stackrel{\text { I }}{\text { ก }}$
$\stackrel{\stackrel{N}{\oplus}}{\substack{N \\ ~}}$
$\stackrel{\infty}{\stackrel{\infty}{4}}$

\qquad

$$
\begin{array}{lllllllllll}
128.6 & 128.2 & 127.8 & 127.4 & \begin{array}{c}
127.0 \\
\mathrm{fl}(\mathrm{ppmi})
\end{array} & 126.6 & 126.2 & 125.8
\end{array}
$$

Figure S36. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{2 p}$ in CDCl_{3}, related to Scheme $\mathbf{1}$.

Figure S37. ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz) of $\mathbf{2 q}$ in CDCl_{3}, related to Scheme 1.

\#
\%
1

$$
\begin{array}{ll}
\text { j } \\
\dot{J} & \text { I } \\
i
\end{array}
$$

Figure S38. ${ }^{13} \mathrm{C}$ NMR spectra (400 MHz) of $\mathbf{2 q}$ in CDCl_{3}, related to Scheme 1.

Figure S39. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{2 r}$ in CDCl_{3}, related to Scheme 1.

Nッチ

$\stackrel{\sim}{\infty} \stackrel{\text { ~ }}{\sim}$

$\dddot{8}$
$\stackrel{8}{4}$

$2 r$

Figure S40. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{2 r}$ in CDCl_{3}, related to Scheme 1.

2s
 Nanhe in Miluinke

Figure S41. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{2 s}$ in CDCl_{3}, related to Scheme 1.

Figure S42. ${ }^{13} \mathrm{C}$ NMR spectra (400 MHz) of $\mathbf{2 s}$ in CDCl_{3}, related to Scheme 1.
0ct26-201/్లh $\mathrm{h} 400 \mathrm{zc} 1026-1$

№
ig

5 a

Figure S43. ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz) of $\mathbf{5 a}$ in CDCl_{3}, related to Scheme 1.
0ct26-2017-c40@zc-1026TJ

5a

| 131 | 130 | 129 | 128 | 127 | 126 | 125 | 124 | 123 | 122 | 121 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | | | | | | | | | | |

Figure S44. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{5 a}$ in CDCl_{3}, related to Scheme 1.
$\stackrel{\text { T }}{\text { i }}$

Figure S45. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{5 d}$ in CDCl_{3}, related to Scheme 1.

ळ.	
$\stackrel{8}{\infty}$	
1	1

$\stackrel{\circ}{\stackrel{\circ}{\sim}} \stackrel{\text { N }}{1} \stackrel{\text { N }}{1}$

5d

Figure S46. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{5 d}$ in CDCl_{3}, related to Scheme $\mathbf{1}$.

Figure S47. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{5 e}$ in CDCl_{3}, related to Scheme 1.

Figure S48. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{5 e}$ in CDCl_{3}, related to Scheme 1.

Figure S49. ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz) of $\mathbf{5 f}$ in CDCl_{3}, related to Scheme 1.

Figure S50. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{5 f}$ in CDCl_{3}, related to Scheme 1.

Figure S51. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 a}$ in CDCl_{3}, related to Scheme 1.

Figure S52. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 a}$ in CDCl_{3}, related to Scheme 1.

Figure S53. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 b}$ in CDCl_{3}, related to Scheme 1.

Figure S54. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 b}$ in CDCl_{3}, related to Scheme 1.

Figure S55. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 c}$ in CDCl_{3}, related to Scheme 1.

Figure S56. ${ }^{13} \mathrm{C}$ NMR spectra (400 MHz) of $\mathbf{1 5 c}$ in CDCl_{3}, related to Scheme $\mathbf{1}$.

Figure S57. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 d}$ in CDCl_{3}, related to Scheme $\mathbf{1}$.

Figure S58. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 d}$ in CDCl_{3}, related to Scheme 1.

Figure S59. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 e}$ in CDCl_{3}, related to Scheme 1.

Figure S60. ${ }^{13} \mathrm{C}$ NMR spectra (400 MHz) of $\mathbf{1 5 e}$ in CDCl_{3}, related to Scheme $\mathbf{1}$.
(0000

Figure S61. ${ }^{19} \mathrm{~F}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 e}$ in CDCl_{3}, related to Scheme 1.

Figure S62. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 f}$ in CDCl_{3}, related to Scheme $\mathbf{1}$.

Figure S63. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 f}$ in CDCl_{3}, related to Scheme $\mathbf{1}$.

Figure S64. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 g}$ in CDCl_{3}, related to Scheme 1.

Figure S65. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 g}$ in CDCl_{3}, related to Scheme $\mathbf{1}$.

Figure S66. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 h}$ in CDCl_{3}, related to Scheme $\mathbf{1}$.

Figure S67. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 h}$ in CDCl_{3}, related to Scheme 1.

Figure S68. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 i}$ in DMSO- d_{6}, related to Scheme $\mathbf{1}$.

Figure S69. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 i}$ in DMSO- d_{6}, related to Scheme 1.

Figure S70. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 j}$ in $\mathrm{DMSO}-d_{6}$, related to Scheme 1.

Figure S71. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 j}$ in DMSO- d_{6}, related to Scheme 1.

Figure S72. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 k}$ in CDCl_{3}, related to Scheme $\mathbf{1}$.

Figure S73. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 k}$ in CDCl_{3}, related to Scheme 1.

Figure S74. ${ }^{19} \mathrm{~F}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 k}$ in CDCl_{3}, related to Scheme 1.

Figure S75. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 1}$ in CDCl_{3}, related to Scheme 1.

Figure S76. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 1}$ in CDCl_{3}, related to Scheme $\mathbf{1}$.

Figure S77. ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz) of $\mathbf{1 5 m}$ in CDCl_{3}, related to Scheme 1.

Figure S78. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 m}$ in CDCl_{3}, related to Scheme 1.

$15 n$

Figure S79. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 n}$ in CDCl_{3}, related to Scheme 1.

Figure S80. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 n}$ in CDCl_{3}, related to Scheme 1.

Figure S81. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 o}$ in CDCl_{3}, related to Scheme 1.

Figure S82. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 o}$ in CDCl_{3}, related to Scheme 1.

Figure S83. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 p}$ in CDCl_{3}, related to Scheme 1.

Figure S84. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 p}$ in CDCl_{3}, related to Scheme 1.

Figure S85. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 q}$ in CDCl_{3}, related to Scheme 1.

Figure S86. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 q}$ in CDCl_{3}, related to Scheme 1.

Figure S87. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 r}$ in CDCl_{3}, related to Scheme $\mathbf{1}$.

Figure S88. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 5 r}$ in CDCl_{3}, related to Scheme $\mathbf{1}$.

Figure S89. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of 6 in DMSO- d_{6}, related to Figure 2A.

Figure S90. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of 6 in DMSO- d_{6}, related to Figure 2A.

7a

Figure S91. ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz) of 7a in CDCl_{3}, related to Figure 2B.

$7 a$

Figure S92. ${ }^{13} \mathrm{C}$ NMR spectra (400 MHz) of $\mathbf{7 a}$ in CDCl_{3}, related to Figure 2B.

Figure S93. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{7 o}$ in CDCl_{3}, related to Figure 2C.

Figure S94. ${ }^{13} \mathrm{C}$ NMR spectra (400 MHz) of 7 o in CDCl_{3}, related to Figure 2C.

Figure S95. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $(S)-\mathbf{2 u}$ in CDCl_{3}, related to Figure 2D.

Figure S96. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $(S)-\mathbf{2 u}$ in CDCl_{3}, related to Figure 2D.

Figure S97. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $(R)-\mathbf{2 u}$ in CDCl_{3}, related to Figure 2D.

Figure S98. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $(R)-\mathbf{2 u}$ in CDCl_{3}, related to Figure 2D.

Figure S99. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $(R)-\mathbf{8 u}$ in CDCl_{3}, related to Figure 2D.

Figure S100. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $(R)-\mathbf{8 u}$ in CDCl_{3}, related to Figure 2D.

Figure S101. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $(S)-9 \mathbf{u}$ in DMSO- d_{6}, related to Figure 2D.

Figure S102. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $(S)-9 \mathbf{u}$ in DMSO- d_{6}, related to Figure 2D.

Figure S103. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $(R)-\mathbf{1 0} \mathbf{u}$ in CDCl_{3}, related to Figure 2D.

Figure S104. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $(R)-\mathbf{1 0 u}$ in CDCl_{3}, related to Figure 2D.

Figure S105. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of (S) - $\mathbf{1 1} \mathbf{u}$ in CDCl_{3}, related to Figure 2D.

Figure S106. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $(S) \mathbf{- 1 1 u}$ in CDCl_{3}, related to Figure 2D.

Figure S107. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 2}$ in CDCl_{3}, related to Figure 3A.

12

Figure S108. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 2}$ in CDCl_{3}, related to Figure 3A.

Figure S109. Proton NMR of 2a- \boldsymbol{d} with 58% D, related to Figure 3B

Figure S110. Proton NMR of 2a with 80% D, related to Figure 3C.

Figure S111. Intermolecular Kinetic Isotope Effect (KIE) Experiment, related to Figure 3D.

Figure S112. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{3 I}$ in CDCl_{3}, related to Figure 3E.
Jun20-2068-c 400-zc-0622-3

31

Figure S113. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{3 1}$ in CDCl_{3}, related to Figure 3E.

Figure S114. ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 3 1}$ in CDCl_{3}, related to Figure 3E.

Figure S115. ${ }^{13} \mathrm{C}$ NMR spectra $(400 \mathrm{MHz})$ of $\mathbf{1 3 1}$ in CDCl_{3}, related to Figure 3E.

Supplemental Tables

Table S1. Preparation of $\mathrm{Au}(\mathrm{I})$-Catalysts, related to Table 1.

L22AuCl

L23AuCl

L24AuCI

L25AuCl
$\left({ }^{(} \mathrm{Bu}\right){ }_{3} \mathrm{PAuCl}$
L26AuCl
$\mathrm{Me}\left({ }^{(} \mathrm{Bu}\right){ }_{2} \mathrm{PAuCl}$
L27AuCI
$\mathrm{Cy}_{3} \mathrm{PAuCl}$
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{PAuCl}$
L29AuCl

Table S2. Ligand Effects on Product Distribution, related to Table 1.
(

Table S3. X-ray crystal structures of (S)-2u, related to Figure 2D.

Datablock: cu_zc20180305_0m

Table S4. HPLC spectra of compound (R)-10u, related to Figure 2D.

Condition: hexane : 2-propanol $=90: 10$.
Flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=272 \mathrm{~nm}$, Chiral IA- 3 .

Entry	RT min	Area mAU* \min	Height mAU	$\%$ Area $\%$	\% Height $\%$
1	30.340	108.702	104.607	100.00	100.00

Transparent Methods

General Information

All of the reactions were carried out under argon atmosphere using oven-dried glassware. Super dry dichloroethane (DCE), ethyl diazoacetate, indoles, phosphine ligand, and metal catalysts were purchased from chemical companies and were used without further treatment. Flash column chromatography was performed using a silica gel (300-400 mesh). Analytical thin-layer chromatography was performed using glass plates precoated with 200-300 mesh silica gel impregnated with a fluorescent indicator (254 nm). All of the new compounds were fully characterized. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} or DMSO- d_{6} using a $400 / 600 \mathrm{MHz}$ spectrometer, and chemical shifts are reported in ppm with the solvent signals as the reference, and coupling constants (J) are given in Hz. The peak information is described as: $\mathrm{s}=$ singlet, $\mathrm{br}=$ broad, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, and comp = composite. High-resolution mass spectra (HRMS) were recorded using a commercial apparatus (ESI Source).

Experimental Procedures

General Procedure for the Preparation of Diazo Compounds 1a-1u, related to Scheme 1.

Synthesis of 1-(bromomethyl)-2-(phenylethynyl)benzene: To a solution of (2-iodophenyl)methanol ($9.36 \mathrm{~g}, 40.0 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(280.8 \mathrm{mg}, 1.0 \mathrm{~mol} \%)$, $\mathrm{CuI}(76.2 \mathrm{mg}, 1.0 \mathrm{~mol} \%)$ in $\mathrm{Et}_{3} \mathrm{~N}(40.0 \mathrm{~mL})$, was added a solution of phenylacetylene $(4.91 \mathrm{~g}, 48.0 \mathrm{mmol})$ in $\mathrm{Et}_{3} \mathrm{~N}(20.0 \mathrm{~mL})$ slowly at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere. The reaction mixture was stirred overnight and the reaction temperature was warmed to room temperature slowly. Upon completion (monitored by TLC), the solvent was evaporated under vacuum after filtering through Celite, and the obtained (2-(phenylethynyl)phenyl)methanol was directly used for the next step without further purification.

To a 100 mL oven-dried round-bottom flask containing a magnetic stirring bar, triphenylphosphine ($12.60 \mathrm{~g}, 48.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40.0 \mathrm{~mL})$, was added bromine ($7.67 \mathrm{~g}, 48.0 \mathrm{mmol}$) dropwise, and the mixture was stirred vigorously at ambient temperature for 30 min . Then a solution of the above obtained product in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(16.0 \mathrm{~mL})$ was added to the reaction mixture dropwise and the reaction mixture was stirred for additional 1 hour. n-Hexane (40.0 mL) was then added to quench the reaction, and the solvent was evaporated under vacuum after filtering through Celite. The residue was purified by flash chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}$ (ethyl acetate/petroleum ether $=1 / 20$) to afford the product 1-(bromomethyl)-2-(phenylethynyl)benzene (9.65 $\mathrm{g}, 89 \%$ based on (2-iodophenyl)methanol).

Synthesis of 1a: To a 100 mL oven-dried round-bottom flask containing a magnetic stirring bar, sodium hydride (60% dispersion in mineral oil, $0.60 \mathrm{~g}, 15.0 \mathrm{mmol}$) in dry THF (30 mL), was added methyl acetoacetate ($1.74 \mathrm{~g}, 15.0 \mathrm{mmol}$) dropwise at $0^{\circ} \mathrm{C}$ under nitrogen atmosphere. After the mixture turned clear, a solution of 1-(bromomethyl)- 2-(phenylethynyl)benzene ($2.71 \mathrm{~g}, 10.0 \mathrm{mmol}$) in THF (10.0 mL) was added dropwise at ambient temperature, and the reaction was refluxed for 4 hours. Saturated $\mathrm{NH}_{4} \mathrm{Cl}(20.0 \mathrm{~mL})$ was added to quench the reaction, the organic phase was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20.0 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under vacuum after filtration, and the residue was directly used for the next step without further purification.

To a $50-\mathrm{mL}$ oven-dried flask containing a magnetic stirring bar, the above obtained crude product, 4 -acetamidobenzenesulfonyl azide (p-ABSA, $2.89 \mathrm{~g}, 12.0 \mathrm{mmol}$) in DCM (20.0 mL), was added a solution of 1,8-diazabicyclo[5.4.0] undec-7-ene (DBU, $2.29 \mathrm{mg}, 15.0 \mathrm{mmol})$ in $\mathrm{DCM}(5.0 \mathrm{~mL})$ slowly at $0^{\circ} \mathrm{C}$. The reaction mixture was
stirred at $0{ }^{\circ} \mathrm{C}$ for 12 hours. Upon completion (monitored by TLC), the solvent was evaporated under vacuum after filtering through Celite, and the resulting residues was purified by column chromatography on silica gel (ethyl acetate/petroleum ether $=$ $1 / 10$) to give the pure diazoacetate $\mathbf{1 a}(2.06 \mathrm{~g}, 71 \%$ yields based on 1-(bromomethyl)-2-(phenylethynyl)benzene).

The synthesis of other substrates $(\mathbf{1 b} \mathbf{- 1} \mathbf{u})$ is similar to that of $\mathbf{1 a}$.

Methyl 2-diazo-3-(2-(phenylethynyl)phenyl)propanoate.

$2.06 \mathrm{~g}, 71 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 7.50-7.43(\mathrm{comp}, 3 \mathrm{H}), 7.31$ -7.24 (comp, 4H), $7.23-7.16$ (comp, 2H), 3.81 (s, 2H), 3.67 ($\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 167.8,139.4,132.7,131.7,129.3,128.8,128.6,128.5,127.3$, 123.1, 123.0, 94.2, 87.4, 52.1, 28.3. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 313.0953$, found 313.0939.

Isopropyl 2-diazo-3-(2-(phenylethynyl)phenyl)propanoate.

$1.97 \mathrm{~g}, 62 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 7.58-7.51(\mathrm{comp}, 3 \mathrm{H}), 7.39$ -7.34 (comp, 4H), 7.33 - 7.24 (comp, 2H), $5.18-4.98(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}), 1.23$ (d, $J=6.3 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) (δ, ppm) 166.9, 139.6, 132.7, 131.7, $129.4,128.7,128.6,128.5,127.2,123.2,123.1,94.1,87.5,68.5,28.3,22.2$. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 319.1441$, found 319.1438.
tert-Butyl 2-diazo-3-(2-(phenylethynyl)phenyl)propanoate.

$2.30 \mathrm{~g}, 69 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 7.58-7.53(\mathrm{comp}, 3 \mathrm{H}), 7.40$ $-7.33(\mathrm{comp}, 5 \mathrm{H}), 7.33-7.23(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 166.9,139.6,132.7,131.7,129.4,128.7,128.6,128.5,127.2$, 123.2, 123.1, 94.1, 87.5, 68.5, 28.3, 22.2. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 333.1598$, found 333.1596 .

Benzyl 2-diazo-3-(2-(phenylethynyl)phenyl)propanoate.

$2.20 \mathrm{~g}, 60 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 7.64-7.55$ (comp, 4 H$), 7.42$ - 7.39 (comp, 4H), 7.38 - 7.36 (comp, 4H), 7.34 - 7.29 (comp, 2H), 5.26 (s, 2H), 3.96 (s, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 167.1, 139.3, 136.1, 132.7, 131.6, $129.3,128.7,128.6,128.4,128.2,128.1,127.3,122.61,122.56,94.2,87.4,66.5,28.3$. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 367.1441, found 367.1435 .

Cinnamyl 2-diazo-3-(2-(phenylethynyl)phenyl)propanoate.

$2.28 \mathrm{~g}, 58 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 7.61-7.53(\mathrm{comp}, 4 \mathrm{H}), 7.40$ $-7.35(\mathrm{comp}, 8 \mathrm{H}), 7.30-7.27(\mathrm{comp}, 2 \mathrm{H}), 6.67-6.59(\mathrm{~m}, 1 \mathrm{H}), 6.32-6.23(\mathrm{~m}, 1 \mathrm{H})$, $4.86-4.81(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ($\left.\delta, \mathrm{ppm}\right) 167.1,139.3$, $136.3,134.1,132.7,131.7,129.4,128.8,128.7,128.6,128.5,128.1,127.3,126.7$, $123.5,123.11,123.06,94.2,87.4,65.4,28.4$. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 393.1598$, found 393.1599.

Methyl 2-diazo-3-(2-(p-tolylethynyl)phenyl)propanoate.

$2.19 \mathrm{~g}, 72 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 7.55(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.42 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.24$ (comp, 2H), 7.17 (d, $J=7.9$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.88 (s, 2H), 3.75 (s, 3H), 2.38 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 167.7, 139.3, 138.8, 132.6, 131.6, 129.31, 129.26, 128.6, 127.3, 123.2, 120.1, 94.4, 86.8, 52.0, 28.3, 21.6. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{2}{ }^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 327.1104$, found 327.1098.

Methyl 2-diazo-3-(2-(m-tolylethynyl)phenyl)propanoate.

$2.22 \mathrm{~g}, 73 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $7.58-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.49(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.27(\mathrm{comp}, 2 \mathrm{H}), 7.26-7.23(\mathrm{comp}, 2 \mathrm{H})$, 7.21 - 7.16 (m, 1H), 3.90 (s, 2H), 3.75 (s, 3H), 2.51 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 167.8,145.9,140.2,139.0,132.8,132.1,129.7,128.8,128.7,127.3$, 125.8, 123.4, 123.0, 93.2, 91.3, 52.1, 28.3, 21.0. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 327.1104$, found 327.1102.

Methyl 2-diazo-3-(2-(o-tolylethynyl)phenyl)propanoate.

$1.98 \mathrm{~g}, 65 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $7.51-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.30-$ 7.28 (comp, 2H), $7.27-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.17$ (comp, 2H), $7.11(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) (δ, ppm) 171.3, 139.4, 138.2, 132.7, 132.3, 129.5, 129.3, 128.8, 128.7, 128.4, 127.3, 123.2, 123.0, 94.4, 87.1, 52.1, 28.3, 21.4. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 327.1104$, found 327.1107.

Methyl 2-diazo-3-(2-((4-methoxyphenyl)ethynyl)phenyl)propanoate.

$1.67 \mathrm{~g}, 52 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $7.54(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.48-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, 2 H), 3.87 ($\mathrm{s}, 2 \mathrm{H}$), $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 167.7, 159.9, 139.1, 133.2, 132.5, 129.3, 128.4, 127.3, 123.4, 115.2, 114.1, 94.3, 86.2, 55.4, 52.0, 28.3. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 321.1234, found 321.1227.

Methyl 2-diazo-3-(2-((4-fluorophenyl)ethynyl)phenyl)propanoate.

$2.16 \mathrm{~g}, 70 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $7.45-7.38$ (comp, 3 H), 7.25 $-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.91$ (comp, 2H), $3.76(\mathrm{~s}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $(\delta, \mathrm{ppm}) 167.6,162.7(\mathrm{~d}, J=$ 249.9 Hz), 139.3, 133.6 (d, $J=8.4 \mathrm{~Hz}$), 132.7, 129.3, 128.8, 127.3, 122.8, 119.2 (d, J $=3.5 \mathrm{~Hz}), 115.8(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 93.1,87.1,52.0,28.3 ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ δ-110.46. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{FN}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 309.1034$, found 309.1029.

Methyl 3-(2-((4-Chlorophenyl)ethynyl)phenyl)-2-diazopropanoate.

$2.14 \mathrm{~g}, 66 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 7.54(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.45 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.37-7.29$ (m, 4H), $7.28-7.24$ (m, 1H), 3.86 (s, 2H), 3.74 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 167.5, 139.4, 134.6, 132.9, 132.7, 129.3, 129.0, 128.8, 127.3, 122.7, 121.6, 93.0, 88.4, 52.0, 28.3. HRMS (TOF MS $\left.\mathrm{ESI}^{+}\right)$calculated for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 347.0558$, found 347.0550.

Methyl 3-(2-((4-bromophenyl)ethynyl)phenyl)-2-diazopropanoate.

$1.96 \mathrm{~g}, 53 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 7.49(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.46-7.42$ (comp, 2H), $7.35-7.31$ (comp, 2H), $7.30-7.24$ (comp, 2H), $7.23-7.19$ $(\mathrm{m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 167.7, 139.4, 133.1, 132.8, 131.8, 129.4, 129.0, 127.4, 122.9, 122.7, 122.1, 93.1, 88.6, 52.1, 28.4. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 391.0053, found 391.0145 .

Methyl 2-diazo-3-(2-((4-(trifluoromethyl)phenyl)ethynyl)phenyl)propanoate.

$1.97 \mathrm{~g}, 55 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $7.70-7.47$ (comp, 5H), 7.39 -7.26 (comp, 2H), $7.26-7.18(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 3.72$ ($\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 167.3,139.5,132.8,131.8,130.0(\mathrm{q}, J=32.7 \mathrm{~Hz}), 129.3$, $129.2,127.2,126.8,125.2(\mathrm{q}, J=3.8 \mathrm{~Hz}), 122.2,92.6,89.7,51.8,28.2$. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$: 381.0821 , found 381.0828 .

Methyl 2-diazo-3-(2-(naphthalen-1-ylethynyl)phenyl)propanoate.

$1.67 \mathrm{~g}, 49 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 8.45(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.92-7.86(\mathrm{comp}, 2 \mathrm{H}), 7.83-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.74-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.61(\mathrm{~m}, 1 \mathrm{H})$, $7.60-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.32(\mathrm{comp}, 2 \mathrm{H})$, $4.02(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 167.7, 139.2, 133.3, 133.2, 132.8, 130.7, 129.3, 129.1, 128.9, 128.4, 127.4, 127.0, 126.5, 126.1, 125.4, 123.1, 120.7, 92.3, 92.2, 52.0, 28.4. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 341.1285$, found 341.1297.

Methyl 2-diazo-3-(2-((2-methoxynaphthalen-1-yl)ethynyl)phenyl)propanoate.

$2.11 \mathrm{~g}, 57 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $8.30(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.85-7.74$ (comp, 2H), $7.70-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.33$ (comp, 2H), 7.33 - 7.26 (comp, 2H), $7.27-7.22(\mathrm{~m}, 1 \mathrm{H}), 4.04$ (s, 2H), 4.01 (s, 3H), 3.73 (s, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 168.2, 159.2, 139.4, 134.3, 132.4, 130.5, 129.3, 128.7, 128.6, 128.2, 127.5, 127.2, 125.3, 124.3, 123.7, 112.6, 106.2, 97.0, 88.9, 56.5, 52.0, 28.0. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 371.1390 , found 371.1400 .

Methyl 2-diazo-3-(2-(thiophen-2-ylethynyl)phenyl)propanoate.

$1.24 \mathrm{~g}, 42 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $(\delta, \mathrm{ppm}) 7.52-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.34-$ 7.26 (comp, 4H), $7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.00-6.96(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 167.3, 139.4, 132.5, 132.2, 129.3, 128.9, 127.7, 127.3, 127.2, 123.0, 122.6, 91.1, 87.4, 52.0, 28.4. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 297.0698$, found 297.0694.

Methyl 3-(2-(cyclopropylethynyl)phenyl)-2-diazopropanoate.

$1.35 \mathrm{~g}, 53 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $7.43-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.32-$ $7.26(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.16(\mathrm{comp}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.77$ (s, 2H), $1.52-1.44(\mathrm{~m}, 1 \mathrm{H})$, 0.94 - 0.80 (comp, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 167.7, 139.3, 132.6, $129.1,127.8,127.0,123.7,98.5,73.9,51.9,28.2,8.7,0.4$. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 277.0947$, found 277.0961.

3-Diazo-4-(2-(phenylethynyl)phenyl)butan-2-one.

$1.67 \mathrm{~g}, 61 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $7.60-7.53$ (comp, 3 H), 7.41 -7.27 (comp, 6H), $3.94(\mathrm{~s}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm})$ 190.5, 139.0, 132.6, 131.6, 129.6, 128.8, 128.6, 128.5, 127.3, 123.0, 94.0, 87.4, 68.2, 27.5. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 297.0998$, found 297.0994.

2-Diazo-1-phenyl-3-(2-(phenylethynyl)phenyl)propan-1-one.

$2.42 \mathrm{~g}, 72 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $7.61-7.55$ (comp, 3 H), 7.55 - 7.50 (comp, 2H), 7.49 - 7.39 (comp, 3H), 7.39 - 7.32 (comp, 5H), $7.31-7.27$ (m, $1 \mathrm{H}), 4.12(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 189.2, 138.9, 137.7, 132.8, 131.7, 131.5, 129.7, 128.9, 128.6, 128.5, 127.5, 127.3, 123.2, 123.0, 94.3, 87.4, 28.8. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 337.1335, found 337.1330.

Methyl 3-(2-((2-aminophenyl)ethynyl)phenyl)-2-diazopropanoate.

$1.22 \mathrm{~g}, 40 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $7.58-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.38-$ $7.24(c o m p, 4 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.76-6.70(\mathrm{comp}, 2 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}), 3.89(\mathrm{~s}$, 2 H), $3.74(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 167.7, 148.0, 138.8, 132.6, 132.3, 130.0, 129.1, 128.7, 127.2, 123.1, 117.9, 114.5, 107.6, 92.4, 90.9, 52.0, 28.2. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$: 328.1056 , found 328.1064.
(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl 2-diazo-3-(2-((2-methoxynaphthalen-1-yl)ethynyl)phenyl)propanoate.

$2.92 \mathrm{~g}, 59 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $(\delta, \mathrm{ppm}) 8.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.88-7.78$ (comp, 2H), $7.72-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.37$ (comp, $2 \mathrm{H}), 7.36-7.27$ (comp, 3H), 4.76 (td, $J=10.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.06$ (s, 2H), 4.05 (s, 3 H), $2.04-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.60(\mathrm{comp}, 2 \mathrm{H}), 1.54-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.27$ (comp, $2 \mathrm{H}), 1.14-1.06(\mathrm{~m}, 1 \mathrm{H}), 1.05-0.99(\mathrm{~m}, 1 \mathrm{H}), 0.98-0.95(\mathrm{~m}, 1 \mathrm{H}), 0.90-0.81$ (comp, $6 \mathrm{H}), 0.75(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 167.2, 159.2, 144.7, 139.8, 134.4, 132.4, 130.5, 128.64, 128.61, 128.3, 127.6, 127.1, 125.3, 124.3, 123.7, 112.6, 106.4, 97.1, 88.8, 74.9, 56.6, 53.6, 47.2, 41.4, 34.7, 34.3, 31.5, 26.0, 22.1, 20.8, 16.2. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 495.2642, found 495.2650.

The preparation of diazo compounds $\mathbf{4 a}-\mathbf{4 e}$, related to Scheme 1 .

Synthesis of 4a: To a solution of ethyl diazoacetate (EDA, $1.37 \mathrm{~g}, 12.0 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(10.0 \mathrm{~mL}$), a solution of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU 1.53 g , 10.0 mmol) and 2-(phenylethynyl)benzaldehyde ($2.07 \mathrm{~g}, 10.0 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(10.0$ mL) were added in sequence at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 hours, the reaction was quenched with saturated aqueous NaHCO_{3} and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20.0 \mathrm{~mL})$. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under vacuum after filtration. The resulting residues was purified by flash column chromatography on silica gel (ethyl acetate/petroleum ether $=1 / 3$) to afford the pure diazoacetate $\mathbf{4 a}(2.85 \mathrm{~g}, 89 \%$ yield based on 2-(phenylethynyl)benzaldehyde).
The synthesis of other substrate $\mathbf{4 g}$ is similar to that of $\mathbf{4 a}$.

Synthesis of 4b: To a solution of diazoacetate $\mathbf{4 a}(0.32 \mathrm{~g}, 1.0 \mathrm{mmol})$ and 4-toluenesulfonyl chloride ($\mathrm{TsCl}, 0.19 \mathrm{~g}, 1.0 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$, and triethylamine ($0.12 \mathrm{~g}, 1.2 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ were added in sequence at 0 ${ }^{\circ} \mathrm{C}$ under argon atmosphere. After the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 hours, the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times$ 5.0 mL). Then the combined organic phase was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo after filtration, and the resulting residues was purified by flash column chromatography on silica gel (ethyl acetate/petroleum ether $=1 / 10$) to afford the pure diazoacetates $\mathbf{4 b}$ ($370 \mathrm{mg}, 78 \%$ yield based on $\mathbf{4 a}$). The synthesis of other substrates ($\mathbf{4 c} \mathbf{c} \mathbf{4 e}$) is similar to that of $\mathbf{4 b}$.

Ethyl 2-diazo-3-hydroxy-3-(2-(phenylethynyl)phenyl)propanoate.

$2.85 \mathrm{~g}, 89 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 7.74(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.62-7.50(\mathrm{comp}, 3 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.28$ (comp, 4H), $6.37(\mathrm{~s}, 1 \mathrm{H})$, $4.26-4.17(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 1 \mathrm{H}), 1.23-1.16(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 166.4, 140.9, 132.3, 131.7, 128.7, 128.5, 128.3, 127.9, 125.6, 122.9, 120.7,
95.6, 86.0, 67.5, 61.1, 14.4. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{3}{ }^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 343.1053$, found 343.1051.

Ethyl 2-diazo-3-(2-(phenylethynyl)phenyl)-3-(tosyloxy)propanoate.

$370.0 \mathrm{mg}, 78 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $7.80-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.65$ $-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.33$ (comp, 4H), $7.33-7.15$ (comp, 6H), $6.22(\mathrm{~s}, 1 \mathrm{H}), 4.11-4.01(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.38-1.19(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 139.2, 132.5, 131.8, 129.7, 128.6, 128.5, 128.30, 128.25, 128.2, 127.2, 126.4, 125.8, 123.0, 121.6, 95.5, 86.0, 73.1, 61.1, 22.3, 14.4. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 497.1147$, found 497.1141.

Ethyl 2-diazo-3-(2-(phenylethynyl)phenyl)-3-((trimethylsilyl)oxy)propanoate.

$326.0 \mathrm{mg}, 83 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $7.68-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.62$ - 7.53 (comp, 3H), 7.42 - 7.32 (comp, 4H), $7.33-7.27$ (m, 1H), 6.35 (d, $J=1.6 \mathrm{~Hz}$, 1H), $4.46-3.99$ (m, 2H), 1.17 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.19$ (s, 9H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) (δ, ppm) 165.6, 142.4, 132.4, 131.8, 128.6, 128.5, 128.4, 127.8, 125.9, 123.1, $120.5,95.7,86.2,68.2,60.9,14.5,0.01$. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{Si}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 415.1448$, found 415.1454.

Ethyl 3-acetoxy-2-diazo-3-(2-(phenylethynyl)phenyl)propanoate.

$631.0 \mathrm{mg}, 87 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $7.63-7.51$ (comp, 3 H), 7.49 - 7.44 (m, 1H), 7.41 - 7.29 (comp, 5H), 7.21 (s, 1H), $4.26-4.08$ (m, 2H), 2.17 (s, 3H), 1.17 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 169.6, 164.7, 138.1, 132.7, 131.8, 128.7, 128.5, 128.4, 128.3, 125.4, 122.8, 121.2, 96.2, 85.8, 70.0, 61.2, 21.0, 14.3. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{4}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 385.1159 , found 385.1169 .

2-Diazo-3-ethoxy-3-oxo-1-(2-(phenylethynyl)phenyl)propyl 4-methoxybenzoate.

$818.0 \mathrm{mg}, 90 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $8.18-8.07$ (comp, 2H), 7.67 - 7.52 (comp, 4H), 7.43 (s, 1H), 7.40 - 7.29 (comp, 5H), 7.02 - 6.90 (comp, 2H), $4.25-4.09(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) (δ, ppm) 171.2, 165.0, 163.8, 138.5, 132.8, 132.0, 131.9, 128.7, 128.5, 128.4, 128.3, 125.6, 122.9, 122.2, 121.2, 113.8, 96.2, 86.0, 70.4, 61.2, 55.5, 14.2. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{5}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 477.1426$, found 477.1432.

The preparation of diazo compound 4f, related to Scheme 1.

Synthesis of 4f: To a solution of 2-alkynylbenzaldehyde S-6 (412.5 mg, 2.0 mmol), arylsulfonamide ($342.5 \mathrm{mg}, 2.0 \mathrm{mmol}$) and triethylamine ($506.0 \mathrm{mg}, 5.0 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL})$, was added titanium tetrachloride ($455.2 \mathrm{mg}, 2.4 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere. The reaction mixture was stirred under these conditions for 12 h , and then quenched with brine. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10.0 mL X 2), and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo after filtration, and the resulting residues was purified by recrystallization (solvents: $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ petroleum ether $=5: 1$) to afford 432.0 mg of $\mathbf{S}-\mathbf{7}$ in 60% yield (based on $\mathbf{S - 6}$).

To a solution of ethyl diazoacetate ($0.14 \mathrm{~g}, 1.2 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$, was added a solution of 1,8 -diazabicyclo[5.4.0]undec-7-ene ($\mathrm{DBU}, 0.15 \mathrm{~g}, 1.0 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$ and $\mathbf{S}-7(0.36 \mathrm{~g}, 1.0 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(1.0$ mL) in sequence at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After the mixture was stirred at room temperature for 15 h , the reaction was quenched with saturated aqueous NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{X} 5.0 \mathrm{~mL})$. Then the combined organic phase was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo after filtration, and the precipitated solid was washed with petroleum ether (6.0 mL X 2). Then the solid was dried under vacuum to give the corresponding diazoacetate $\mathbf{4 f}$
(407.0 mg , 86% yield based on $\mathbf{S}-7$) without further purification. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 7.82-7.79(\mathrm{comp}, 2 \mathrm{H}), 7.71-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.45(\mathrm{comp}, 3 \mathrm{H})$, $7.37-7.35$ (comp, 2H), $7.30-7.27$ (comp, 2H), $7.25-7.22$ (m, 1H), $7.19-7.14$ (comp, 2H), $6.00(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-3.98(\mathrm{~m}, 2 \mathrm{H})$, $2.32(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.31(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ($\left.\delta, \mathrm{ppm}\right) 165.4,143.6$, 139.6, 137.0, 132.9, 131.8, 129.8, 129.7, 128.8, 128.5, 128.1, 127.3, 127.0, 126.5, $122.0,95.9,86.4,61.2,52.6,21.6,14.3$. HRMS (TOF MS CI ${ }^{+}$) calculated for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{NaO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 496.1301$, found 496.1311.

The preparation of diazo compounds 14 , related to Scheme 1.

To a $50-\mathrm{mL}$ oven-dried flask containing a magnetic stirring bar, $\mathbf{4 g}(2.38 \mathrm{~g}, 6.8 \mathrm{mmol}$, prepared according to the above method for $\mathbf{4 a}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added MnO_{2} $(8.88 \mathrm{~g}, 102.0 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$, and the reaction mixture was stirred under this condition for 12 hours. After the reaction was finished, the mixture was filtered through a short pad of silica, then the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography on silica gel (ethyl acetate/petroleum ether $=1 / 10)$ to give pure diazoacetate $14(2.0 \mathrm{~g}, 85 \%$ yield based on $\mathbf{4 g}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 7.53-7.51 (m, 1 H), 8.45-8.35 (comp, $5 \mathrm{H}), 6.89-6.85(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 187.4, 161.1, 160.0, 140.4, 133.1, 131.9, $130.5,127.9,127.2,121.5,114.8,114.1,94.3,85.5,61.7,55.3,14.0$. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 349.1183$, found 349.1192.

General Procedure for the Preparation of Au(I)-Catalysts, related to Table S1.

$\left(\mathrm{Me}_{2} \mathrm{~S}\right) \mathrm{AuCl}(294.5 \mathrm{mg}, 1.0$ equiv) was added to a solution of the corresponding phosphine (1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2.0 \mathrm{~mL}\right.$) under argon at $25^{\circ} \mathrm{C}$ and the solution was left stirring for 6 hours. After TLC indicated complete consumption of the starting material, the reaction solution was concentrated under reduced pressure to yield the desired $\mathrm{Au}(\mathrm{I})$ complexes (Mauleón et al., 2009; Gorin et al., 2005; Hashmi et al., 2014).

Chloro(triphenyl phosphite)gold(I) ($\mathbf{L} 1 \mathrm{AuCl}$)

```
(PhO)3PAuCl
```

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 7.45 - 7.37 (comp, 6H), 7.33 - 7.27 (m, 3H), $7.25-7.15$ (comp, 6H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 149.49 (d, $J=4.5 \mathrm{~Hz}$), $130.58(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 126.78(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 121.24(\mathrm{~d}, J=5.7 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR (162 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 110.49$.

Chloro[tris(2,4-di-tert-butylphenyl) phosphite]gold(I) (L2AuCl)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $7.59-7.34$ (comp, 6H), $7.19-7.03(\mathrm{~m}, 3 \mathrm{H})$, $1.45(\mathrm{~s}, 27 \mathrm{H}), 1.30(\mathrm{~s}, 27 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ($\left.\delta, \mathrm{ppm}\right) 148.27(\mathrm{~s}), 147.39$ (d, $J=5.9 \mathrm{~Hz}$), $139.26(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 124.89(\mathrm{~d}, J=121.3 \mathrm{~Hz}), 119.34(\mathrm{~d}, J=8.9$ $\mathrm{Hz}), 35.00(\mathrm{~d}, J=43.1 \mathrm{~Hz}), 31.10(\mathrm{~d}, J=83.2 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta$, ppm) 101.26.

Chloro(triphenylphosphine)gold(I) (L3AuCl)

```
Ph3}\mp@subsup{\textrm{PAuCl}}{}{\prime
```

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 7.63 - 7.39 (comp, 15 H); ${ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 134.25(\mathrm{~d}, J=13.7 \mathrm{~Hz}), 132.12(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 129.36(\mathrm{~d}, J=11.9$ Hz), 128.81 (d, $J=62.4 \mathrm{~Hz}$); ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 33.77.

Chloro(tri-o-tolylphosphine)gold(I) (L4AuCl)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ($8, \mathrm{ppm}$) $7.54-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.20$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.05-6.77(\mathrm{~m}, 3 \mathrm{H}), 2.68(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$143.09(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 133.65(\mathrm{~d}, J=9.7 \mathrm{~Hz}), 132.57(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 132.12(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}), 126.85(\mathrm{~d}, J=10.4 \mathrm{~Hz}), 125.17(\mathrm{~d}, J=61.1 \mathrm{~Hz}), 23.43(\mathrm{~d}, J=11.2 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $(\delta, \mathrm{ppm}) 8.85$.

Chloro[tris(4-(trifluoromethyl)phenyl)phosphine]gold(I) (L5AuCl)

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $7.85-7.77(\mathrm{~m}, 6 \mathrm{H}), 7.74-7.59(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150MHz; CDCl_{3}) (δ, ppm) 134.8 (qd, J = 33, 2.7 Hz , Ar-C(CF3)), 134.7 (d, J $=14.6 \mathrm{~Hz}, \mathrm{ArCH}), 131.8(\mathrm{~d}, \mathrm{~J}=60.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{CP}), 126.7(\mathrm{dq}, \mathrm{J}=12.2,3.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{CH})$, 123.2 (d, J = $271.1 \mathrm{~Hz}, \mathrm{CF} 3$); ${ }^{19}$ F NMR ($564 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) (δ, ppm): -63.4 (m); ${ }^{31} \mathrm{PNMR}\left(162 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 33.6$.

Chloro[tris(4-methoxyphenyl)phosphine]gold(I) (L6AuCl)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 7.52-7.31(\mathrm{~m}, 6 \mathrm{H}), 7.01-6.85(\mathrm{~m}, 6 \mathrm{H}), 3.82$ (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{cdcl}_{3}$) (δ, ppm) 162.42 (s), 135.61 (d, $J=15.3 \mathrm{~Hz}$), 120.41 (d, $J=68.4 \mathrm{~Hz}$), $114.83(\mathrm{~d}, J=13.0 \mathrm{~Hz}), 55.55(\mathrm{~s}) ;{ }^{31} \mathrm{P}$ NMR (162 MHz , CDCl_{3}) (δ, ppm) 29.77.

Chloro[(1,1'-biphenyl)-2-yldiphenylphosphine]gold(I) (L7AuCl)

${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 7.65-7.30($ comp, 14 H$), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H})$, $7.10-6.90$ (comp, 3 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 148.22 (d, $J=15.0$ $\mathrm{Hz}), 140.06(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 134.58(\mathrm{~d}, J=14.0 \mathrm{~Hz}), 133.79(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 132.12(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}), 131.88(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 131.53(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 129.94(\mathrm{~d}, J=62.1 \mathrm{~Hz})$, $129.82,129.26(\mathrm{~d}, J=12.0 \mathrm{~Hz}), 128.58,128.54,127.66(\mathrm{~d}, J=8.9 \mathrm{~Hz}), 127.658(\mathrm{~d}, J$ $=61.5 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 60.51$.
$\operatorname{dppm}(\mathbf{A u C l})_{2}\left(\mathbf{L 8}(\mathrm{AuCl})_{2}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)(\delta, \mathrm{ppm}) 7.80-7.73(\mathrm{~m}, 8 \mathrm{H}), 7.51(\mathrm{t}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H})$, $7.47-7.40(\mathrm{~m}, 8 \mathrm{H}), 4.67(\mathrm{t}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- d_{6}) $(\delta$, ppm) $133.36(\mathrm{t}, J=7.0 \mathrm{~Hz}), 132.16(\mathrm{~s}), 129.16(\mathrm{t}, J=5.9 \mathrm{~Hz}), 128.76(\mathrm{~d}, J=33.3 \mathrm{~Hz})$, $24.55(\mathrm{t}, J=33.5 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.61$.

Chloro(methyldiphenylphosphine)gold(I) (L9AuCl)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 7.66-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.48$ $-7.44(\mathrm{~m}, 4 \mathrm{H}), 2.13(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $132.80(\mathrm{~d}, J=13.4 \mathrm{~Hz}), 132.09(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 130.50(\mathrm{~d}, J=62.3 \mathrm{~Hz}), 129.41(\mathrm{~d}, J$ $=11.7 \mathrm{~Hz}), 14.90(\mathrm{~d}, J=39.9 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 17.44$.

1,1'-Bis(di-tert-butylphosphino)ferrocene-(AuCl) $\mathbf{2}_{\mathbf{2}}\left(\mathbf{L 1 0}(\mathrm{AuCl})_{2}\right)$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $(\delta, \mathrm{ppm}) 4.84(\mathrm{~s}, 4 \mathrm{H}), 4.53(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.39(\mathrm{~d}, J$ $=15.5 \mathrm{~Hz}, 36 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 75.37(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 74.69$ (d, $J=9.5 \mathrm{~Hz}), 72.51(\mathrm{~d}, J=49.4 \mathrm{~Hz}), 37.20(\mathrm{~d}, J=28.4 \mathrm{~Hz}), 30.62(\mathrm{~d}, J=5.1 \mathrm{~Hz})$; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 68.92.

Chloro[(1,1'-biphenyl)-2-yldicyclohexylphosphine]gold(I) (L11AuCl)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 7.81-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.35$ $-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.07(\mathrm{~m}, 2 \mathrm{H}), 2.17-1.90(\mathrm{~m}, 4 \mathrm{H}), 1.87-1.71(\mathrm{~m}, 4 \mathrm{H}), 1.68-$ $1.55(\mathrm{~m}, 4 \mathrm{H}), 1.51-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.11(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ($\delta, \mathrm{ppm}) 148.97(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 141.45(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 134.32(\mathrm{~d}, J=7.3 \mathrm{~Hz})$, 132.55 (d, $J=7.4 \mathrm{~Hz}$), 130.82 (s), 129.02 (d, $J=94.3 \mathrm{~Hz}$), 128.41 (s$), 127.57$ (d, $J=$ $8.9 \mathrm{~Hz}), 124.91(\mathrm{~d}, J=51.6 \mathrm{~Hz}), 36.66(\mathrm{~d}, J=33.6 \mathrm{~Hz}), 31.26(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 29.51$ (s), $26.563(\mathrm{~s}), 26.556(\mathrm{~d}, J=26.0 \mathrm{~Hz}), 25.69(\mathrm{~s}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $(\delta$, ppm) 44.51.

Chloro[(1,1'-biphenyl)-2-yldi-tert-butylphosphine]gold(I) (L12AuCl)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 7.89-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.54$ - 7.46 (m, 2H), $7.45-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~d}$, $J=15.6 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $150.30(\mathrm{~d}, J=13.5 \mathrm{~Hz}$), 142.25 (d, $J=6.5 \mathrm{~Hz}$), 133.62 (d, $J=2.7 \mathrm{~Hz}), 133.37$ (d, $J=7.4 \mathrm{~Hz}$), 130.68 (d, $J=$ $2.3 \mathrm{~Hz}), 129.07(\mathrm{~d}, J=52.4 \mathrm{~Hz}), 128.35(\mathrm{~s}), 126.84(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 126.21(\mathrm{~d}, J=$ $45.5 \mathrm{~Hz}), 37.91(\mathrm{~d}, J=25.9 \mathrm{~Hz}), 31.00(\mathrm{~d}, J=6.7 \mathrm{~Hz}) ;{ }^{31} \mathrm{P} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (δ, ppm) 26.74.

Chloro[4-(di-tert-butylphosphaneyl)- \mathbf{N}, \mathbf{N}-dimethylaniline]gold(I) (L13AuCl)

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $(\delta, \mathrm{ppm}) 7.77-7.76(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 3.02 (s, 6 H), 1.37 (d, $J=15.4 \mathrm{~Hz}, 18 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 152.26 (s), 138.29 (s), 111.83 (s$), 111.44$ (d, $J=11.5 \mathrm{~Hz}$), 40.06 (s), 36.64 (d, $J=$ $28.0 \mathrm{~Hz}), 30.37$ (d, $J=5.9 \mathrm{~Hz}$); ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 76.69.

Chloro[di-tert-butyl(phenyl)phosphane]gold(I) (L14AuCl)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $(8, \mathrm{ppm}) 8.12-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.50$ $-7.37(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 136.37 (s), $131.94(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 128.59(\mathrm{~d}, J=10.7 \mathrm{~Hz}), 127.67(\mathrm{~d}, J=47.6 \mathrm{~Hz})$, 36.43 (d, $J=26.2 \mathrm{~Hz}), 30.22(\mathrm{~d}, J=5.9 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm})$ 79.65.

Chloro[1-(di-tert-butylphosphaneyl)-2-phenyl-1H-pyrrole]gold(I) (L15AuCl)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $(\delta, \mathrm{ppm}) 7.62(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.41(\mathrm{~m}, 2 \mathrm{H})$, $7.24-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.08-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.49-6.31(\mathrm{~m}$, $1 \mathrm{H}), 1.35(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $140.22(\mathrm{~s})$, 130.66 (d, $J=3.8 \mathrm{~Hz}$), 129.87 (s$), 129.20(\mathrm{~d}, J=173.4 \mathrm{~Hz}), 120.38(\mathrm{~d}, J=5.5 \mathrm{~Hz})$, 118.79 (d, $J=64.9 \mathrm{~Hz}), 109.25(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 37.91(\mathrm{~d}, J=31.0 \mathrm{~Hz}), 30.22(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR (162 MHz) (δ, ppm) 46.64.

Chloro[di-tert-butyl(1,1-diphenylprop-1-en-2-yl)phosphine]gold(I) (L16AuCl)

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $7.46-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.26$ (comp, 4H), $7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.00(\mathrm{comp}, 4 \mathrm{H}), 2.07(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.51(\mathrm{~d}, J=$ $15.3 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 162.32 (d, $J=13.9 \mathrm{~Hz}$), 143.59 (d, $J=11.9 \mathrm{~Hz}$), $142.49(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 129.22(\mathrm{~d}, J=46.0 \mathrm{~Hz}), 127.73(\mathrm{~d}, J=100.5$ Hz) $127.42(\mathrm{~d}, J=177.3 \mathrm{~Hz}), 123.27(\mathrm{~d}, J=38.8 \mathrm{~Hz}), 37.66(\mathrm{~d}, J=25.7 \mathrm{~Hz}), 31.46(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}), 22.01(\mathrm{~d}, J=2.9 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 66.93$.

Chloro\{di-tert-butyl(2'-methyl-[1,1'-biphenyl]-2-yl)phosphine\}gold(I) (L17AuCl)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 8.01-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.37$ $-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.07-6.76(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{dd}, J=$ $15.5,9.7 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $149.68(\mathrm{~d}, J=13.8 \mathrm{~Hz})$, $141.28(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 135.50(\mathrm{~s}), 133.95(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 133.41(\mathrm{~d}, J=7.6 \mathrm{~Hz})$, 131.31 (s), 130.99 (s), 130.24 (s), 128.70 (s), 127.03 (s), 126.74 (d, $J=6.6 \mathrm{~Hz}$), 125.43 (s), $38.01\left(\mathrm{dd}, J=26.0,14.0 \mathrm{~Hz}\right.$), $31.18(\mathrm{dd}, J=122.0,6.5 \mathrm{~Hz}), 20.81(\mathrm{~s}) ;{ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 60.40$.

Chloro[2'-(di-tert-butylphosphaneyl)- N, N-dimethyl-[1,1'-biphenyl]-2-amine]gold(I) $(\mathbf{L 1 8 A u C l})$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $7.89-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.49$ (comp, 2H), $7.48-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.96$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 6 \mathrm{H}), 1.53(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 9 \mathrm{H}), 1.25(\mathrm{~d}, J=15.3$ $\mathrm{Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 151.23$ (s), $149.24(\mathrm{~d}, J=13.3 \mathrm{~Hz})$, 136.37 (d, $J=5.5 \mathrm{~Hz}), 134.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 133.94(\mathrm{~s}), 131.13(\mathrm{~d}, J=76.3 \mathrm{~Hz})$, 129.43 (s), $127.10(\mathrm{~d}, J=46.2 \mathrm{~Hz}), 126.37(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 122.44(\mathrm{~s}), 121.18$ (s), $44.05(\mathrm{~s}), 38.14(\mathrm{~d}, J=26.1 \mathrm{~Hz}), 37.65(\mathrm{~d}, J=25.8 \mathrm{~Hz}), 31.70(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 30.34$ (d, $J=6.3 \mathrm{~Hz}$); ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $(\delta, \mathrm{ppm}) 62.01$.

Chloro[(1,1'-binaphthalen)-2-yldi-tert-butylphosphine]gold(I) (L19AuCl)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 8.23(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.11-7.97$ (comp, $3 \mathrm{H}), 7.93$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.51$ (comp, 2H), $7.50-7.42$ (m, 1H), $7.36-$ $7.30(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.18(\mathrm{comp}, 2 \mathrm{H}), 7.03-6.86(\mathrm{comp}, 2 \mathrm{H}), 1.44(\mathrm{dd}, J=15.5$, $11.5 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $147.90(\mathrm{~d}, J=13.2 \mathrm{~Hz}), 136.26$ (d, $J=7.9 \mathrm{~Hz}), 134.69(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 134.13(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 133.56$ (s), 129.44 (d, J $=13.0 \mathrm{~Hz}), 128.87(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 128.65(\mathrm{~d}, J=1.0 \mathrm{~Hz}), 127.44(\mathrm{~d}, J=7.1 \mathrm{~Hz})$, 124.98 (s), $38.16(\mathrm{dd}, J=25.3,22.9 \mathrm{~Hz}), 31.38(\mathrm{dd}, J=89.8,6.8 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR (162 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 62.51.

Chloro\{di-tert-butyl(2',4',6'-triisopropyl-[1,1'-biphenyl]-2-yl)phosphine\}gold(I) ($\mathbf{L 2 0 A u C l}$)

${ }^{1}{ }^{\mathrm{H}} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 7.93-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.43$ (comp, 2H), $7.36-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 2 \mathrm{H}), 2.98(\mathrm{dt}, J=13.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{dt}, J=13.4$, $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 18 \mathrm{H}), 1.37(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.28(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $6 \mathrm{H}), 0.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 150.21 (s), $148.65(\mathrm{~d}, J=14.3 \mathrm{~Hz}), 145.77(\mathrm{~s}), 135.61(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 135.03(\mathrm{~d}, J=8.0 \mathrm{~Hz})$, 134.53 (d, $J=3.1 \mathrm{~Hz}), 130.29(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 128.43(\mathrm{~d}, J=43.1 \mathrm{~Hz}), 126.48(\mathrm{~d}, J=$ 7.0 Hz), 121.94 (s$), 38.43(\mathrm{~d}, J=26.4 \mathrm{~Hz}$), 34.31 (s$), 31.39(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 30.94(\mathrm{~s})$, 26.29 (s), 24.46 (s), 23.11 (s); ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 59.17.

Chloro\{di-tert-butyl(2',4',6'-triisopropyl-3,4,5,6-tetramethyl-[1,1'-biphenyl]-2-yl) phosphine\}gold(I) (L21AuCl)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 7.04(\mathrm{~s}, 2 \mathrm{H}), 3.03-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H})$, $2.41-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.57-1.45(\mathrm{comp}, 21 \mathrm{H}), 1.38(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.29(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.85(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 150.38(\mathrm{~s}), 146.31(\mathrm{~d}, J=20.4 \mathrm{~Hz}), 145.88(\mathrm{~s}), 140.34(\mathrm{~d}, J=2.5$ $\mathrm{Hz}), 138.17(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 137.78(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 137.69(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 135.66(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}), 128.32(\mathrm{~d}, J=35.6 \mathrm{~Hz}), 122.68(\mathrm{~s}), 41.98(\mathrm{~d}, J=20.5 \mathrm{~Hz}), 34.36(\mathrm{~s})$, $33.58(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 30.80(\mathrm{~s}), 28.12(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 25.31(\mathrm{~s}), 25.17(\mathrm{~s}), 24.76(\mathrm{~s})$, $22.33(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 17.65(\mathrm{~d}, J=47.4 \mathrm{~Hz}) ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm})$ 77.67.

Chloro[3-(di-tert-butylphosphaneyl)-1--phenyl-1H-indole]gold(I) (L22AuCl)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 7.77-7.69(\mathrm{comp}, 2 \mathrm{H}), 7.63-7.57(\mathrm{comp}, 2 \mathrm{H})$, $7.26-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.19(\mathrm{comp}, 4 \mathrm{H}), 6.90-6.85(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~d}, J=16.3$ $\mathrm{Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) $(\delta, \mathrm{ppm}) 141.65(\mathrm{~d}, J=4.7 \mathrm{~Hz}), 137.83(\mathrm{~s})$, 130.42 (s), 130.24 (s), 130.04 (s$), 126.52(\mathrm{~d}, ~ J=7.6 \mathrm{~Hz}), 126.15(\mathrm{~d}, J=58.0 \mathrm{~Hz})$, 124.65 (s), $121.34(\mathrm{~d}, J=34.8 \mathrm{~Hz}), 113.56(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 111.98(\mathrm{~s}), 38.08(\mathrm{~d}, J=$ $29.4 \mathrm{~Hz}), 30.37(\mathrm{~d}, J=6.5 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $(\delta, \mathrm{ppm}) 48.86$.

Chloro[3-(di-tert-butylphosphaneyl)-1--phenyl-1H-indole]gold(I) (L23AuCl)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 7.93-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.62-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.33(\mathrm{comp}, 2 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.13(\mathrm{~m}, 1 \mathrm{H})$, $6.68-6.20(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 2.50-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.88-$
$1.49(\mathrm{~m}, 10 \mathrm{H}), 1.41-1.09(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ($\left.\delta, \mathrm{ppm}\right) 139.33(\mathrm{~d}$, $J=9.9 \mathrm{~Hz}), 137.49(\mathrm{~s}), 137.41(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 135.14(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 134.05(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}), 130.88(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 128.90(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 127.54(\mathrm{~s}), 122.46(\mathrm{~s}), 120.72$ (s), 120.37 (s), 110.24 (s$), 104.97$ (s$), 37.02$ (d, $J=32.9 \mathrm{~Hz}$), 35.82 (d, $J=33.9 \mathrm{~Hz}$), 31.82 (d, $J=5.6 \mathrm{~Hz}$), 30.96 (s$), 30.25(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 29.75(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 26.73$ (dd, $J=12.4,7.5 \mathrm{~Hz}$), 26.45 (dd, $J=20.7,12.9 \mathrm{~Hz}$), 25.68 (s). ${ }^{31} \mathrm{P}$ NMR (162 MHz , $\left.\mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 46.55$.

Chloro[S-dimethylene-[7,7'-(1,1'-spiroindan)]-phenylphospholine]gold(I) ($\mathbf{L 2 4 A u C l}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 7.53-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.27$ (comp, 4H), $7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.11(\mathrm{comp}, 3 \mathrm{H}), 6.85(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=16.0,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=14.5,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-2.98$ (comp, 3H), $2.98-2.84$ (comp, 3H), 2.32 (dd, $J=12.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{dd}, J=$ $12.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.83(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(151 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 147.94(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 147.71(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 143.98(\mathrm{~d}, J=3.6 \mathrm{~Hz})$, $143.80(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 133.73(\mathrm{~d}, J=12.6 \mathrm{~Hz}), 132.38(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 130.69(\mathrm{~d}, J=$ $6.2 \mathrm{~Hz}), 129.89(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 128.84(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 128.56(\mathrm{~d}, J=11.1 \mathrm{~Hz})$, $127.21(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 127.07(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 126.73(\mathrm{~s}), 125.64(\mathrm{~d}, J=11.4 \mathrm{~Hz})$, $124.96(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 124.69(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 61.78(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 38.21(\mathrm{~d}, J=$ $42.4 \mathrm{~Hz}), 31.75(\mathrm{~d}, J=28.4 \mathrm{~Hz}), 30.48(\mathrm{~d}, J=23.2 \mathrm{~Hz}), 26.21(\mathrm{~d}, J=34.8 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 27.00.

Chloro[di-tert-butyl(1-methyl-2,2-diphenylcyclopropyl)phosphine]gold(I) (L25AuCl)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $(\delta, \mathrm{ppm}) 7.56-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.32$ $-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=15.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.49(\mathrm{~m}$, $19 \mathrm{H}), 1.42(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $143.21(\mathrm{~s})$, 141.37 (d, $J=5.9 \mathrm{~Hz}$), 130.47 (s$), 129.65(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 129.34(\mathrm{~s}), 128.84(\mathrm{~s})$, 127.72 (s), 126.87 (s), 42.40 (s), $39.51(\mathrm{dd}, J=309.9,25.3 \mathrm{~Hz}$), $32.22(\mathrm{dd}, J=97.0$, $5.1 \mathrm{~Hz}), 27.40(\mathrm{~s}), 25.37(\mathrm{~d}, J=35.8 \mathrm{~Hz}), 24.26(\mathrm{~s}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 77.64.

Chloro[tri-tert-butylphosphine]gold(I) ($\mathbf{L 2 6 A u C l}$)

$\left({ }^{t} \mathrm{Bu}\right){ }_{3} \mathrm{PAuCl}$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 1.52(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 27 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 39.61(\mathrm{~d}, J=20.9 \mathrm{~Hz}), 32.38(\mathrm{~d}, J=4.0 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR (162 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 91.18.

Chloro[di-tert-butyl(methyl)phosphine]gold(I) (L27AuCl)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $1.49(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{~d}, J=15.2 \mathrm{~Hz}$, 18 H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 34.48 (d, $J=29.6 \mathrm{~Hz}$), 29.16 (d, $J=5.2$ $\mathrm{Hz}), 5.77(\mathrm{~d}, J=31.6 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $(\delta, \mathrm{ppm}) 58.18$

Chloro(tricyclohexylphosphine)gold(I) (L28AuCl)

$\mathrm{Cy}_{3} \mathrm{PAuCl}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 2.04-1.90(\mathrm{~m}, 9 \mathrm{H}), 1.90-1.78(\mathrm{~m}, 6 \mathrm{H}), 1.75$ - $1.67(\mathrm{~m}, 3 \mathrm{H}), 1.52-1.38(\mathrm{~m}, 6 \mathrm{H}), 1.36-1.18(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}) (δ, ppm) $33.44(\mathrm{~d}, J=31.0 \mathrm{~Hz}$), 30.89 (s), $27.10(\mathrm{~d}, J=12.2 \mathrm{~Hz}$), $25.94(\mathrm{~d}, J$ $=1.2 \mathrm{~Hz}) ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 54.65$.

Chloro(trimethylphosphine)gold(I) (L29AuCl)

```
(CH3)3 PAuCl
```

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $1.62(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 16.25(\mathrm{~d}, J=40.3 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $(\delta, \mathrm{ppm})-9.80$

General Procedure for the Optimization of Ligands, related to Table S2.

The $\mathbf{L n A u C l}$ complex (0.01 mmol) and AgSbF_{6} ($3.34 \mathrm{mg}, 0.01 \mathrm{mmol}$) were suspended in DCE (0.5 mL). The reaction was stirred at room temperature for 2.0 hours. The solvent was evaporated and the mixture dissolved in 0.5 mL of DCE. Then the mixture was filtered through a pad of Celite, which was added into a solution of 1a ($58 \mathrm{mg}, 0.2 \mathrm{mmol}$) in $\mathrm{DCE}(0.5 \mathrm{~mL})$ at $25{ }^{\circ} \mathrm{C}$ for 12.0 hours. Afterwards, 1,3,5-trimethoxybenzene ($16.8 \mathrm{mg}, 0.1 \mathrm{mmol}$) was added into the reaction mixture, and yield determined by proton NMR using 1,3,5-trimethoxybenzene as the internal standard. E.g., "L1, 0%; 89% " is equal to "L1AuCl, $0 \% \mathbf{2 a} ; 89 \%$ 3a".

General Procedure for the Gold-Catalyzed Aromatization, related to Scheme1 Method A

A solution of diazoacetate 1 or 4 (0.2 mmol) in 1,2-dichloroethane (2.0 mL) was added over 5 min to a $10-\mathrm{mL}$ oven-dried flask containing a magnetic stirring bar, and JohnphosAu $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{SbF}_{6}(7.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 5.0 \mathrm{~mol} \%)$ in dry 1,2-dichloroethane $(2.0 \mathrm{~mL})$ using a syringe at room temperature under argon atmosphere. After the addition, the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 12 hours. Then, the solvent was removed under reduced pressure and the crude product was purified by column chromatography on a silica gel (solvents: ethyl acetate/petroleum ether $=1 / 10$) to afford the pure naphthalene derivatives $\mathbf{2}$ or $\mathbf{5}$ in $62 \%-94 \%$ yields.
(The experimental procedure for the synthesis of $\mathbf{6}$ is same to that mentioned above in Method A, related to Figure 2A.)

Method B

A solution of diazoacetate $\mathbf{1 4}$ ($69.6 \mathrm{mg}, 0.2 \mathrm{mmol}$) in dry 1,2-dichloroethane (2.0 mL) was added over 5 min to a $10-\mathrm{mL}$ oven-dried flask containing a magnetic stirring bar, JohnphosAu $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{SbF}_{6}(7.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 5.0 \mathrm{~mol} \%)$, and nucleophiles (0.3 mmol, 1.5 equiv) in dry 1,2-dichloroethane (2.0 mL) using a syringe at room temperature under argon atmosphere. After the addition, the reaction mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 3 hours (performed for 12 h in the case of $\mathbf{1 5 i}$). Then, the solvent was removed under reduced pressure and the crude product was purified by column chromatography on a silica gel (solvents: ethyl acetate/petroleum ether $=1 / 10$ to $1 / 5$) to afford the pure products $\mathbf{1 5}$ in $53 \%-94 \%$ yields.

Methyl 3-phenyl-2-naphthoate.

$47.7 \mathrm{mg}, 91 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 8.41(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.83$ (s, 1H), $7.63-7.52$ (comp, 2H), $7.48-$ 7.35 (comp, 5H), 3.71 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 169.1, 141.6, 138.9, 134.5, 131.7, 131.1, 129.9, 129.2, 128.7, 128.6, 128.4, 128.2, 127.9, 127.2, 126.9, 52.2. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 285.0886$, found 285.0881 .

Isopropyl 3-phenyl-2-naphthoate.

$52.8 \mathrm{mg}, 91 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $8.38(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.52$ (comp, 2H), $7.44-$ 7.34 (comp, 5 H), 5.05 (dt, $J=12.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.07$ (d, $J=6.3 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 168.5, 141.7, 138.8, 134.3, 131.7, 130.7, 130.3, 129.7, $128.8,128.6,128.2,128.1,127.9,127.1,126.8,68.8,21.5$. HRMS (TOF MS CI ${ }^{+}$) calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 313.1199$, found 313.1215.

tert-Butyl 3-phenyl-2-naphthoate.

$54.8 \mathrm{mg}, 90 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $(\delta, \mathrm{ppm}) 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.35$ $(\mathrm{m}, 5 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 168.2, 142.2, 138.8, $134.2,131.8,131.5,130.6,129.6,128.9,128.6,128.1,128.0,127.9,127.0,126.7$, 81.5, 27.7. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 327.1356$, found 327.1351.

Benzyl 3-phenyl-2-naphthoate.

$60.2 \mathrm{mg}, 89 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.84$ (s, 1H), $7.62-7.58$ (m, 1H), $7.57-7.53$ (m, 1H), $7.44-7.36$ (comp, 5H), $7.33-7.28$ (comp, 3H), $7.20-6.97$ (comp, 2H), 5.17 (s, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 168.7, 141.6, 138.8, 135.5, 134.5, $131.70,131.65,131.2,129.9,129.3,128.71,128.70,128.5,128.4,128.3,128.2,127.9$, 127.2, 126.8 67.2. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 361.1199, found 361.1194.

Cinnamyl 3-phenyl-2-naphthoate.

$67.1 \mathrm{mg}, 92 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $(\delta, \mathrm{ppm}) 8.45(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.63-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.53$ $(\mathrm{m}, 1 \mathrm{H}), 7.47-7.38(\mathrm{comp}, 4 \mathrm{H}), 7.37-7.32(\mathrm{comp}, 5 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 6.52-$ $6.42(\mathrm{~m}, 1 \mathrm{H}), 6.07-5.95(\mathrm{~m}, 1 \mathrm{H}), 4.77(\mathrm{dd}, J=6.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 168.6,141.7,138.9,136.4,134.5,134.2,131.7,131.2,129.9$, 129.4, 128.8, 128.74, 128.67, 128.4, 128.2, 128.1, 127.9, 127.2, 126.9, 126.7, 122.9 65.7 HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 387.1356$, found 387.1370.

Methyl 3-(p-tolyl)-2-naphthoate.

$49.8 \mathrm{mg}, 90 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ($\left.\delta, \mathrm{ppm}\right) 8.37(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.59-7.49$ (comp, 2H), $7.32-$ 7.28 (comp, 2H), $7.26-7.21$ (comp, 2H), 3.72 (s, 3H), 2.41 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 169.2,138.9,138.6,136.9,134.5,131.6,131.0,129.8,129.2$, $128.9,128.6,128.5,128.3,127.9,126.7,52.2,21.3$. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 299.1043$, found 299.1044.

Methyl 3-(m-tolyl)-2-naphthoate.

$49.2 \mathrm{mg}, 89 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $8.38(\mathrm{~s}, 1 \mathrm{H}), 7.94$ (d, $J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.50(\mathrm{comp}, 2 \mathrm{H}), 7.37-$ $7.29(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.15(\mathrm{comp}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 169.3, 141.5, 139.0, 137.8, 134.5, 131.7, 131.0, 129.8, 129.34, 129.28, 128.7, 128.3, 128.03, 128.01, 127.9, 126.8, 125.8, 52.2, 21.6. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 299.1043$, found 299.1049.

Methyl 3-(o-tolyl)-2-naphthoate.

$44.8 \mathrm{mg}, 81 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 8.56(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.66-7.50(\mathrm{comp}, 2 \mathrm{H}), 7.35-$ 7.23 (comp, 3H), 7.19 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 167.9,141.7,139.1,135.8,134.7,131.7,131.4,130.0,129.5$, 129.0, 128.9, 128.7, 128.5, 127.8, 127.4, 126.8, 125.4, 52.1, 20.2. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 299.1043$, found 299.1042.

Methyl 3-(4-methoxyphenyl)-2-naphthoate (2i).

$52.0 \mathrm{mg}, 89 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $8.38(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.50(\mathrm{comp}, 2 \mathrm{H}), 7.43-$ 7.32 (comp, 2H), $7.04-6.95$ (comp, 2H), 3.87 (s, 3H), 3.74 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 169.3, 159.0, 138.4, 134.5, 133.9, 131.5, 131.0, 129.71, $129.66,129.3,128.6,128.3,127.8,126.7,113.7,55.4,52.2$. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 315.0992$, found 315.0986.

Methyl 3-(4-fluorophenyl)-2-naphthoate.

$51.6 \mathrm{mg}, 92 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $8.42(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.53(\mathrm{comp}, 2 \mathrm{H}), 7.39-$ 7.33 (comp, 2H), $7.20-7.08$ (comp, 2H), 3.73 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $(\delta, \mathrm{ppm}) 168.8,162.4(\mathrm{~d}, J=246.0 \mathrm{~Hz}), 137.9,137.6(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 134.5,131.7$, $131.4,130.2(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 130.0,128.9,128.8,128.5,127.9,127.0,115.1(\mathrm{~d}, J=$ 21.5 Hz), 52.3 ; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) -115.69. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{FNaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 303.0792$, found 303.0785.

Methyl 3-(4-chlorophenyl)-2-naphthoate.

$52.2 \mathrm{mg}, 88 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.53(\mathrm{comp}, 2 \mathrm{H}), 7.44-$ 7.37 (comp, 2H), $7.35-7.29$ (comp, 2H), 3.74 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 168.7, 140.1, 137.8, 134.5, 133.3, 131.8, 131.5, 129.99, 129.97, 128.8, 128.7, 128.6, 128.3, 127.9, 127.1, 52.3. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{ClNaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 319.0496$, found 319.0500.

Methyl 3-(4-bromophenyl)-2-naphthoate.

$56.0 \mathrm{mg}, 82 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.52(\mathrm{comp}, 4 \mathrm{H}), 7.31-$ 7.23 (comp, 2H), 3.74 (s, 3H).; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 168.6, 140.6, $137.8,134.5,131.8,131.6,131.3,130.3,129.9,128.8,128.62,128.55,127.9,127.1$, 121.5, 52.3. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{BrNaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 362.9991 , found 362.9992 .

Methyl 3-(4-(trifluoromethyl)phenyl)-2-naphthoate.

$44.3 \mathrm{mg}, 67 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $(\delta, \mathrm{ppm}) 8.49(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-$ 7.55 (comp, 2H), $7.54-7.47$ (comp, 2H), 3.73 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 168.4, 145.5, 137.7, 134.5, 132.0, 131.8, 130.2, 129.1, 128.9, 128.8, 128.3, $128.0,127.4,125.1(\mathrm{q}, J=3.7 \mathrm{~Hz}), 52.3$; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) -62.32. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NaO}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$: 353.0760, found 353.0755 .

Methyl [1,2'-binaphthalene]-3'-carboxylate.

$51.9 \mathrm{mg}, 83 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 8.65(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.96-7.87$ (comp, 4H), $7.67-7.55$ (comp, 4H), $7.52-7.46$ (comp, 2H), $7.42-7.36(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ($\left.\delta, \mathrm{ppm}\right) 167.9,139.9$, 137.6, 134.7, 133.3, 132.5, 132.0, 131.4, 131.0, 129.7, 128.9, 128.6, 128.3, 127.9, 127.7, 127.0, 126.4, 126.1, 125.7, 125.3, 52.0. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 335.1048$, found 335.1041.

Methyl 2-methoxy-[1,2'-binaphthalene]-3'-carboxylate.

$62.3 \mathrm{mg}, 91 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $8.70(\mathrm{~s}, 1 \mathrm{H}), 8.10-8.01$ $(\mathrm{m}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.81(\mathrm{comp}, 3 \mathrm{H}), 7.65-7.56$ (comp, 2H), $7.49-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.30(\mathrm{comp}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.58$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 167.7, 153.6, 134.9, 133.7, 133.5, 132.0, 131.7, 131.5, 130.1, 129.2, 129.1, 129.0, 128.2, 128.1, 127.9, 126.8, 126.4,
125.0, 124.8, 123.5, 113.3, 56.6, 51.9. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{NaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 365.1154$, found 365.1151.

Methyl 3-(thiophen-2-yl)-2-naphthoate.

$43.5 \mathrm{mg}, 81 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $(\delta, \mathrm{ppm}) 8.31(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H})$, 7.91 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.86 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.52$ (comp, 2H), $7.40-7.35$ $(\mathrm{m}, 1 \mathrm{H}), 7.14-7.06$ (comp, 2H), 3.81 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $169.0,142.5,134.2,131.9,130.8,130.6,130.5,129.7,128.6,128.4,127.9,127.3$, 127.2, 126.4, 125.8, 52.4. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{NaO}_{2} \mathrm{~S}^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 291.0456$, found 291.0457.

Methyl 3-cyclopropyl-2-naphthoate.

$34.4 \mathrm{mg}, 76 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $8.37(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.49(\mathrm{comp}, 2 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 1 \mathrm{H})$, $3.98(\mathrm{~s}, 3 \mathrm{H}), 2.77-2.63(\mathrm{~m}, 1 \mathrm{H}), 1.09-0.95(\mathrm{comp}, 2 \mathrm{H}), 0.84-0.69$ (comp, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 168.9, 140.4, 135.0, 131.2, 130.9, 130.0, 128.7, 128.1, 127.3, 126.0, 125.3, 52.2, 14.4, 8.2. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 249.0892$, found 249.0876.

1-(3-Phenylnaphthalen-2-yl)ethan-1-one.

$39.9 \mathrm{mg}, 81 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.63-7.51(\mathrm{comp}, 2 \mathrm{H}), 7.51-$ 7.39 (comp, 5H), $2.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 204.4, 141.1, 139.4, 137.6, 134.2, 131.9, 129.6, 129.1, 128.9, 128.8, 128.6, 128.1, 127.9, 127.8, 126.9, 30.6. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 269.0937$, found 269.0941 .

Phenyl (3-phenylnaphthalen-2-yl)methanone.

$38.2 \mathrm{mg}, 62 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $8.04(\mathrm{~s}, 1 \mathrm{H}), 8.00-7.87$ (comp, 3H), $7.78-7.68$ (comp, 2H), $7.63-7.54$ (comp, 2H), $7.47-7.42$ (m, 1H), $7.38-7.34$ (comp, 2H), $7.33-7.28$ (comp, 2H), 7.27 - 7.22 (comp, 2H), $7.22-7.17$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 198.4, 140.5, 138.6, 137.8, 137.5, 134.2, 133.0, 131.7, 130.2, 129.5, 129.3, 129.2, 128.6, 128.4, 128.3, 128.1, 128.0, 127.3, 127.0. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 331.1093, found 331.1089.
(R)-(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl 2-methoxy-[1,2'-binaphthalene]-3'-carboxylate.

$42.0 \mathrm{mg}, 45 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $8.72(\mathrm{~s}, 1 \mathrm{H}), 8.12-8.03$ $(\mathrm{m}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.83(\mathrm{comp}, 2 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.55$ (comp, 2H), $7.45-7.28$ (comp, 4H), $4.67-4.54(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.75(\mathrm{~m}$, $1 \mathrm{H}), 1.61-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.18(\mathrm{comp}, 3 \mathrm{H}), 0.97-0.89(\mathrm{~m}$, $1 \mathrm{H}), 0.87-0.83(\mathrm{~m}, 3 \mathrm{H}), 0.70-0.60(\mathrm{~m}, 1 \mathrm{H}), 0.50(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.63(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.43-0.30(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 167.2, 153.5, 134.8, 134.0, 133.5, 132.0, 131.6, 131.4, 130.9, 129.03, 128.98, 128.9, 128.0, 127.9, 127.8, $126.7,126.3,125.4,123.4,113.0,74.5,56.4,46.5,40.3,34.2,31.2,25.6,23.0,22.1$, 20.7, 15.9. (δ, ppm) HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 467.2581, found 467.2593. -3'-carboxylate.

$42.0 \mathrm{mg}, 45 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 8.77 (s, 1H), 8.19 - 8.11 (m, 1H), 8.02 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.99-7.87(\mathrm{comp}, 3 \mathrm{H}), 7.75-7.64(\mathrm{comp}, 2 \mathrm{H}), 7.49$ (d, $J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.39$ (m, 1H), 7.37 - 7.33 (comp, 2H), 4.63 (td, $J=10.8,4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.51$ (comp, 4H), $1.43-1.26$ (comp, 2H), $0.98-0.90(\mathrm{~m}$, $1 \mathrm{H}), 0.82(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.73-0.66(\mathrm{~m}, 1 \mathrm{H}), 0.64(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.07--0.04(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 167.1, 153.6, 134.9, 134.2, 133.3, 132.0, 131.6, 131.5, 130.9, 129.0, 128.9, 128.8, 128.0, $127.79,127.75,126.6,126.4,125.3,125.0,123.4,113.3,74.3,56.4,46.6,39.7,34.1$, 31.1, 25.6, 22.9, 22.0, 21.0, 15.8. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{O}_{3}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 467.2581$, found 467.2593 .

Ethyl 1-hydroxy-3-phenyl-2-naphthoate.

76% yield with $\mathbf{4 b}$ and 91% yield with $\mathbf{4 c} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 12.32 (s, 1H), 8.46 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.74$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.60$ (m, 1H), $7.57-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.31$ (comp, 5 H), 7.21 (s, 1H), 4.05 (q, J = $7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 0.79 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 171.9, 161.5, 143.8, 139.6, 135.7, 129.9, 128.6, 127.6, 127.5, 126.6, 125.9, 124.2, 124.1, 121.3, 106.1, 61.1, 13.1. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NaO}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$: 315.0992, found 315.0986 .

Ethyl 1-acetoxy-3-phenyl-2-naphthoate.

$62.2 \mathrm{mg}, 93 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $7.97-7.83$ (comp, 2H),
$7.78(\mathrm{~s}, 1 \mathrm{H}), 7.63-7.54(\mathrm{comp}, 2 \mathrm{H}), 7.50-7.35(\mathrm{comp}, 5 \mathrm{H}), 4.08(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.48(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 169.3$, $166.8,145.7,140.6,138.1,134.6,128.6,128.4,128.2,127.6,127.3,127.0,126.0$, 123.6, 122.2, 61.5, 20.8, 13.7. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NaO}_{4}{ }^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 357.1097$, found 357.1105.

Ethyl 1-((4-methoxybenzoyl)oxy)-3-phenyl-2-naphthoate

$74.1 \mathrm{mg}, 87 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $(\delta, \mathrm{ppm}) 8.28(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.91(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.49(\mathrm{comp}, 3 \mathrm{H})$, $7.45-7.37(\mathrm{comp}, 3 \mathrm{H}), 7.07-7.01(\mathrm{comp}, 2 \mathrm{H}), 4.00(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H})$, $0.88(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 166.8,164.7,164.3$, $145.8,140.5,138.1,134.7,132.8,128.7,128.5,128.2,128.2,127.6,127.3,127.0$, $126.4,124.2,122.5,121.3,114.2,61.5,55.7,13.7$. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{NaO}_{5}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 449.1359 , found 449.1359 .

Ethyl 1-((4-methylphenyl)sulfonamido)-3-phenyl-2-naphthoate.

$72.2 \mathrm{mg}, 81 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 8.72-8.63(\mathrm{~m}, 1 \mathrm{H}), 8.24$ $(\mathrm{s}, 1 \mathrm{H}), 7.86-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.68-7.57(\mathrm{comp}, 2 \mathrm{H}), 7.51-7.42(\mathrm{comp}$, $2 \mathrm{H}), 7.39-7.29(\mathrm{comp}, 3 \mathrm{H}), 7.25-7.21(\mathrm{comp}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.38$ $(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 0.47(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 168.6,143.7,141.7,137.9,136.0,134.9,133.3,130.4,129.6,129.3$, $128.9,128.3,128.2,128.0,127.6,127.4,127.2,126.9,126.2,61.6,21.6,12.7$. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NNaO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 468.1240$, found 468.1257 .

Benzo[j]phenanthridin-6(5H)-one (Gao, et al., 2019).

$45.6 \mathrm{mg}, 93 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) (δ, ppm) $11.55(\mathrm{~s}, 1 \mathrm{H}), 9.08(\mathrm{~s}$, $1 \mathrm{H}), 8.98(\mathrm{~s}, 1 \mathrm{H}), 8.56-8.50(\mathrm{~m}, 1 \mathrm{H}), 8.24-8.15(\mathrm{comp}, 2 \mathrm{H}), 7.75-7.69(\mathrm{~m}, 1 \mathrm{H})$, $7.66-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) (δ, ppm) 161.1, 136.4, 134.9, 131.6, 130.4, 129.5, 129.1, 128.6, 128.5, 128.1, 126.8, 124.1, 123.5, 122.4, 121.5, 118.0, 116.3. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{NNaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 268.0733$, found 268.0720.

Ethyl 1-hydroxy-4-(1H-indol-3-yl)-3-(4-methoxyphenyl)-2-naphthoate (15a).

$72.6 \mathrm{mg}, 83 \%$ yield. White solid, $\mathrm{mp}: 175-176{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta$, ppm) $12.30(\mathrm{~s}, 1 \mathrm{H}), 8.55-8.53(\mathrm{~m}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.44-$ $7.40(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.05-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.74-$ $6.71(\mathrm{~m}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.95(\mathrm{~m}$, $2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 0.74(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $172.4,160.5,157.8,139.2,136.6,135.6,135.4,130.6,129.6,129.5,127.3,125.6$, $125.0,124.3,123.92,123.90,121.8,120.2,119.7,114.0,112.2,111.0,107.5,61.1$, 55.3, 13.3. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 460.1519$, found 460.1508 .

Ethyl 4-(4-chloro-1H-indol-3-yl)-1-hydroxy-3-(4-methoxyphenyl)-2-naphthoate.

$79.1 \mathrm{mg}, 84 \%$ yield. White solid, $\mathrm{mp}: 204-205{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta$, ppm) $12.49(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.45-$ $7.38(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.05-6.96$ (comp, 4H), $6.70(\mathrm{dd}, J=8.3,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.66(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{dd}, J=8.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.66$ $(\mathrm{s}, 3 \mathrm{H}), 0.75(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 172.5, 160.9, 157.6, 139.0, 137.9, 136.8, 135.8, 130.6, 129.8, 129.6, 127.1, 126.4, 126.1, 125.8, $125.5,124.5,123.9,123.7,122.5,120.5,113.7,112.29,112.25,109.9,107.1,61.0$, 55.2, 13.2. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{ClNO}_{4} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 494.1130, found 494.1096.

Ethyl 4-(4-bromo-1H-indol-3-yl)-1-hydroxy-3-(4-methoxyphenyl)-2-naphthoate.

$89.8 \mathrm{mg}, 87 \%$ yield. White solid, $\mathrm{mp}: 215-216{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta$, ppm) $12.51(\mathrm{~s}, 1 \mathrm{H}), 8.57-8.49(\mathrm{~m}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.45-$ $7.41(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.03-6.93$ (comp, $3 \mathrm{H}), 6.71-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.50-6.44(\mathrm{~m}, 1 \mathrm{H}), 4.03-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 0.75$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 172.5, 161.0, 157.5, 139.1, $138.2,136.5,135.8,130.6,129.7,129.6,127.3,127.2,126.1,125.5,124.2,124.0$, 123.8, 123.7, 122.8, 114.5, 114.4, 112.3, 110.6, 107.1, 61.1, 55.2, 13.2. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{BrNO}_{4} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 538.0624$, found 538.0589.

Ethyl 1-hydroxy-3-(4-methoxyphenyl)-4-(5-methyl-1H-indol-3-yl)-2-naphthoate.

$64.4 \mathrm{mg}, 71 \%$ yield. White solid, $\mathrm{mp}: 184-185{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta$, ppm) $12.31(\mathrm{~s}, 1 \mathrm{H}), 8.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.46-$ $7.40(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-6.99(\mathrm{comp}, 3 \mathrm{H}), 6.79-6.72(\mathrm{~m}, 2 \mathrm{H})$, $6.55(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}$, $3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 0.77(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $172.4,160.4,157.7,139.1,136.6,135.6,133.8,130.6,129.8,129.6,128.9,127.4$, $125.6,125.1,124.3,124.1,123.9,123.4,119.7,113.4,112.3,112.2,110.7,107.5,61.1$, 55.2, 21.6, 13.2. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 474.1676, found 474.1695.

Ethyl 4-(5-fluoro-1H-indol-3-yl)-1-hydroxy-3-(4-methoxyphenyl)-2-naphthoate.

$77.4 \mathrm{mg}, 85 \%$ yield. White solid, mp: 172-173 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $12.37(\mathrm{~s}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.42$ (comp, 3H), $7.20-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=8.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=$ $9.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{dd}, J=8.4,2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.99(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 0.75(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 172.3,159.2(\mathrm{~d}, J=284.0 \mathrm{~Hz}), 158.1(\mathrm{~d}, J=234.6 \mathrm{~Hz})$, 139.4, 136.4, 135.4, 131.9, 130.5, 129.8, 129.7, 129.6, 126.9, 126.7, 125.7, 124.3, $123.9,123.3,114.2(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 112.3,111.7(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 110.3(\mathrm{~d}, J=26.5 \mathrm{~Hz})$, $107.4,104.8(\mathrm{~d}, J=23.5 \mathrm{~Hz}), 61.1,55.3,13.2 ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm})$ -124.4. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{FNO}_{4} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 478.1425, found 478.1464 .

Ethyl 4-(5-chloro-1H-indol-3-yl)-1-hydroxy-3-(4-methoxyphenyl)-2-naphthoate (15f)

$76.3 \mathrm{mg}, 81 \%$ yield. White solid, mp : $195-196{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta$, ppm) $12.37(\mathrm{~s}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.45-$ $7.44(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.08(\mathrm{comp}, 3 \mathrm{H}), 7.00(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.70(\mathrm{~m}$, $2 \mathrm{H}), 6.65(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{dd}, J=8.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.69(\mathrm{~s}, 3 \mathrm{H}), 0.75(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 172.2, 160.7, 157.8, 139.4, 136.5, 135.4, 133.8, 130.5, 130.4, 129.8, 129.6, 126.9, 126.3, $125.8,125.5,124.3,124.0,123.1,122.2,119.4,113.8,112.3,112.2,112.1,107.4$, 61.2, 55.3, 13.2. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{ClNO}_{4} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 494.1130, found 494.1160.

Ethyl 4-(5-bromo-1H-indol-3-yl)-1-hydroxy-3-(4-methoxyphenyl)-2-naphthoate.

$88.5 \mathrm{mg}, 86 \%$ yield. White solid, mp: 210-211 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta$, ppm) $12.37(\mathrm{~s}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.45$ (d, $J=3.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=8.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.63(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.47$ (dd, $J=8.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 0.75(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 172.2, 160.7, 157.8, 139.5, 136.4, $135.4,134.0$, 131.1, 130.5, 129.9, 129.6, 126.9, 126.2, 125.8, 124.8, 124.3, 124.0, 123.0, 122.4, 113.8, 113.1, 112.6, 112.4, 112.3, 107.4, 61.2, 55.3, 13.2. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{BrNO}_{4} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 538.0624$, found 538.0642.

Ethyl 1-hydroxy-4-(5-methoxy-1H-indol-3-yl)-3-(4-methoxyphenyl)-2-naphthoate

$70.0 \mathrm{mg}, 75 \%$ yield. White solid, $\mathrm{mp}: 177-178{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta$, ppm) $12.28(\mathrm{~s}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.46-$ $7.41(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.78-6.75(\mathrm{~m}, 1 \mathrm{H}), 6.72-6.69(\mathrm{~m}, 1 \mathrm{H}), 6.60-6.59(\mathrm{~m}, 2 \mathrm{H}), 6.46-6.44(\mathrm{~m}$, $1 \mathrm{H}), 4.02-3.96(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 0.75(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 172.3, 160.4, 157.8, 154.2, 139.2, 136.6, 135.5, 130.6, 129.9, 129.64, 129.60, 127.3, 125.7, 125.6, 124.3, 124.0, 123.9, 113.8, 112.3, $112.2,111.8,107.6,101.5,61.1,55.8,55.2,13.2$. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 490.1625$, found 490.1601 .

Ethyl 4-(5-cyano-1H-indol-3-yl)-1-hydroxy-3-(4-methoxyphenyl)-2-naphthoate

$84.1 \mathrm{mg}, 91 \%$ yield. White solid, mp: 289-290 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) $(\delta$, ppm) $11.63(\mathrm{~s}, 1 \mathrm{H}), 10,68(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.46$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.26(\mathrm{~d}, J=2.2,1 \mathrm{H})$, $7.12(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{~s}$, $3 \mathrm{H}), 0.84(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}$) (δ, ppm) 168.6, 157.7, $151.9,138.2,137.3,134.7,132.5,130.9,129.7,128.8,128.18,128.17,126.3,125.5$, $124.3,124.2,123.7,122.8,122.0,120.6,115.9,112.9,112.3,100.9,60.5,54.9,13.4$. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 485.1472, found 485.1484.

Methyl 3-(3-(ethoxycarbonyl)-4-hydroxy-2-(4-methoxyphenyl)naphthalen-1-yl) -1H-indole-5-carboxylate

$88.7 \mathrm{mg}, 90 \%$ yield. White solid, mp: 320-321 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $(\delta$, ppm) $11.44(\mathrm{~s}, 1 \mathrm{H}), 10.62(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=8.6,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.63$ (s, 1H), $7.60-7.54$ (m, 1H), $7.46-7.43$ (m, 2H), 7.35 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.16(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.72-6.53(\mathrm{comp}, 3 \mathrm{H}), 3.95(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}$, $3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}$) (δ, ppm) 168.4, 167.1, 157.7, 151.5, 138.10, 138.09, 134.7, 132.5, 128.3, 128.1, 127.9, 126.5, $125.5,124.1,122.7,122.5,122.0,121.2,120.4,116.2,113.2,112.3,111.6,60.5,54.9$, 51.6, 13.4. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{NO}_{6} \mathrm{Na}^{+}$[M+Na] ${ }^{+}$: 518.1574, found 518.1528.

Ethyl 4-(6-fluoro-1H-indol-3-yl)-1-hydroxy-3-(4-methoxyphenyl)-2-naphthoate.

$79.2 \mathrm{mg}, 87 \%$ yield. White solid, $\mathrm{mp}: 178-179{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $12.36(\mathrm{~s}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.39$ (comp, 3H), $7.08-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{dd}, J=9.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.71(\mathrm{comp}, 3 \mathrm{H}), 6.62(\mathrm{~d}, J$ $=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{dd}, J=8.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 0.76(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 172.3, $160.8(\mathrm{~d}, J=51.4 \mathrm{~Hz}$), $158.3(\mathrm{~d}, J=93.7 \mathrm{~Hz}), 139.3,136.6,135.4,135.27(\mathrm{~d}, J=12.6 \mathrm{~Hz}), 130.6,129.7$, $129.5,127.0,126.0,125.7,125.2(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 124.3,123.9,123.5,120.7(\mathrm{~d}, J=$ $10.1 \mathrm{~Hz}), 114.1,112.3(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 108.5(\mathrm{~d}, J=24.4 \mathrm{~Hz}), 107.4,97.34(\mathrm{~d}, J=$ 26.1 Hz), 61.1, 55.2, 13.2; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) -121.6. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{FNO}_{4} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 478.1431$, found 478.1452.

Ethyl 4-(6-chloro-1H-indol-3-yl)-1-hydroxy-3-(4-methoxyphenyl)-2-naphthoate.

$87.6 \mathrm{mg}, 93 \%$ yield. White solid, mp: 198-199 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $12.36(\mathrm{~s}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.46-$ $7.41(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{dd}, J=8.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.96(\mathrm{~m}$, 2H), $3.70(\mathrm{~s}, 3 \mathrm{H}), 0.75(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 172.3, 160.7, 157.8, 139.4, 136.5, 135.7, 135.4, 130.6, 129.7, 129.5, 128.0, 127.8, 126.9 , 125.7, 125.6, 124.3, 124.0, 123.2, 120.9, 120.5, 114.2, 112.4, 112.3, 111.0, 107.4, 61.2, 55.3, 13.2. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{ClNO}_{4} \mathrm{Na}^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 494.1130$, found 494.1088 .

Ethyl 1-hydroxy-3-(4-methoxyphenyl)-4-(6-methyl-1H-indol-3-yl)-2-naphthoate.

$66.7 \mathrm{mg}, 74 \%$ yield. White solid, $\mathrm{mp}: 216-217{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta$, ppm) $12.31(\mathrm{~s}, 1 \mathrm{H}), 8.56(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.44-$ $7.40(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.03(\mathrm{comp}, 3 \mathrm{H}), 6.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.73(\mathrm{~m}, 2 \mathrm{H})$, $6.53(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{dd}, J=8.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}$, $3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 0.76(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $172.3,160.4,157.7,139.0,136.6,135.9,135.6,131.5,130.6,129.60,129.57,127.4$, $127.3,125.6,124.4,124.3,124.1,123.9,121.5,119.8,113.7,112.3,112.2,111.0$, 107.5, 61.1, 55.2, 21.8, 13.2. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{Na}^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 474.1676$, found 474.1658 .

Ethyl 1-hydroxy-3-(4-methoxyphenyl)-4-(7-methyl-1H-indol-3-yl)-2-naphthoate

$54.1 \mathrm{mg}, 60 \%$ yield. White solid, $\mathrm{mp}: 161-162{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta$, ppm) $12.34(\mathrm{~s}, 1 \mathrm{H}), 8.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.44-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.00-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.80-6.72(\mathrm{~m}, 2 \mathrm{H})$, $6.61(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{dd}, J=8.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H})$, $2.43(\mathrm{~s}, 3 \mathrm{H}), 0.77(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 172.4, 160.4, 157.7, 139.1, 136.6, 135.6, 135.0, 130.6, 129.7, 129.6, 129.0, 127.3, 125.6, 124.7, 124.3, 124.1, 123.8, 122.4, 120.1, 119.9, 117.9, 114.4, 112.4, 112.2, 107.5, 61.1, 55.2, 16.6, 13.2. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 474.1676, found 474.1627.

Ethyl 4-(7-chloro-1H-indol-3-yl)-1-hydroxy-3-(4-methoxyphenyl)-2-naphthoate

$80.1 \mathrm{mg}, 85 \%$ yield. White solid, mp: 144-145 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $12.36(\mathrm{~s}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.45-$ 7.40 (m, 2H), $7.18-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=8.4,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.94(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.71$ (comp, 3H), 6.46 (dd, $J=8.5,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.01-3.96(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 0.75(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) (δ, ppm) 172.3, 160.7, 157.9, 139.4, 136.5, 135.3, 132.8, 130.8, 130.6, 129.7, $129.5,127.0,125.7,125.6,124.3,124.0,123.2,121.3,120.6,118.8,116.5,115.2$, 112.4, 107.5, 61.2, 55.3, 13.3. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{ClNO}_{4} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 494.1130$, found 494.1093.

Methyl 3-(3-(ethoxycarbonyl)-4-hydroxy-2-(4-methoxyphenyl)naphthalen-1-yl) -1 H -indole-7-carboxylate

$80.2 \mathrm{mg}, 81 \%$ yield. White solid, mp: 189-190 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $(\delta$, ppm) $12.36(\mathrm{~s}, 1 \mathrm{H}), 9.71(\mathrm{~s}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.53-$ $7.49(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.82$ (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}$), $6.75-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.43$ (dd, $J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99$ (comp, $5 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 0.75(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 172.3, 168.0, 160.6, 157.8, 139.5, 136.6, 135.34, 135.28, 130.6, 130.5, 129.7, 129.5, $127.0,126.0,125.8,125.7,124.3,124.3,124.0,123.3,119.0,114.0,112.5,112.4$, $112.3,107.4,61.1,55.2,52.0,13.2$. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{NO}_{6} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 518.1574$, found 518.1541.

Ethyl 1-hydroxy-3-(4-methoxyphenyl)-4-(1H-pyrrol-2-yl)-2-naphthoate

$52.7 \mathrm{mg}, 68 \%$ yield. White solid, $\mathrm{mp}: 146-147{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta$, ppm) ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 12.29(\mathrm{~s}, 1 \mathrm{H}), 8.50-8.45(\mathrm{~m}, 1 \mathrm{H}), 7.78$ $7.74(\mathrm{~m}, 1 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.49(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.76-6.72(\mathrm{~m}$, $2 \mathrm{H}), 6.60-6.59(\mathrm{~m}, 1 \mathrm{H}), 6.17-6.15(\mathrm{~m}, 1 \mathrm{H}), 6.06-6.04(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 0.76(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $172.1,160.8,158.1,138.9,136.4,134.7,130.04,129.95,127.1,126.6,125.8,124.2$, 123.8, 123.5, 117.2, 112.7, 111.4, 108.1, 107.1, 61.2, 55.3, 13.2. HRMS (TOF MS $\left.\mathrm{ESI}^{+}\right)$calculated for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 410.1363$, found 410.1375.

Ethyl 4-(furan-2-yl)-1-hydroxy-3-(4-methoxyphenyl)-2-naphthoate

$69.3 \mathrm{mg}, 89 \%$ yield. White solid, mp: $116-117{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta$, ppm) $12.49(\mathrm{~s}, 1 \mathrm{H}), 8.52-8.46(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 1 \mathrm{H})$, 7.39 (dd, $J=1.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.76-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.29(\mathrm{dd}, J=$ $3.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{dd}, J=3.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, $0.77(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $(\delta, \mathrm{ppm}) 172.1,161.8,158.3$, 150.7, 141.6, 140.7, 136.4, 134.4, 130.2, 130.0, 126.1, 125.9, 124.2, 124.0, 121.4, 112.5, 111.3, 110.6, 107.0, 61.3, 55.4, 13.2. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 411.1203$, found 411.1189.

The Preparation of π-conjugated polycyclic hydrocarbons (CPHs), related to Figure 2B.

Synthesis of 7a: To a $50-\mathrm{mL}$ oven-dried round-bottom flask containing a magnetic stirring bar, 2a ($52.5 \mathrm{mg}, 0.2 \mathrm{mmol}$) was added sulphuric acid (8.0 ml) in 5 min at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred overnight and the reaction temperature was warmed to room temperature slowly. Then, water (50 mL) was added to the reaction mixture and the reaction mixture was stirred for 1-2 h. The yellow solid precipitated out and was filtered under vacuum. The crude product was purified by column chromatography on silica gel (solvents: petroleum ether/ethyl acetate $=20: 1$) to afford $38.7 \mathrm{mg} 7 \mathbf{a}$ in 84% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $8.17(\mathrm{~s}, 1 \mathrm{H})$, $7.94-7.78$ (comp, 3H), 7.77 - 7.68 (comp, 2H), $7.59-7.51$ (comp, 2H), $7.50-7.43$ $(\mathrm{m}, 1 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 193.3, 145.0, $138.5,137.1,136.3,135.2,133.8,132.9,131.0,129.3,129.1,128.9,127.1,125.8$, 124.6, 121.1, 119.2. HRMS (TOF MS CI ${ }^{+}$) calculated for $\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 253.0624, found 253.0630.

20

70, 95\% yield

Synthesis of 70: To a $25-\mathrm{mL}$ oven-dried round-bottom flask containing a magnetic stirring bar, $\mathbf{2 0}(68.5 \mathrm{mg}, 0.2 \mathrm{mmol})$, and methanesulphonic acid (8.0 mL) were added in sequence under argon at room temperature. Then the reaction mixture was refluxed at $100{ }^{\circ} \mathrm{C}$ for 2 h . After cooling to room temperature, water (50 mL) was added to the reaction mixture and the reaction mixture was stirred for 1-2 h . The yellow solid precipitated out and was filtered under vacuum. The crude product was purified by column chromatography on silica gel (ethyl acetate/petroleum ether $=1 / 3$) to give 59.0 mg 7 o in 95% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ($\left.\delta, \mathrm{ppm}\right) 9.57(\mathrm{~s}, 1 \mathrm{H}), 9.07(\mathrm{~s}$, $1 \mathrm{H}), 8.81-8.74(\mathrm{~m}, 1 \mathrm{H}), 8.09-7.98$ (comp, 2H), 7.93 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J$ $=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.49(\mathrm{comp}, 3 \mathrm{H}), 7.38(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 184.3, 158.6, 136.1, 135.1, 131.6, 131.5, 131.2, $130.5,130.2,129.6,129.4,129.3,129.14,129.10,128.6,128.3,128.0,126.7,124.1$,
114.7, 112.8, 56.3. HRMS (TOF MS CI ${ }^{+}$) calculated for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 333.0886, found 333.0891.

The Preparation of chiral 1,2'-dinaphthalene ligands, related to 2D.

Synthesis of $(R)-8 \mathbf{u}$: To a $10-\mathrm{mL}$ oven-dried flask containing a magnetic stirring bar, compound $(\boldsymbol{R}) \mathbf{- 2 u}(93.3 \mathrm{mg}, 0.2 \mathrm{mmol})$ in dry THF (4.0 mL), was added $\mathrm{LiAlH}_{4}(15.2$ $\mathrm{mg}, 0.4 \mathrm{mmol}$) portion-wise at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere. After completion of addition, the reaction mixture was allowed to warm up to room temperature and stirred for 2 h . After the consumption of starting material (monitored by TLC analysis), the reaction mixture was quenched by addition of $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ followed by saturated $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with $\mathrm{DCM}(2 \mathrm{X} 5 \mathrm{~mL})$. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under vacuum after filtration. The resulting residues was purified by column chromatography on silica gel (eluent: petroleum ether $/ \mathrm{EtOAc}=1: 1$) to give $61.0 \mathrm{mg}(R) \mathbf{- 8 u}$ in 97% yield. $[\alpha]_{D}^{20}=$ $-54.2^{\circ},\left(c=0.34, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 8.14(\mathrm{~s}, 1 \mathrm{H}), 8.03-$ 7.94 (comp, 2H), 7.92 - 7.82 (comp, 2H), 7.74 (s, 1H), 7.61 - 7.50 (comp, 2H), 7.46 7.34 (comp, 2H), $7.34-7.27$ (comp, 2H), $4.54-4.41$ (comp, 2H), 3.84 (s, 3H), 2.24 (s, 1 H) ; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 154.0, 138.7, 134.1, 133.4, 133.3, 133.1, 130.3, 129.8, 129.3, 128.1, 128.0, 127.8, 127.2, 126.8, 126.2, 126.2, 125.1, 124.0, 123.2, 113.6, 64.1, 56.8. HRMS (TOF MS CI ${ }^{+}$) calculated for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{NaO}_{2}{ }^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 337.1199$, found 337.1210.

Synthesis of $(R)-\mathbf{1 0 u}$: To a $10-\mathrm{mL}$ oven-dried flask containing a magnetic stirring bar, $(R)-\mathbf{8 u}(31.4 \mathrm{mg}, 0.1 \mathrm{mmol})$, triethylamine $(0.02 \mathrm{~mL}, 0.3 \mathrm{mmol})$, and DMAP $(1.3 \mathrm{mg}$, $0.01 \mathrm{mmol})$ in THF (1.0 mL), was added diphenyl phosphorochloridate ($26.9 \mathrm{mg}, 0.1$ $\mathrm{mmol}, 100 \mathrm{~mol} \%$) over 30 min at $0^{\circ} \mathrm{C}$ under argon atmosphere. The reaction mixture was stirred overnight and the reaction temperature was warmmed to room temperature slowlly. After the consumption of starting material (monitored by TLC analysis), the solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel (eluent: petroleum ether $/ \mathrm{EtOAc}=1: 1$) to give $46.0 \mathrm{mg}(R)-\mathbf{1 0 u}$ in $84 \% .>99 \%$ ee, $[\alpha]_{D}^{20}=-312.5^{\circ},\left(c=0.16, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.81(\mathrm{~m}$, $3 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.50(\mathrm{comp}, 2 \mathrm{H}), 7.41-7.33$ (comp, 2H), $7.31-7.26$ (comp,

3H), $7.25-7.17$ (comp, 3H), $7.17-7.09$ (comp, 2H), $7.08-7.02$ (comp, 2H), 7.02 6.90 (comp, 2H), 5.22 (dd, $J=12.7,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.05$ (dd, $J=12.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $154.1,150.6(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 150.50(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}$), 133.9, 133.4, 133.32, 133.28, 133.1, 132.9, 130.5, 130.1, 129.79, 129.749, $129.750,129.2,128.2,128.1,127.8,127.1,126.9,126.6,126.4,125.4(\mathrm{~d}, J=1.0 \mathrm{~Hz})$, $125.3(\mathrm{~d}, J=1.1 \mathrm{~Hz}), 125.0,123.8,121.8,120.22(\mathrm{~d}, J=4.9 \mathrm{~Hz}), 120.15(\mathrm{~d}, J=4.9$ $\mathrm{Hz}), 113.2,68.89(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 56.4 ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm})-12.04$. HRMS (TOF MS CI ${ }^{+}$) calculated for $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{P}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 547.1669$, found 547.1681. HPLC conditions for determination of enantiomeric excess: Chiral IB-3, $\lambda=272 \mathrm{~nm}$, hexane : 2-propanol $=95: 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{S}}=27.7 \mathrm{~min}, t_{\mathrm{R}}=35.2 \mathrm{~min}$.

Synthesis of (S)-9u: To a $10-\mathrm{mL}$ oven-dried flask containing a magnetic stirring bar, and $\mathrm{KOH}(112.0 \mathrm{mg}, 2.0 \mathrm{mmol})$ in THF $(6.0 \mathrm{~mL})$ and $\mathrm{CH}_{3} \mathrm{OH}(2.0 \mathrm{~mL})$, was added the white solid (S)-2u ($93.3 \mathrm{mg}, 0.2 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature overnight. Then the solvent was removed under vaccum and the reaction mixture was acidified with $6 \mathrm{~N} \mathrm{HCl}(10.0 \mathrm{~mL})$. The precipitated solid was filtrated and washed with water (3 X 15 mL) to give 58.5 mg pure $(S)-9 \mathbf{u}$ in 86% yield. $[\alpha]_{D}^{20}=+22.4^{\circ},\left(c=0.08, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)(\delta, \mathrm{ppm}) 12.38(\mathrm{~s}$, $1 \mathrm{H}), 8.62(\mathrm{~s}, 1 \mathrm{H}), 8.19-8.11(\mathrm{~m}, 1 \mathrm{H}), 8.01-7.94(\mathrm{comp}, 2 \mathrm{H}), 7.93-7.87(\mathrm{~m}, 1 \mathrm{H})$, 7.79 (s, 1H), $7.68-7.59$ (comp, 2H), 7.51 (d, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.23$ (comp, 3H), 3.75 (s, 3H).; ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) (δ, ppm) 167.9, 153.3, 134.1, 133.1, 133.0, 131.4, 131.2, 131.1, 130.5, 128.72, 128.68, 128.6, 128.1, 127.9, 127.5, 126.8, 126.2, 124.5, 124.4, 123.1, 113.8, 56.2. HRMS (TOF MS CI ${ }^{+}$) calculated for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{NaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 351.0992$, found 351.1000.

Synthesis of 11u: To a $10-\mathrm{mL}$ oven-dried flask containing a magnetic stirring bar, $(S)-9 \mathbf{u}(32.8 \mathrm{mg}, 0.1 \mathrm{mmol}), N, N$-dicyclohexylcarbodimide (DCC, $41.2 \mathrm{mg}, 0.2$ mmol), benzotriazol-1-ol ($16.2 \mathrm{mg}, 0.12 \mathrm{mmol}$), and (R)-2- amino-3-methylbutan-1-ol $(12.4 \mathrm{mg}, 0.12 \mathrm{mmol})$, and dry THF (1.0 mL) were added in sequence at $-5^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h under these conditions, and then stirred at room temperature overnight. The solvent was evaporated under vacuum after filtration, the obtained white solid was directly used for the next step without further purification. To a $10-\mathrm{mL}$ oven-dried flask containing a magnetic stirring bar, the above obtained white solid, 4-(dimethylamino)pyridine ($1.3 \mathrm{mg}, 0.01 \mathrm{mmol}$), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL}$), was added triethylamine ($22.2 \mathrm{mg}, 0.22 \mathrm{mmol}$) under argon atmosphere at $0^{\circ} \mathrm{C}$. Then
a solution of p-toluenesulfonyl chloride ($38.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added to the above reaction mixture at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 12 h . Then the solvent was evaporated under reduced pressure, and the resulting residues was purified by silica gel column chromatography (petroleum ester/ethyl acetate $=1: 1$) to give $33.2 \mathrm{mg} \mathbf{1 1 u}$ in 84% yield. $98 \% \mathrm{ee},[\alpha]_{D}^{20}=+30.5^{\circ}$, $\left(c=0.18, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 8.59(\mathrm{~s}, 1 \mathrm{H}), 8.03-7.97(\mathrm{~m}$, 1H), 7.89 - 7.78 (comp, 4H), 7.60 - 7.53 (comp, 2H), 7.42 - 7.28 (comp, 4H), 4.06 $3.98(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.77(\mathrm{comp}, 4 \mathrm{H}), 3.55(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{td}, J=13.3,6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 0.65(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.62(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) (δ, ppm) 164.9, 153.9, 134.4, 133.9, 133.1, 132.2, 131.3, 130.6, 129.1, 129.0, $128.7,127.9,127.8,127.7,126.7,126.5,125.4,124.8,123.5,113.5,72.1,70.5,56.8$, 32.6, 18.6, 18.0. HRMS (TOF MS CI ${ }^{+}$) calculated for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 396.1958$, found 396.1969.

Experimental procedure for the interception reaction of vinyl gold carbenoid intermediate, related to Figure 3A.

To a $10-\mathrm{mL}$ oven-dried flask containing a magnetic stirring bar, JohnphosAu $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{SbF}_{6}(7.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 5.0 \mathrm{~mol} \%)$, and $\mathrm{Ph}_{2} \mathrm{SO}(81.0 \mathrm{mg}, 0.4 \mathrm{mmol})$ in dry 1,2-dichloroethane (2.0 mL), was added a solution of diazoacetate $\mathbf{1 c}(66.5 \mathrm{mg}$, $0.2 \mathrm{mmol})$ in dry 1,2 -dichloroethane (2.0 mL) by a syringe in 5 mins at $-20^{\circ} \mathrm{C}$ under argon atmosphere. After addition, the reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 12 h . Then the solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel (solvents: petroleum ether/ethyl acetate $=10: 1)$ to afford $\mathbf{2 c}(30.5 \mathrm{mg}, 50 \%$ yield) and $\mathbf{1 2}$ ($26.3 \mathrm{mg}, 41 \%$ yield). Compound 12: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 8.05 - 7.96 (comp, 2H), 7.71 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.42(\mathrm{comp}, 4 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H})$, $3.93(\mathrm{~s}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 153.3, 149.2, 147.7, $144.8,135.9,132.8,129.1,128.8,128.1,127.2,125.6,125.2,120.5,85.5,33.1,28.2$. HRMS (TOF MS CI ${ }^{+}$) calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 321.1485$, found 321.1490.

Experimental procedure for the deuterated reaction of 1a-d to 2a-d, related to Figure 3B.

To a $10-\mathrm{mL}$ oven-dried flask containing a magnetic stirring bar, JohnphosAu $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{SbF}_{6}(7.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 5.0 \mathrm{~mol} \%)$ in dry 1,2 -dichloroethane (2.0 mL), was added a solution of diazoacetate $\mathbf{1 a - d}(58.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ in dry 1,2-dichloroethane (2.0 mL) by a syringe in 5 mins at room temperature under argon atmosphere. After addition, the reaction mixture was stirred at room temperature for 12 h . Then the solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel (solvents: petroleum ether/ethyl acetate $=10: 1$) to afford $47.0 \mathrm{mg} \mathbf{2 a - d}(58 \%$ D, see Figure S2) in 89% yield.

Experimental procedure for the deuterated reaction of 1a to 2a, related to Figure 3C.

To a $10-\mathrm{mL}$ oven-dried flask containing a magnetic stirring bar, JohnphosAu $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{SbF}_{6}(7.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 5.0 \mathrm{~mol} \%)$ and $\mathrm{CD}_{3} \mathrm{OD}(36.1 \mathrm{mg}, 1.0 \mathrm{mmol})$ in dry 1,2-dichloroethane (2.0 mL), was added a solution of diazoacetate $\mathbf{1 a}(58.0 \mathrm{mg}$, 0.2 mmol) in dry 1,2 -dichloroethane (2.0 mL) by a syringe in 5 mins at room temperature under argon atmosphere. After addition, the reaction mixture was stirred at room temperature for 12 h . Then the solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel (solvents: petroleum ether/ethyl acetate $=10: 1$) to give $46.5 \mathrm{mg} \mathbf{2 a}(80 \%$ D, see Figure S1) in 88% yield.

Intermolecular kinetic isotope effect (KIE) experiment, related to Figure 3C.

To a dried NMR tube, 1a ($14.5 \mathrm{mg}, 0.05 \mathrm{mmol}$) and $\mathbf{1 a}-\boldsymbol{d}(14.6 \mathrm{mg}, 0.05 \mathrm{mmol})$ in dry $\mathrm{CDCl}_{3}(1.0 \mathrm{~mL})$, was added JohnphosAu($\left.\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{SbF}_{6}(3.8 \mathrm{mg}, 0.005 \mathrm{mmol}, 5.0$ mol \%). And the reaction mixture was analyzed by proton NMR after 5 minutes at room temperature (Figure S3). And these results intermolecular kinetic isotope effect (KIE) experiment turned out that $k_{\mathrm{H}} / k_{\mathrm{D}}=1: 1$.

Experimental procedure for the $\boldsymbol{\beta}-\boldsymbol{H}$ shift reaction of 1a to 3a, related to Table 1.

To a $10-\mathrm{mL}$ oven-dried flask containing a magnetic stirring bar, AgSbF_{6} ($3.4 \mathrm{mg}, 0.01$ $\mathrm{mmol}, 5.0 \mathrm{~mol} \%)$ in dry 1,2-dichloroethane (2.0 mL), was added a solution of diazoacetate $1 \mathbf{a}$ ($58.0 \mathrm{mg}, 0.2 \mathrm{mmol}$) in 1,2-dichloroethane (2.0 mL) by a syringe in 5 mins at room temperature under argon atmosphere. After addition, the reaction mixture was stirred at room temperature for 12 h . Then the solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel (solvents: petroleum ether/ethyl acetate $=10: 1$) to give 47.5 mg 3 a in 90% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $8.15-8.05(\mathrm{~m}, 1 \mathrm{H})$, $7.87-7.74$ (comp, 2H), 7.68 - 7.58 (comp, 2H), 7.42 - 7.39 (comp, 4H), 7.07 (d, $J=$ $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 167.5, 142.3, 137.0, 131.9, 131.3, 131.1, 129.4, 129.1, 128.8, 128.6, 126.8, 123.0, 122.7, 100.5, 86.0, 51.8. HRMS (TOF MS CI ${ }^{+}$) calculated for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{NaO}_{2}{ }^{+}$ $\left[_{\mathrm{M}+\mathrm{Na}]^{+}:}^{285.0886 \text {, found 285.0890. }}\right.$

Experimental procedure for the $\boldsymbol{\beta}-\boldsymbol{H}$ shift reaction of 11 to 31, related to Figure 3E.

To a $10-\mathrm{mL}$ oven-dried flask containing a magnetic stirring bar, $\mathrm{Ph}_{3} \mathrm{PAuNTf}_{2}(7.4 \mathrm{mg}$, $0.01 \mathrm{mmol}, 5.0 \mathrm{~mol} \%$) and $\mathrm{MeOH}(32.0 \mathrm{mg}, 1.0 \mathrm{mmol}, 5.0$ equiv.) or anisole (108.1 $\mathrm{mg}, 1.0 \mathrm{mmol}, 5.0$ equiv.) in dry 1,2 -dichloroethane (1.0 mL), was added a solution of diazoacetate $\mathbf{1 l}(73.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ in dry 1,2-dichloroethane (1.0 mL) by a syringe in 5 minutes at room temperature under argon atmosphere. After addition, the reaction mixture was stirred overnight at room temperature. Then the solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel (eluent: ethyl acetate/petroleum ether $=1 / 10$) to afford
61.5 mg 3 l in 90% yield with $\mathrm{MeOH}\left(85 \%\right.$ yield with anisole). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 8.26(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 1 \mathrm{H})$, $7.54-7.48$ (comp, 2H), 7.48 - 7.41 (comp, 2H), 7.41 - 7.32 (comp, 2H), 6.57 (d, $J=$ $16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 167.5, 142.8, 135.8, 133.2, 133.0, 131.9, 130.0, 128.9, 126.5, 123.8, 123.1, 122.0, 119.6, 94. 6, 88.2, 77.5, 52.0. HRMS (TOF MS CI ${ }^{+}$) calculated for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{BrO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 341.0172$, found 341.0164.

Experimental procedure for the carbocyclization of 11 to 21 with MeOH , related to Figure 3E.

To a $10-\mathrm{mL}$ oven-dried flask containing a magnetic stirring bar, JohnphosAu $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{SbF}_{6}(7.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 5.0 \mathrm{~mol} \%)$ and $\mathrm{CH}_{3} \mathrm{OH}(32.0 \mathrm{mg}$, $1.0 \mathrm{mmol}, 5.0$ equiv.) in dry 1,2 -dichloroethane (1.0 mL), was added a solution of diazoacetate $\mathbf{1 l}(73.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ in dry 1,2-dichloroethane (1.0 mL) by a syringe in 5 minutes at room temperature under argon atmosphere. After addition, the reaction mixture was stirred overnight at room temperature. Then the solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel (eluent: ethyl acetate/petroleum ether $=1 / 10$) to afford 56.6 mg 2 l in 83% yield.

Experimental procedure for the Comparison with $\mathbf{R h}_{2}(\mathbf{O A c}) 4$, related to Figure 3E.

To a $10-\mathrm{mL}$ oven-dried flask containing a magnetic stirring bar, $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(4.4 \mathrm{mg}$, $0.01 \mathrm{mmol}, 5.0 \mathrm{~mol} \%$) and $\mathrm{CH}_{3} \mathrm{OH}(32.0 \mathrm{mg}, 1.0 \mathrm{mmol}, 5.0$ equiv.) in dry 1,2-dichloroethane (1.0 mL), was added a solution of diazoacetate $\mathbf{1 1}(73.8 \mathrm{mg}, 0.2$ $\mathrm{mmol})$ in dry 1,2 -dichloroethane (1.0 mL) by a syringe in 5 minutes at $25^{\circ} \mathrm{C}$ under
argon atmosphere. After addition, the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 12 hours. Then the solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel (eluent: ethyl acetate/petroleum ether $=1 / 10)$ to afford $131(69.4 \mathrm{mg}, 93 \%$ yield) and $31(3.4 \mathrm{mg}, 5 \%$ yield). Compound 13I: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $7.54-7.44$ (comp, 3 H), $7.43-$ 7.36 (comp, 2H), $7.28-7.17$ (comp, 3H), 4.14 (dd, $J=8.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.68 (s, 3H), $3.35(\mathrm{dd}, J=13.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{dd}, J=13.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 172.7, 139.0, 133.0, 132.2, 131.8, 130.7, 128.7, $127.0,122.7,122.7,122.3,92.8,88.8,80.7,58.5,52.1,38.3$. HRMS (TOF MS CI ${ }^{+}$) calculated for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{BrO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 373.0434$, found 373.0450.

Supplemental References.

Gao, Y., Cai, Z., Li, S., and Li, G. (2019). Rhodium(I)-Catalyzed Aryl C-H Carboxylation of 2-Arylanilines with CO_{2}. Org. Lett. 21, 3663-3669.

Gorin, D. J., Davis, N. R., and Toste, F. D. (2005). Gold(I)-catalyzed intramolecular acetylenic schmidt reaction. J. Am. Chem. Soc. 127, 11260-11261.

Hashmi, A. S. K., Bechem, B., Loos, A., Hamzic, M., Rominger, F., and Rabaa, H. (2014). Gold catalysis: biarylphosphine ligands as key for the synthesis of dihydroisocoumarins. Aust. J. Chem. 67, 481-499.

Mauleón, P., M. Zeldin, R., González, A. Z., and Toste, F. D. (2009). Ligand-controlled access to $[4+2]$ and $[4+3]$ cycloadditions in gold-catalyzed reactions of allene-dienes. J. Am. Chem. Soc. 131, 6348-6349.

[^0]: Zhang et al., iScience 21, 499508
 November 22, 2019 © 2019 The Authors.
 https://doi.org/10.1016/

[^1]: ¹Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
 ${ }^{2}$ Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, China
 ${ }^{3}$ Lead Contact
 *Correspondence:
 huwh9@mail.sysu.edu.cn W.H.),
 xinfangxu@suda.edu.cn (X.X.)
 https://doi.org/10.1016/j.isci. 2019.10.042

