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Abstract
Foodborne illness is a serious public health concern. There are over 200 knownmicrobial,
chemical, and physical agents that are known to cause foodborne illness. Efforts are
made for improved detection, control and prevention of foodborne pathogen in food,
and pathogen associated diseases in the host. Several commonly used approaches
to control foodborne pathogens include antibiotics, natural antimicrobials, bacterio-
phages, bacteriocins, ionizing radiations, and heat. In addition, probiotics offer a poten-
tial intervention strategy for the prevention and control of foodborne infections.
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This review focuses on the use of probiotics and bioengineered probiotics to control
foodborne pathogens, their antimicrobial actions, and their delivery strategies.
Although probiotics have been demonstrated to be effective in antagonizing foodborne
pathogens, challenges exist in the characterization and elucidation of underlying mo-
lecular mechanisms of action and in the development of potential delivery strategies
that could maintain the viability and functionality of the probiotic in the target organ.
1. INTRODUCTION

Foodborne illness is a seriouspublichealthconcern.Theglobalburdenof
foodborne illness is currently unknown. However, the World Health

Organization (WHO) reported that in 2005, 1.8 million people died from

diarrheal diseases, largely due to contaminated food and water (Greig &

Ravel, 2009; Newell et al., 2010). In the United States, the Centers for

Diseases Control and Prevention (CDC) estimates that each year there are

about 48 million cases of foodborne infections with 128,000 hospitalizations

and 3000 deaths (Scallan et al., 2011). There are over 200 known microbial,

chemical, or physical agents that can result in illness when consumed

(Newell et al., 2010). Of these, microbial source comprising of bacterial,

viral, and fungal is of major concern. CDC estimates that of all the

foodborne infections, 44% of the hospitalizations and deaths are attributed to

31 known pathogens (Scallan et al., 2011). In light of this serious public

health crisis, efforts have been directed toward the detection, control, and

prevention of well-recognized foodborne pathogens and diseases in the food

chain. It is estimated that a reduction in foodborne illness by 10% would

keep about 5 million Americans from getting sick each year (Scallan et al.,

2011). With increasing trend in consumer preference for safe and

wholesome food, probiotics offer an effective and alternative intervention

strategy to control foodborne illnesses.
1.1. Overview of foodborne pathogens and diseases
The etiologic agents for foodborne infections comprise bacterial, viral,

parasitic, and fungal (Table 5.1). These pathogens have the potential to cause

significant morbidity ormortality, and have low infective dose, high virulence

potential, ubiquitous in nature, and are stable in food products.

Of all the pathogens listed in Table 5.1, CDC estimates that the majority

of the illnesses, hospitalizations, and deaths are caused by five known



Table 5.1 List of major foodborne microbial pathogens
Bacterial Viral Parasitic Fungal

Aeromonas hydrophila Aichivirus Cryptosporidium

parvum

Alexandrium

tamarense

Arcobacter butzleri Astrovirus Cyclospora

cayatenesis

Aspergillus spp.

Bacillus cereus/subtilis/

licheniformis

Calcivirus

(Norovirus)

Entamoeba

histolytica

Fusarium spp.

Brucella abortus/melitensis/suis Hepatitis A

virus

Giardia

intestinalis/

lamblia

Microcystis

aeruginosa

Campylobacter jejuni/coli Hepatitis E

virus

Isospora belli Penicillium spp.

Clostridium botulinum Rotavirus Taenia saginata/

solium

Clostridium perfringens Toxoplasma gondii

Cronobacter sakazakii/

malonaticus/turicensis

Trichinella spiralis

Escherichia coli (pathogenic)

Listeria monocytogenes

Mycobacterium paratuberculosis

Plesiomonas spp.

Salmonella enterica

Shigella spp.

Staphylococcus aureus

Vibrio cholera/parahaemolyticus/

vulnificus/fluvialis

Yersinia enterocolitica
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pathogens, which include Norovirus, nontyphoidal Salmonella, Clostridium

perfringens, Campylobacter spp., and Staphylococcus aureus.

These pathogens enter into the food system through contaminated raw

materials, water, humans, meat animals, wild life, and insect vectors. There

are several factors that affect the trends in the occurrence of foodborne

illness: large-scale production and wide distribution of food, globalization
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of food supply, eating outside of the home, microbial genomic diversifica-

tion yielding the emergence of new pathogens, and growing population of

at-risk consumers. The diseases caused by these pathogens have different

consequences and sequel (Table 5.2).

1.2. Various strategies to control pathogens
Foodborne pathogens sicken more than 48 million Americans annually, that

is, 1 in 7 in the U.S. population (Scallan et al., 2011). Reducing foodborne

illnesses by 10% would keep about 5 million Americans from getting sick

every year. Food safety concerns are also elevated because of consumers

demand for high quality, low preservatives, and minimally processed con-

venient ready-to-eat meals. Such foods are highly vulnerable to contamina-

tion and heighten public health safety concerns. This has led to the

development of several control strategies both by the government and the

industry. Strategies to control foodborne infections can be classified as

preharvest and postharvest interventions. Traditionally, much of the research

effort was aimed at improving the safety of meat products as postslaughter

sanitation and product formulations. However, the continual incidence of

outbreaks and increase in knowledge about the pathogens have led to the

development of preharvest intervention strategies (Doyle & Erickson,

2012). Preharvest intervention step is a logical food safety approach that al-

lows reduced levels of pathogen loads in the incoming raw materials

(Callaway, Anderson, et al., 2003; Soon, Chadd, & Baines, 2011).

Antibiotics are known to alter the microbiological ecology of the intes-

tinal tract (Callaway, Edrington, et al., 2003). This led to the prophylactic

use of antibiotics in animal agriculture to control disease and improve animal

growth rate and efficiency. With emergence of antibiotic resistance among

pathogens, research has focused on the use of naturally occurring antimicro-

bials as an alternative to control foodborne pathogens in live animals and

foods. Antimicrobials comprise organic acids, essential oils, plant extracts,

bacteriocins, probiotics, and bacteriophages (Baugher & Klaenhammer,

2011; Callaway, Anderson, et al., 2003; Hassan, Kjos, Nes, Diep, &

Lotfipour, 2012; Negi, 2012). Chemical rinses using organic acids that

are generally recognized as safe such as acetic, lactic, and citric acids are

commonly used in the meat industry to rinse animal carcasses and

produce (fruits and vegetables) (Sirsat, Muthaiyan, & Ricke, 2009). These

acids reduce the pH of the food and hence control the growth of

microorganisms. Lactic acid is most effective when applied at higher

temperatures and at a concentration of 2–4% (Sirsat et al., 2009).



Table 5.2 List of common foodborne pathogens, incubation period, symptoms, and possible food sources

Foodborne pathogens Possible food source
Incubation
period Symptoms

Bacillus cereus Meats, milk, rice, potatoes, pasta,

vegetables, and cheese

30 min to

15 h

Diarrhea, abdominal cramps, nausea, and

vomiting

Campylobacter jejuni Raw milk, eggs, poultry, raw beef,

water, cake icing

1–7 days Nausea, abdominal cramps, diarrhea,

headache

Clostridium botulinum Low-acid canned foods, meats,

sausage, fish

12–36 h Nausea, vomiting, dry mouth, diarrhea,

fatigue, headache, double vision, slurred

speech, respiratory distress, flaccid paralysis

Clostridium perfringens Undercooked meats, roast beef, and

gravies

8–24 h Abdominal cramps, diarrhea, dehydration

Cryptosporidium parvum Contaminated water or milk, person-

to-person transmission, raw or

undercooked food

2–10 days Watery diarrhea accompanied by mild

stomach cramping, nausea, loss of appetite

Escherichia coli O157:H7

and Shiga toxin producing

E. coli (STEC)

Ground beef, raw milk, undercooked

beef, apple, green leafy vegetables

2–4 days Hemorrhagic colitis, hemolytic uremic

syndrome

Giardia lamblia Contaminated soil, water, food,

or surfaces

1–2 weeks Diarrhea, loose or watery stool, stomach

cramps, and lactose intolerance

Hepatitis A Water, fruits, vegetables, iced drinks,

shellfish, and salads

4–6 weeks Fever, malaise, nausea, abdominal

discomfort, hepatitis, jaundice

Listeria monocytogenes Contaminated vegetables, milk,

cheese, meat, sea food, smoked

fish, ready-to-eat foods

2 days to

3 weeks

Meningitis, septicemia, miscarriage,

stillbirth, neonatal listeriosis

Continued



Table 5.2 List of common foodborne pathogens, incubation period, symptoms, and possible food sources—cont'd

Foodborne pathogens Possible food source
Incubation
period Symptoms

Norwalk, Norwalk-like,

or Norovirus

Raw oysters, shellfish, water and ice,

salads, frosting, person-to-person

contact

12–60 h Nausea, vomiting, diarrhea, abdominal

cramps

Nontyphoidal Salmonella

serovars

Meat, poultry, eggs, milk products 12–24 h Nausea, diarrhea, abdominal pain, fever,

headache, chills, prostration

Staphylococcus aureus Custard or cream-filled baked goods,

ham, poultry dressing, gravy, eggs,

potato salad, cream sauces, sandwich

fillings

1–6 h Severe vomiting, diarrhea, abdominal

cramping

Shigella spp. Salads, raw vegetables, dairy products,

poultry

12–50 h Abdominal pain, cramps, fever, vomiting

Toxoplasma gondii Domestic cat, bird or rodent feces, raw

or undercooked food

5–23 days Swollen lymph glands, fever, headache,

muscle aches, abortion in pregnant women.

Severe infection in immunocompromised

people and unborn babies

Vibrio parahaemolyticus/

vulnificus

Fish, shellfish, oysters 4 h to

4 days

Diarrhea, abdominal cramps, nausea,

vomiting, headache, fever, and chills

Yersinia spp. Raw milk, chocolate milk, water,

pork, raw meats

1–3 days Enterocolitis, may mimic appendicitis
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These organic acids are sometimes used in combination with oxidizing

agents such as hydrogen peroxide to enhance their antimicrobial efficacies.

Essential oils extracted from clove, cinnamon, thyme, and oregano, and

their components have been used in the control of foodborne pathogens

such as nontyphoidal Salmonella (Johny, Hoagland, & Venkitanarayanan,

2010), Escherichia coli O157:H7 (Amalaradjou et al., 2010), and Listeria

monocytogenes in microbiological growth media, on live animals or food

systems (Hyldgaard, Mygind, & Meyer, 2012). Unlike antibiotics, essential

oils have multifaceted antimicrobial effects thereby making it difficult for the

bacteria to develop resistance.

Microbial contamination can also be controlled by the use of microbi-

cidal treatments, such as ionizing radiations, and heating. Application of

nonthermal methods such as high hydrostatic pressure, high-intensity pulsed

electric fields, oscillating magnetic fields, intense light pulse, photosensitiza-

tion, or a combination of above (hurdle approach) has also been shown to be

effective (Luksienė & Zukauskas, 2009; Morris, Brody, & Wicker, 2007).

One of the most common physical methods of decontamination is

irradiation (Radomyski, Murano, Olson, & Murano, 1994; Smith &

Pillai, 2004). Food irradiation destroys the indigenous flora and prolongs

shelf life of products during storage. Food is exposed to doses of ionizing

radiation sufficient enough to create positive and negative charges to kill

bacteria in the food. The type of physical method used and the dosage of

the treatment depend on the type of food matrix to be decontaminated.

Biological methods of control include the use of bacteriophages, bacte-

riocins, and probiotics. In food matrix, these components can be present

naturally or added extrinsically. These biological agents can be used at the

pre- and postharvest phase to prevent bacterial contamination (Hagens &

Loessner, 2007). Bacteriophages are viruses that can infect and kill bacteria

and are considered alternatives to antimicrobials for use in the food industry

(Garcı́a, Martı́nez, Obeso, & Rodrı́guez, 2008) and for therapeutic applica-

tion to treat diseases (Fischetti, 2008, 2010; Hanlon, 2007). However,

bacteriophages have narrow target spectra, and some can be used only

against a particular strain. This high degree of specificity allows phages to

be used against targeted microorganisms in a mixed population without

affecting the microbial ecosystem (Callaway, Anderson, et al., 2003).

Bacteriophages have been used to control foodborne pathogens in farm

animals against specific pathogens (Hagens & Loessner, 2010; LeJeune &

Wetzel, 2007; Wall, Zhang, Rostagno, & Ebner, 2010). In addition,

several phages or phage cocktails have been approved by the FDA for use
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as food additive in ready-to-eat meat or for application in cattle/poultry

prior to slaughter (Hagens & Loessner, 2010).

The use of probiotics, prebiotics, and synbiotics (combination of prebi-

otics and probiotics) has also gained increased attention in recent years. The

use of microflora to reduce pathogen load in the gut is termed as a probiotic

strategy (Callaway, Anderson, et al., 2003). Probiotic techniques involve the

introduction of a normal microbial population into the gut to provide a

nutrient (prebiotic) that is limiting and allows the growth of a specific subset

of the gut microflora. The goal of this approach is to fill all the niches avail-

able in the gut so as to exclude the establishment of pathogenic microbes

(Doyle & Erickson, 2006; Gaggia, Mattarelli, & Biavati, 2010; Patterson

& Burkholder, 2003). Due to the increased concern about the emergence

in antibiotic resistance, use of probiotics provides an effective alternative

to combat foodborne illnesses (Baugher & Klaenhammer, 2011; Dobson,

Cotter, Ross, & Hill, 2012; Hassan et al., 2012).

In addition, vaccine and antibody therapy also offer a viable option to

reduce the burden of foodborne illness. Vaccine therapy involves the stim-

ulation of the animal’s immune system to limit pathogen colonization. Two

types of vaccines can be employed to immunize food animals: the use of

killed or inactivated bacterial cells or live attenuated cells. This approach

has been used in poultry to reduce the colonization of Salmonella using

Salmonella-specific antibodies (De Buck, Van Immerseel, Haesebrouck, &

Ducatelle, 2005; Tellez et al., 2001). Similar approach in cattle and swine

has shown promising results by enhancing immunoglobulin, IgA, IgG,

and IgM in serum and by reducing pathogen carriage (House, Bishop,

Parry, Dougan, & Wain, 2001; House, Wain, et al., 2001; Mastroeni,

Chabalgoity, Dunstan, Maskell, & Dougan, 2001). Along with these

intervention strategies, good animal management or good agriculture

practices are equally crucial to the production of healthy animals and

agricultural products to ensure food safety.

1.3. Antibiotics and bacterial resistance
Antibiotics have been widely used in animal agriculture to control disease

and to increase animal growth rate or efficiency. Although antibiotics are

used to target specific bacteria, the specificity can sometimes be too narrow

to be highly effective. Therefore, in several occasions, broad-spectrum an-

tibiotics are often included in animal rations. Such treatments can disrupt the

intestinal microbial ecosystem and can lead to the establishment of oppor-

tunistic pathogens. This could also impose deleterious effects on animal



193Modern Approaches in Probiotics Research to Control Foodborne Pathogens
health, performance, and food safety. In addition, the use of antibiotics in hu-

man and veterinary medicine to treat infectious diseases has led to the rise and

spread of antibiotic resistance (Callaway, Anderson, et al., 2003; Callaway,

Edrington, et al., 2003). Increased antibiotic-resistant strains can pose a

significant public health hazard yielding increased frequency of treatment

failures, severity of infection, prolonged duration of sickness, increase in

systemic infections, and increased hospitalizations and mortality (Newell

et al., 2010). Antibiotic use in plants, animals, and humans for health-

promoting purposes can lead to emergence and dissemination of resistant

bacteria and resistance genes. Since antibiotic resistance can spread

horizontally, the use of antibiotics in one ecological compartment can have

a consequence on the resistance status in another (Kruse & Sorum, 1994;

Newell et al., 2010).

Food of plant or animal origin can be a source of both antibiotic-resistant

bacteria and resistance genes. The presence of antibiotic-resistant bacteria

in food presents a direct hazard to food handlers and consumers equally.

Additionally, resistant traits can be transferred from bacteria of food origin

to human pathogens directly or via a commensal resulting in an indirect

hazard (Newell et al., 2010). In addition, antimicrobial resistance can also

arise due to continued exposure of bacteria to antimicrobial residues in food.

Furthermore, the different routes through which bacteria acquire resistance

are complex. There is an increasing evidence of incidence of antibiotic-

resistant bacteria in food, highlighting the importance of antibiotic-resistant

foodborne pathogens and their infections. Several antibiotic-resistant strains

of Salmonella (Threlfall, 2000), Campylobacter (FAO/WHO/OIE, 2003),

Shigella, Vibrio, and S. aureus (de Boer et al., 2009), E. coli (Walsh et al.,

2008), and Enterococci (FAO/WHO/OIE, 2003) have been reported for

foods of plant and animal origin (Newell et al., 2010). Several of these strains

have also been reported to be multidrug resistant. Infections caused by such

strains are an important health problem. An important step in curbing

antimicrobial resistance is the enforcement of prudent use of antimicrobial

agents in all sectors of animal and food production (FAO/WHO/OIE,

2007) and to employ alternative strategies to control food pathogens.

1.4. Role of probiotics and their potential contribution to gut
health and disease prevention

At present, the interrelationship between diet and health is well

established. The traditional role of diet is to provide the nutrients essential

for metabolism. However, over the last few decades, this idea has evolved.
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It is now established that besides meeting metabolic needs, the diet also

helps promote health and the state of well-being of the individual. This

change in concept of the dietary role of foods has led to the development

of a new class of dietary products called functional foods. A food can be

considered functional if it beneficially affects target function in the body

besides its nutritional value (Figueroa-Gonzalez, Quijano, Ramirez, &

Cruz-Guerrero, 2011). Probiotics fall into the category of functional foods

(Nagpal et al., 2012). These are nonpathogenic microorganisms that con-

fer a health benefit on the host and prevent some diseases when admin-

istered in adequate amounts (Fric, 2007). The widely used probiotics

include lactobacilli, bifidobacter, bacilli, yeast, and some nonpathogenic spe-

cies within the genera of Escherichia (i.e., E. coli Nissle 1917), Enterococcus,

and Bacillus. However, the most common probiotics belong to the genera

Lactobacillus and Bifidobacterium. Probiotics in general exert beneficial effects

in three ways: (i) Provide end products of anaerobic fermentation of car-

bohydrates such as organic acids that can be utilized by the host. These

end products once absorbed into the blood stream are able to influence

human mood, energy level, and even cognitive abilities. (ii) Effectively

compete with pathogen colonization to exclude them from causing dis-

ease, and (iii) stimulate host immune system by producing specific

polysaccharides.

These health benefits are generally strain specific (not species- or genera

specific); thus in most cases, a cocktail of probiotics is used to gain the most

benefits. Probiotics cocktail can also ensure health benefits, in the event, if

one strain fails. To control foodborne pathogens, probiotics are either used

in competitive exclusion or as defined cultures. Competitive exclusion in-

volves the extrinsic administration of probiotics to food animals for intestinal

colonization. Probiotic bacteria also affect the composition and function of

intestinal microbial population (O’Toole & Cooney, 2008). The predom-

inant presence of the probiotic in the gut prevents the pathogens access to

the ecological niche, interfering with the attachment of pathogens to the gut

and subverting the eventual infection process (Gaggia et al., 2010). Besides

physical displacement of pathogens, several probiotics also produce bacterio-

cins, which are antimicrobial peptides that inactivate pathogens. Addition-

ally, probiotics stimulate the immune system and help in mounting

protective response against pathogen interaction with host cells (Gill &

Prasad, 2008). Probiotic-induced enhanced butyrate production can also

increase resistance against diseases through activation of antimicrobial host

defense peptide (Floch, 2010; Sunkara et al., 2011).
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Although the use of probiotics is promising, there are several challenges for

the industrial production of probiotic-based functional foods: (i) improve-

ment in production techniques for large-scale manufacturing; (ii) cost-

effective production strategy; (iii) enhancement of probiotic viability during

storage, manufacturing, and transit in the gastrointestinal tract; and (iv) devel-

opment of efficient delivery system. Strategies to overcome these challenges

must be multidisciplinary and will help make the process cost-effective and

beneficial to both the producers and consumers.

1.5. Safety assessments of probiotics for therapy
Bacteria are deliberately added to food either to enhance product flavor (starter

cultures) or to enhance health benefits (functional additives). Probiotic bacteria

are used for the prevention or treatment of various diseases; thus, the probiotic

organisms must be nonpathogenic to the host prior to its consideration for use.

Commonly used probiotic bacteria include members of the genera Lactococcus,

Lactobacillus, and Bifidobacterium. Lactic acid bacteria are generally considered

safe; however, some species of Lactobacillus and Bacillus have been associated

with opportunistic infections in patients with underlying conditions resulting

in endocarditis, bacteremia, and liver abscess (Boyle, Robins-Browne, &Tang,

2006). Presumably, the pathogenic property is associated with a specific strain

rather thanwith the species in general. Thus, the strain-specific characterization

is essential to prove the absence of pathogenicity.

Prior to the approval of a probiotic for human use, it is essential that the

bacteria be screened for potential pathogenicity and virulence traits (Sanders

et al., 2010). Providing evidence for the absence of virulence properties is

relatively straightforward in elucidating the pathogenic potential. Besides

phenotypic characterization, it is also essential to genetically screen potential

candidates for use as probiotics. Another critical consideration is the scope

for antimicrobial resistance. In addition to being sensitive to antibiotics, it

is also essential that the probiotic bacteria do not carry any transferrable

antibiotic resistance genes, which can serve as genetic reservoirs for other

potentially pathogenic bacteria. Besides acquisition of antibiotic-resistant

genes, there is also the risk for uptake of virulence genes from pathogens that

coinhabit the intestinal tract at the same time. However, there is no evidence

in the literature of such event taking place in the gut. This could partly be

due to the transient colonization of the gut by probiotics. Scientific

Committee on Animal Nutrition (SCAN) has established a guideline (a de-

cision tree, Fig. 5.1) for the approval of a probiotic strain based on antibiotic

resistance (SCAN, 2002). Similar screening strategies are also employed for



Is relevant antibiotic resistance 

present in probiotics?

No, relevant antibiotic
resistance is absent  

Yes, transferable Yes, nontransferable

resistance resistance

Known resistance gene
is present

No known resistance gene
is present

      

Resistance is intrinsic or results
from single mutation  

Not

approved
Approved

(concerning resistance)No Yes

Figure 5.1 Decision network for approval of a probiotic additive based on resistance to
antibiotics (SCAN, 2002). Redrawn from SCAN (2002).
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the approval of a probiotic strain for use as a feed additive. Considering all

the factors that are essential in the assessment of safety of probiotics, it is par-

amount that the general conclusion that “probiotics are safe” cannot be

broadly made. Prior to the use of a probiotic or probiotic cocktail in foods

or dietary supplement, they need to be determined to be safe for the general

population. When intended for use as drugs, the safety assessment must

balance risk with benefit (Sanders et al., 2010). The FAO has outlined a

guideline for approval of a probiotic strain for use in food (Fig. 5.2).
2. PROBIOTICS

The term probiotic means “for life” and is associated with bacteria that
exert beneficial effects on humans and animals. This was first observed by Eli

Metchnikoff in 1907 who suggested that the dependence of intestinal

microbes on food makes it possible for them to develop measures to modify

the gut flora and to replace the harmful microbes with useful microbes. The

initial works of E. Metchnikoff and H. Tissier in the early twentieth century

set the stage for the elucidation of the beneficial effects of probiotics and their



Probiotic strain identification by phenotypic and genotypic methods
Genus, species, strain
Deposit in international culture collection

Functional characterization
In vitro tests

Safety assessment
In vitro and/or animal model

Animal studies Phase 1 human study

Double blind, randomized, placebo-controlled
(DBPC) phase 2 human trial or other
appropriate design with sample size and primary
outcome appropriate to determine if
strain/product is efficacious

Preferably second
independent DBPC
study to confirm
results

Phase 3, effectiveness trial is
appropriate to compare probiotics
with standard treatment of a
specific condition 

Labeling

Probiotic

food

Contents—genus,species,strain designation
Minimum numbers of viable bacteria at end of shelf life
Proper storage conditions
Corporate contact details for consumer information

Figure 5.2 Food and Agriculture Organization of the United Nations (FAO) and World
Health Organization (WHO) guidelines for evaluation of probiotics for food use. (ftp://
ftp.fao.org/es/esn/food/wgreport2.pdf).
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multitude of applications in human health as summarized in a recent review

article (Bron, van Baarlen, & Kleerebezem, 2012). The increasing body of sci-

entific evidence that demonstrates the beneficial effects of probiotics on health

and disease prevention and treatment has made probiotics increasingly impor-

tant as part of human nutrition and has led to a surge in the demand for pro-

biotics in clinical applications (Deshpande, Rao, & Patole, 2011; Ng, Hart,

Kamm, Stagg, & Knight, 2009; Vanderpool, Yan, & Polk, 2008) and as

functional foods (Ly, Litonjua, Gold, & Celedon, 2011; Nagpal et al., 2012).
2.1. Definition and classifications
Probiotics have been defined based on their intent of use. Fuller (1989)

defined probiotics as “a live microbial feed supplement which beneficially

affects the host animal by improving its intestinal balance.” This definition

ftp://ftp.fao.org/es/esn/food/wgreport2.pdf
ftp://ftp.fao.org/es/esn/food/wgreport2.pdf
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highlighted the microbial nature of probiotics. Similarly, Huis in’t Veld,

Havenaar, and Marteau (1994) defined probiotics as “a viable mono or

mixed culture of bacteria which, when applied to animal or man, benefi-

cially affects the host by improving the properties of the indigenous flora.”

A more recent definition accepted by the FAO/WHO (2002) defines pro-

biotics as “live microorganisms which, when administered in adequate

amounts confer a health benefit on the host.” These definitions tend to

reiterate the basic definition that probiotics are live microorganisms that

in adequate dose can be beneficial to humans.

Probiotics can be classified based on their ability to colonize the intestine

as resident or transient. Resident strains are those that are common inhab-

itants of the human digestive tract, and probiotic supplements containing

these strains are able to re-establish in the intestinal tract. Resident strains

may have least antagonistic effect on other beneficial resident strains in

the intestinal tract. Transient strains pass through the system and do not

re-establish themselves. Certain transient strains may not be effective when

used as monocultures and hence in most cases are combined with other

resident strains to enhance their efficacy. Taxonomically, probiotics must

be identified by their genus, species, and strain as is done with other bacteria.

The commonly used probiotics include the members of the genus

Lactobacillus, Bifidobacteria, Streptococcus, Enterococcus, Leuconostoc, and yeast

(Saccharomyces). Among these, the resident strains include Lactobacillus aci-

dophilus, Lactobacillus salivarius, Bifidobacterium bifidum, Bifidobacterium infantis,

Bifidobacterium longum, Bifidobacterium animalis, Streptococcus faecalis, and Strep-

tococcus faecium. Transient strains include Lactobacillus casei, Lactobacillus

rhamnosusGG, Lactobacillus bulgaricus, Lactobacillus yoghurti, Lactobacillus brevis,

Lactobacillus kefir, Lactobacillus delbrueckii, Lactobacillus plantarum, Streptococcus

lactis, and Streptococcus thermophilus.

2.2. General health benefits of probiotics
Bacteria should possess certain characteristics to be identified as a probiotic.

Table 5.3 lists the criteria that are essential for a bacterium to be classified as a

probiotic. To be able to produce desired beneficial effects, it has been

established that a dose of 5 billion colony forming unit/day has been rec-

ommended for at least 5 days (Gronlund, Lehtonen, Eerola, & Kero,

1999; Williams, 2010). Probiotics either as mono or mixed cultures

mainly consisting of Lactobacilli have been used for human consumption

in a variety of foods such as fermented milks (yogurt), chesses, fruit

juices, chocolates, wine, and sausages. Mixed cultures are highly desirable



Table 5.3 Criteria of an ideal probiotic
1. Accurate taxonomic identification

2. Normal inhabitant of the targeted species

3. Generally recognized as safe

4. Resistant to bile, hydrochloric acid, and pancreatic juice

5. Ability to survive in both acidic conditions of the stomach and the alkaline

conditions of the intestine

6. Ability to persist in the gut even if it does not colonize

7. Adhesion to epithelium to prevent physical removal

8. Immunostimulatory action

9. Nonpathogenic

10. Maintain high cell viability and metabolic activity at the target site

11. Stability of desired characteristics during processing, storage, and delivery

12. Genetic stability
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because they may have synergistic effects, and moreover, if one fails, others

still can exert beneficial effects.

It is well established that probiotics have several beneficial attributes (Dicks

& Botes, 2010; Nagpal et al., 2012; Williams, 2010). Those include lactose

metabolism and food digestion, production of antimicrobial peptides and

control of enteric infections, antimycotic effects, anticarcinogenic properties,

immunologic enhancement, enhancement of short-chain fatty acid (SCFA)

production, antiatherogenic and cholesterol-lowering attributes, regulatory

role in allergy (Thomas et al., 2011), protection against vaginal or urinary

tract infections, increased nutritional value, maintenance of epithelial

integrity and barrier, stimulation of repair mechanism in cells, and

maintenance and reestablishment of a well-balanced indigenous intestinal

and respiratory microbial communities.

2.3. Mechanism of probiotic action
Several mechanisms have been proposed regarding action of probiotics.

Some of the major attributes are discussed below (Table 5.4).

2.3.1 Enhancing barrier function
The intestinal barrier function is an important defensive mechanism of the

intestinal epithelium to maintain its protective effects to protect against

invading pathogens and other harmful agents (Ohland & MacNaughton,

2010). The barrier function is maintained by several mechanisms that include

mucus secretion, chloride and water secretion, and maintenance of cell–cell

tight junctions (Thomas & Ockhuizen, 2012). Disruption in the barrier



Table 5.4 Health benefits of probiotic bacteria and their proposed mechanisms
Health benefits Proposed mechanism

Resistance to enteric

pathogens

• Antagonism

• Increasing antibody production

• Colonization resistance

• Limiting access of enteric pathogens (pH, bacterio-

cins, antimicrobial peptides, lactic acid production)

Aid in lactose metabolism • Bacterial lactase acts on lactose in the small intestine

Small bowel bacterial

overgrowth

• Decrease toxic metabolite production

• Normalize small bowel flora

• Antibacterial characteristics

Immune system

modulation

• Strengthening of nonspecific and antigen-specific

defense

• Regulate/influence Th1/Th2 cells activation

• Production of anti-inflammatory cytokines

Anticolon cancer effect • Antimutagenic and anticarcinogenic activity

• Detoxification of carcinogenic metabolites

• Stimulation of immune function

Decreased detoxification/

excretion of toxic

microbial metabolites

• Increased bifidobacterial cell counts and shift from a

preferable protein- to carbohydrate-metabolizing

microbial community

Antiallergic activity

(eczema or atopic

dermatitis, asthma)

• Prevention of antigen translocation into blood

stream

• Prevent excessive immunologic responses to

increased amount of antigen

Blood lipids, heart disease • Assimilation of cholesterol by bacterial cell

• Alteration in the activity of bile salt hydrolase (BSH)

Urogenital infections • Adhesion to urinary and vaginal tract cells

• Competitive exclusion

Necrotizing enterocolitis • Decrease in TLRs and signaling molecules and

increase in negative regulations

• Reduction in IL-8 response

Rotavirus gastroenteritis • Increased IgA response to the virus

Inflammatory bowel

disease

• Enhancement of mucosal barrier function

Crohn’s disease • Reduction in proinflammatory cytokines

production

Adapted from Nagpal et al. (2012)
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function can lead to various conditions such as inflammatory bowel disease

(IBD), coeliac disease, enteric infections, and other autoimmune diseases

(Ng et al., 2009). Several probiotics have been shown to protect the epithe-

lial barrier and prevent mucosal damage triggered by food antigens, enteric

pathogens, drugs, and proinflammatory cytokines (O’Hara & Shanahan,

2007). These protective effects are mediated through several mechanisms

either directly or indirectly through alteration of gut microflora populations.

The first barrier that the intestinal bacteria and pathogens meet is the

mucus. The entire length of the intestinal tract is lined by goblet cells.

The percent of goblet cells increase from duodenum (4%) to descending

colon (�16%) relative to the epithelial cells (Goto & Kiyono, 2012). Intes-

tinal microflora also regulates the goblet cell populations in the gut. Goblet

cells secrete mucin that are resistant to proteolysis and form a protective gel

layer over the epithelial surface. Intestinal bacteria and pathogens have to

penetrate the mucus layer to reach the epithelial cells during infection.

Several microorganisms have developed diverse methods to degrade mucus

either to aid in invasion or for uptake of mucus-derived nutrients (Aristoteli

& Willcox, 2003; Ohland & MacNaughton, 2010). Additionally, several

studies have also reported that the mucus layer is significantly thinner in

areas of inflammation thus compromising the barrier and allowing for

increased bacterial adherence and infiltration (Swidsinski et al., 2007).

Probiotics enhance the barrier by promoting mucus secretion. Several

Lactobacillus species have increased mucin expression in in vitro cell culture

models and have blocked pathogenic E. coli adherence and invasion

(Mack, Ahrne, Hyde, Wei, & Hollingsworth, 2003). Similarly, in vivo

experiments in rats fed with probiotic cocktail VSL#3 for 7 days

demonstrated a significant increase in mucin secretion (Caballero-Franco,

Keller, De Simone, & Chadee, 2007). Thus, enhanced mucus production

by probiotics in vitro and in vivo could be used as a protective strategy to

augment the intestinal barrier function.

Once the bacteria come across the mucus layer, they find binding sites on

the epithelium for colonization/attachment. Pathogenic bacteria, however,

proceed to penetrate or damage the epithelium to cause disease. The

enterocytes express pattern recognition receptors such as Toll-like receptors

(TLRs) that sense the presence of conserved bacterial motifs and initiate cas-

cade of proinflammatory signals (Franchi, Wamer, Viani, & Nunez, 2009).

These receptors are present intracellularly and basolaterally on enterocytes.

Therefore, only after a pathogen breaches the barrier, they can come in con-

tact with the receptors, which can differentiate between commensal and
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pathogenic bacteria in the gut (Franchi et al., 2012; Franklin & Latz, 2012).

Enterocyte cell–cell adhesion is an essential component of the intestinal

barrier. Several components make up the cell–cell junctional complexes

such as tight junctions, adherens junctions, gap junctions, and desmosomes

(Turner, 2009). These intercellular junctional complexes help maintain the

epithelial barrier permeability and its integrity (Groschwitz & Hogan,

2009; Marchiando, Graham, & Turner, 2010; Ohland & MacNaughton,

2010). Regulation of tight junctions and the associated epithelial

permeability is essential to maintain the epithelial barrier function.

However, pathogens have evolved different mechanisms to cross the

epithelial barrier demonstrating the critical role the barrier plays in

maintenance of homeostasis and prevention of inflammation (Goto &

Kiyono, 2012). Chronic inflammation has been shown to be associated

with altered tight junction barrier function that can promote pathogen

access to the basolateral side of the epithelial barrier.

Several studies have demonstrated that pretreatment with probiotic

bacteria can inhibit the loss of permeability associated with tight junction

alteration caused by stress, infection, or proinflammatory cytokines

(Ait-Belgnaoui et al., 2006; Dahan et al., 2003; Ewaschuk et al., 2008;

Sherman et al., 2005). It has been shown that probiotics can directly alter

epithelial barrier function by altering the structure and function of tight

junctions. Resta-Lenert and Barrett (2003, 2006) found that pretreatment

with S. thermophilus and L. acidophilus independently decreased the

permeability of cell monolayers formed by intestinal cells of HT-29 and

Caco-2. This study also demonstrated that probiotics altered the

expression of several proteins that are structural components of tight

junctions thereby decreasing permeability. Another study by Yan et al.

(2007) demonstrated that certain proteins produced by probiotic bacteria

can interact with mammalian cell signaling proteins and lead to alteration

in tight junction function and permeability. Two such proteins produced

by L. rhamnosus (p40 and p75) inhibited apoptosis in enterocytes and

promoted survival. In addition, these proteins also altered structural

components of the cell junctional complexes and enhanced barrier

function (Table 5.5).

2.3.2 Immunomodulation
The intestine is the first site for foreign antigen encounter. Therefore, the

intestine has developed a tightly regulated mechanism to protect against

pathogen invasion. The intestinal immune system is made up of several



Table 5.5 Summary of probiotics effects on epithelial barrier function in vitro and in vivo
Barrier function
and probiotic Effect Model Reference

Mucous layer

Lactobacillus " MUC2 and/or 3 expression Caco-2, HT29 Kim et al. (2008), Mattar et al. (2002)

VSL#3 "MUC2, 3, and 5AC expression (no

effect on MUC1)

HT29 Otte and Podolsky (2004)

VSL#3 " MUC1, 2, and 3 expression and

secretion

Rat Caballero-Franco et al. (2007)

Tight junctions

S. thermophilus, L.

acidophilus

" TER, # permeability; activation of

occludins, ZO-1, ERK 1/2

HT29, Caco-2 Resta-Lenert and Barrett (2003)

B. infantis " TER, # permeability; " ZO-1,

occludin, # claudin-2 expression;

prevent IFN-g and TNF-a effects

T84 Ewaschuk et al. (2008)

Escherichia coli

Nissle

" ZO-1 expression; prevent DSS-

induced decrease in permeability and

illness

DSS-treated mouse Ukena et al. (2007)

Saccharomyces cerevisiae

(Boulardii)

Prevent EHEC-induced apoptosis T84 Dalmasso et al. (2006)

L. rhamnosus p40, p75 Inhibit cytokine-induced apoptosis YAMC, HT29,

mouse colon explant

Yan et al. (2007), Yan and Polk

(2011)

L. rhamnosus p40, p75 Inhibit H2O2-induced # TER and "
permeability

Caco-2, HT29, T84 Seth, Yan, Polk, and Rao (2008)

", increased; #, decreased; EcN, Escherichia coli Nissle; EHEC, enterhemorrhagic E. coli; TER, transepithelial resistance; ZO, zonula occludens; TJ, tight junction;
DSS, dextran sodium sulfate. VSL#3 contains four Lactobacillus spp. (L. acidophilus, L. casei, L. plantatarum, L. delbrueckii), three Bifidobacterium spp. (B. infantis, B. longum,
B. breve), and one Streptococcus salivarius subsp. thermophilus.

Adapted from Ohland and MacNaughton (2010).
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lymphoid organs collectively called as the gut-associated lymphoid tissue.

This is the largest collection of lymphoid tissues in the body and consists

of the mesenteric lymph nodes, Peyer’s patches, isolated lymphoid follicles,

lymphocytes, and dendritic cells (Forchielli & Walker, 2005; Hakansson &

Molin, 2011; Newberry & Lorenz, 2005). Microbial colonization of the gut

affects the composition of immune cell populations. Several studies have

demonstrated that bacterial colonization of the gut led to an increase in

the number of intraepithelial lymphocytes, germinal centers with

antibody-producing cells, and serum antibody concentrations (Hakansson

& Molin, 2011). This demonstrates the complex relationship that exists

between the intestinal immune system and the gut microbiota (Bron

et al., 2012).

Several in vivo and in vitro studies have demonstrated the immuno-

stimulatory effects that probiotics have on the intestinal immune system

(Gill & Prasad, 2008). Probiotics and probiotics-derived products are

detected by the specialized membranous cells (M cells). Antigens taken

up by the M cells are processed by the antigen-processing cells (APCs)

and presented to naı̈ve T cells. The type of cytokine secreted, phenotype,

and activation of APCs determine the lineage of the T cell that is produced,

namely T helper 1 (Th1), T helper 2 (Th2), or the T regulatory (Treg) cells.

Activation of Th1 cells leads to production of IFN-g, TNF-a, and IL-2

which leads to the development of cell-mediated and cytotoxic immunity.

Th2 cells activated by APCs mainly secrete IL-4, IL-5, and IL-13 which

promote antibody production. Treg cells secrete IL-10 and TGF-b, which
downregulate activities of both Th1 and Th2 cells and help maintain

homeostasis in the intestine (Gill & Prasad, 2008).

Probiotics have been demonstrated to modulate the innate and acquired

immune responses. The innate immune system forms the first line of defense

against pathogens. The major components of the innate immune system

include epithelial cells, phagocytic cells (monocytes, macrophages, neutro-

phils), and natural killer cells. Several clinical trials have demonstrated that

probiotics enhance the phagocytic activity of peripheral blood leukocytes

(Gill, 2003). Healthy subjects administered with L. johnsonii, L. rhamnosus,

or B. lactis demonstrated an enhanced phagocytic capacity of peripheral

blood leukocytes. The increase in phagocytic ability was also found to be

dose dependent and lasted for several weeks after cessation of probiotic intake

(Gill & Rutherfurd, 2001b). Probiotics also can activate neutrophils through

increased expression of phagocytosis receptors (Pelto, Isolauri, Lilius,

Nuutila, & Salminen, 1998) and an increased oxidative burst or microbicidal
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capacity of leukocytes (Parra, de Morentin, Cobo, Mateos, & Martinez,

2004). Similarly, consumption of probiotics by healthy subjects led to an

increase in the number and activity of NK cells and increased phagocytic

action in animals fed with probiotic supplements (Cross, 2002).

Probiotic-mediated gut health is attributed to the stimulation of epithelial

innate immunity. Administration of probiotic mixture VSL#3 exhibited

anti-inflammatory effect by stimulation of epithelial-derived TNF-a
production and activation of NF-kB (Pagnini et al., 2010).

Besides modulating the innate immune response, probiotics have also

been shown to augment the acquired immune responses through induction

of cell-mediated immunity. Intake of probiotics has led to an increase in an-

tibody responses to natural infections and immunizations. A randomized

trial in children with rotavirus administered with L. rhamnosus GG demon-

strated an increase in specific mucosal and serum antibody responses (Kaila

et al., 1992). Similarly, administration of probiotics following immunization

with Salmonella vaccine in subjects led to a significantly higher specific serum

IgA and IgA-mediated cell responses (Linkamster, Rochat, Saudan, Mignot,

& Aeschlimann, 1994). These observations indicate that probiotic strains

exhibit adjuvant properties increasing the efficacy of antibody production

and immune responses to immunizations. Probiotics mediate these effects

through increased transport of antigenic materials across the gut mucosa

and upregulation of antigen-presenting molecules and costimulatory mole-

cules in immune cells (Gill & Prasad, 2008; Hakansson & Molin, 2011).

An important component of the immune response mediators are cyto-

kines. They are the largest and the most pleiotropic group of mediators.

They are responsible for initiation, maintenance, and resolution of innate

and acquired immune responses. Several studies have demonstrated that

ability of specific probiotic strains to enhance cytokine production and

influence both innate and acquired immune responses. Probiotic adminis-

tration has been reported to enhance levels of IFN-g, IFN-a, and IL-12

in healthy subjects (Arunachalam, Gill, & Chandra, 2000). Long-term

consumption of probiotic containing yogurt has been shown to increase

production of IL-1b, IL-6, IL-10, IFN-g, IL-1, TNF-a, IL-10, IL-12,
IL-18, and TGF-b by mononuclear cells and dendritic cells (Cross, 2002;

Gill & Guarner, 2004; Niers et al., 2005). Several studies have provided

direct evidence that the administration of specific probiotic strains can

help in the prevention and treatment of gastrointestinal infections. Studies

conducted in animals have also demonstrated the ability of probiotics

to enhance serum and mucosal antibodies, phagocytic cell function and
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NK cell activity, and resistance to infection with pathogens (Gill & Prasad,

2008; Hakansson & Molin, 2011) (Table 5.6).

2.3.3 Antimicrobial action and cytoprotective effects
Probiotics exert their antimicrobial and cytoprotective effects on host intes-

tinal epithelium directly through the production of antimicrobial factors and

indirectly through the increase in expression of host cell antimicrobial

peptides, enhancement of barrier function, and immunomodulation. This

section specifically discusses the antimicrobials produced by probiotics

and their antagonistic effect on pathogens. The intestinal cells produce

two main classes of antimicrobial peptides, namely, defensins and
Table 5.6 Immunomodulatory effects of probiotics
Immune
function and
probiotic Effect Model Reference

L. casei " Levels of IgAþ and

IL-6-producing cells

in the lamina propria

Mouse Galdeano and

Perdigon (2006)

L. casei No change Monoassociated

mouse

Martins et al. (2009)

B. animalis,

E. coli EMO

" Total sIgA Monoassociated

mouse

Martins et al. (2009)

B. bifidum and

B. infantis

" Levels of rotavirus-

specific sIgA

Mouse Qiao et al. (2002)

B. lactis " Levels of EHEC-

specific sIgA

Mouse Shu and Gill (2001)

L. casei " Levels of EHEC-

or Shiga toxin-

specific sIgA leading

to increased survival

Rabbit Ogawa et al. (2001)

L. helveticus " Lamina propria

IgAþ B cells and

sIgA

Rat LeBlanc, Fliss, and

Matar (2004)

Saccharomyces

cerevisiae

(Boulardii)

" Total sIgA Conventional and

monoassociated

mouse

Martins et al. (2009)

", increased; #, decreased; EHEC, enterhemorrhagic E. coli; sIgA, secretogy IgA.

Adapted from Ohland and MacNaughton (2010).
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cathelicidins. Cathelicidins are constitutively produced by intestinal epithe-

lial cells to aid in host defense against pathogens (Kelsall, 2008). The only

stimulus that appears to induce cathelicidin production is butyrate that is

produced by intestinal flora (Schauber et al., 2003) and also by probiotics

(Floch, 2010; Sunkara et al., 2011). Shigella infection (dysentery) in rabbits

was significantly reduced by feeding butyrate to induce cathelicidin

production (Raqib et al., 2006).

Defensins produced by the intestinal cells can be classified as a-defensins
and b-defensins. a-Defensins are produced by small bowel Paneth cells

(HD-5 and HD-6), and b-defensins are expressed by epithelial cells

throughout the intestine (kBD-1 through 4). These defensins exhibit anti-

microbial activity against a wide variety of bacteria, fungi, and viruses.

Defensins are constitutively produced in the intestines to keep pathogens

from reaching the epithelium (Wehkamp et al., 2004). In vitro studies with

probiotics have demonstrated that Caco-2 cells upon stimulation by E. coli

Nissle, E. coli strain DSM 17252, and several Lactobacilli in the cocktail

VSL#3 led to an increased expression and secretion of human b
defensin-2 (hBD-2) (Schlee et al., 2008; Wehkamp et al., 2004). The

underlying mechanism through which probiotics stimulated hBD-2

production was elucidated using specific inhibitors. It was observed that

hBD-2 secretion was enhanced through activation of MAP kinases

(Schlee et al., 2008). Besides activation of MAP kinases, it was also

observed that E. coli Nissle flagellin also stimulated hBD-2 production

(Schlee et al., 2007).

In addition to stimulating the production of host antimicrobial peptides,

probioticsby themselvesproduce several antimicrobial compounds suchasbac-

tericidal peptides and SCFAs that can directly inactivate pathogens (Dobson

et al., 2012; Hassan et al., 2012). These secreted factors can be considered an

integral part of the intestinal barrier. SCFAs include acetic and lactic acid

which reduce the luminal pH resulting in the growth inhibition of some

pathogens including enterohemorrhagic E. coli (EHEC) and Salmonella

enterica serovar Typhimurium in vitro. Additionally, SCFAs produced by

probiotics have also been shown to decrease Shiga toxin gene expression

by E. coli O157:H7 (Carey, Kostrzynska, Ojha, & Thompson, 2008; Fayol-

Messaoudi, Berger, Coconnier-Polter, Lievin-Le Moal, & Servin, 2005).

Furthermore, SCFAs can also disrupt the outer membrane of Gram-negative

pathogens such as EHEC, Pseudomonas aeruginosa, and S. Typhimurium

thereby inhibiting pathogen growth. Increased permeabilization of the outer

membrane of pathogens also potentiates the activity of other antimicrobial
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molecules by aiding in their penetration of the cell wall (Alakomi et al., 2000).

Besides lactic acid, the predominant antimicrobial activity in Lactobacilli is

through the production of antimicrobial peptides, bacteriocins, and microcins

(Fayol-Messaoudi et al., 2005). Bacteriocins and microcins are peptides with

bactericidal or bacteriostatic activity produced in a strain-specific manner by

probiotics (Lievin-Le Moal & Servin, 2006). Bacteriocins are peptides

produced by Gram-positive bacteria while microcins are produced by Gram-

negative bacteria. Bacteriocins permeabilize the cytoplasmic membrane of

bacteria leading to disruption of cell wall synthesis and formation of pores

eventually leading to cell death. Microcins, on the other hand, target the

enzymes that are involved in DNA or RNA structure and synthesis or

protein synthesis enzymes (Duquesne, Petit, Peduzzi, & Rebuffat, 2007).

Collectively, these antimicrobial compounds protect the intestinal barrier by

rapidly eliminating pathogens from the gut.

Bacteriocin ABP-118 produced by L. salivarius has been shown to in-

hibit the growth of Bacillus, Listeria, Staphylococcus, and Enterococcus species.

However, this bacteriocin did not affect the growth of most Lactobacillus

species thereby providing a selective advantage for intestinal colonization

of probiotic and commensal bacteria (Flynn et al., 2002). Similarly, Lacticin

3147 produced by L. lactis has been shown to Clostridium difficile as a poten-

tial therapy; however, this bacteriocin inhibited other resident bacteria in-

cluding Lactobacillus and Bifidobacteria (Rea et al., 2007). In a separate study,

Banerjee, Merkel, and Bhunia (2009) showed that the soluble factors pro-

duced by probiotic Lactobacillus delbrueckii subsp. bulgaricuswere able to neu-

tralize C. difficile toxin, thereby preventing cytotoxicity in a cell culture

model. L. delbrueckii has been demonstrated to produce hydrogen peroxide

that can inactivate pathogens by oxidation. L. delbrueckii also produces lactic

acid, heat-sensitive, and heat-resistant bacteriocins. The heat-resistant bac-

teriocin has been observed to inhibit the growth of S. thermophilus (van de

Guchte, Ehrlich, & Maguin, 2001). Similarly, certain Bifidobacterium strains

produce lipophilicmolecules that have been shown to inhibit the viability of

E. coli,Klebsiella pneumonia, Yersinia pseudotuberculosis, S. aureus, and S. Typ-

himurium. Additionally, this antimicrobial compound has also been dem-

onstrated to prevent invasion of Caco-2 cells by S. Typhimurium and can

also kill intracellular S. Typhimurium in a therapeutic model (Lievin

et al., 2000).

Probiotics also exert their antimicrobial and cytoprotective effect by

inhibiting pathogen adherence to the intestinal epithelium (Collado,

Isolauri, Salminen, & Sanz, 2009; Sherman, Ossa, & Johnson-Henry,
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2009). Probiotics inhibit pathogen adherence by competing for the binding

sites on the epithelial cells. Pretreatment of HEp-2 and T84 cell lines with L.

rhamnosus and L. acidophilus significantly reduced the binding of

enteropathogenic E. coli (EPEC) and EHEC to the monolayers. In

addition, probiotic pretreatment also reduced EHEC-induced increase in

permeability and helped maintain monolayer integrity (Johnson-Henry,

Donato, Shen-Tu, Gordanpour, & Sherman, 2008; Sherman et al., 2005).

Probiotic bacteria or its cell surface components also inhibited E. coli

O157:H7 adhesion to Caco-2 cells (Johnson-Henry, Hagen, Gordonpour,

Tompkins, & Sherman, 2007; Medellin-Pena & Griffiths, 2009) or

virulence-associated gene expression (Medellin-Pena, Wang, Johnson,

Anand, & Griffiths, 2007). Lactobacillus strains have also been shown to

compete directly with pathogens such as Salmonella species, for binding

sites on human mucins or Caco-2 cell surfaces (Gueimonde, Jalonen, He,

Hiramatsu, & Salminen, 2006). Besides physical displacement of pathogens,

E. coli Nissle has been shown to secrete a nonbacteriocin component that

may act either on the pathogen or on the host cell to inhibit adherence of

several pathogens (Altenhoefer et al., 2004). Similar studies performed in a

rat model suffering from chronic psychological stress that were

administered with L. rhamnosus and L. helveticus demonstrated reduced

commensal bacterial adherence and translocation (Zareie et al., 2006).

Thus, inhibition of pathogen adherence is another mechanism through

which probiotic bacteria prevent intestinal infection. Altogether, probiotic

exerts its cytoprotective effect in the intestinal tract through their ability to

enhance intestinal barrier function, immune modulation, toxin binding and

neutralization, and inactivation and prevention of pathogen attachment

(Table 5.7).

3. INTERACTION OF GUT MICROBIOTA AND PROBIOTICS

When a probiotic is administered orally, it first encounters various
harsh environments in the gut. Therefore, it is essential that probiotics

survive in the intestinal tract in significant numbers to produce beneficial

effects. Survival of the probiotic is dependent on multiple factors such as

stress response, metabolism, pH homeogenesis, cell wall maintenance, and

fatty acid synthesis (Breton et al., 2002; Sanders, 2011). Gram-positive

probiotic bacteria use several mechanisms to help them survive in the

gut. These include proton pumps, amino acid decarboxylation, and

electrogenic transport systems that aid in acid resistance, changes in the



Table 5.7 In vivo effect of bacteriocins against enteric pathogens

Bacteriocin Producer strain
Animal
model Activity Reference

Bacteriocin

B602

Paenibacillus

polymyxa

NRRL

B-30509

Chicken Inhibitory to

Campylobacter jejuni

Stern et al. (2005)

Mutacin

B-Ny266

Streptococcus

mutans Ny266

Mice Reduced mortality

due to S. aureus

Mota-Meira,

Morency, and

Lavoie (2005)

Enterocin A Enterococcus

faecium EK13

Japanese

quails

Reduced Salmonella

concentration and

associated intestinal

damage

Cigankova,

Laukova, Guba, and

Nemcova (2004)

E-760 Enterococcus sp.

NRRL

B-30745

Broiler

chicks

Reduced

colonization by

C. jejuni

Line et al. (2008)

Bacteriocin

E 50-52

Enterococcus

faecium NRRL

B-30746

Broilers Reduced

colonization by

C. jejuni and

Salmonella enteritidis

Svetoch et al. (2008)

Bacteriocin

OR7

Lactobacillus

salivarius

NRRL

B-30514

Turkeys Reduced

Campylobacter

concentrations

Cole et al. (2006)

Bacteriocin

PPB CCM

7420

Enterococcus

faecium CCM

7420

Rabbits Reduced coagulase

positive Staphylococcus

in the cecum

Simonova et al.

(2009)

Adapted from Bogovic-Matijasic and Rogelj (2011).
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structure of their cell envelop, chaperones involved in repair of damaged

proteins, and incremental expression of regulators promoting global gene

responses (Cotter & Hill, 2003). In addition, several probiotics have also

been shown to modulate their gene expression in vitro under simulated

gastrointestinal tract environment or in vivo in mouse model (Bron,

Grangette, Mercenier, de Vos, & Kleerebezem, 2004; Bron, Molenaar,

Vos, & Kleerebezem, 2006).
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Once the probiotics survive the transit through stomach and intestine, it

interacts with the major component of the gastrointestinal tract that is the

resident commensal flora consisting of 500–1000 of different microbial

species (Collado et al., 2009). One of the earliest investigations into the

interaction between probiotics and the resident microbiota by Tannock

et al. (2000) revealed that administration of L. rhamnosus DR20 resulted

in modest fluctuations in resident Lactobacillus and Bifidobacterium numbers.

Most subjects ceased shedding the probiotic strain once the administration

was stopped. However, one subject continued to shed the probiotic strain

for over 2 months after the test period, indicating that there are interhost

variables such as bacterium–host interactions. Probiotics are commonly

applied in companion and farm animals as growth enhancers (Patterson &

Burkholder, 2003; Swanson & Fahey, 2006). It has been demonstrated

that administration of a cocktail of Lactobacilli, Bifidobacteria, Enterococci, and

Pediococci improved weight gain in broiler chickens associated with an

increase in Bifidobacterium, Lactobacilli, and Gram-positive cocci populations

(Mountzouris et al., 2007). A similar study in piglets administered with

Enterococcus faecium strain reduced Enterococcus faecalis population in the

intestine of weaning pigs, but the total numbers of E. faecium remained

unchanged, suggesting that the E. faecium strain introduced had displaced

part of the same species (Vahjen, Taras, & Simon, 2007). Another study

performed in mice demonstrated that administration of L. casei and L.

plantarum affected the overall diversity of the murine intestinal Lactobacilli

but not the overall bacterial community structure (Fuentes et al., 2008).

Furthermore, an increase in the population of Lactobacilli related to the

acidophilus complex was observed.

Use of animal models provides us with an insight into the interaction

between probiotics and the resident flora; however, studies in humans

are essential if that species is the desired host. Few studies have been done

on humans. Alterations in gut microflora have been reported in humans

with irritable bowel syndrome (IBS) (Kassinen et al., 2007; Satokari

et al., 2003), and administration of multispecies probiotic supplement

was able to alleviate IBS with a stabilization of the gut microbiota over

time (Kajander et al., 2007). Besides treating inflammatory conditions,

probiotics have also been efficacious in the treatment of infectious

diarrhea (Benchimol & Mack, 2004; Guandalini, 2008a, 2008b). There

are several ways in which probiotics can alter the microbiota, which

include competition for nutrients, changes in microenvironment,
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production of growth substrates, direct antagonism, competitive exclusion,

barrier function, immune stimulation, and reduction of inflammation

(O’Toole & Cooney, 2008). Studies using transcriptional microarrays have

shown that introducing a probiotic into the mouse gut changed the

metabolic pathway of the endogenous microbiota (Sonnenburg, Chen, &

Gordon, 2006). Gnotobiotic mice colonized by Bacteroides thetaiotaomicron

were challenged with B. animalis or L. casei, resulting in shifts in gene

expression pattern of B. thetaiotaomicron. Many of the altered genes were

found to be involved in carbohydrate metabolism (Sonnenburg et al., 2006).

This suggests that probiotics alter resident microbiota population or gene

expression through competition for substrate availability and by altering the

dynamics of carbohydrate utilization (Keeney & Finlay, 2011).

Probiotics can also alter the microenvironment of microbiota through

a diverse range of metabolic pathway outcomes. Colonization of germ-

free mice by microbiota from human baby exposed to Lactobacilli strains

resulted in microbiome modification measured by selected culture re-

gimes (Claus et al., 2008). This was also associated with changes in fecal

levels of choline, acetate, ethanol, unconjugated bile acids, and cecal con-

centrations of SCFAs. Besides changing the microenvironment, several

probiotic strains are also known to produce vitamins and growth factors.

The enhanced availability of such growth factors can also modulate the

diversity of intestinal microbiota. Probiotic bacteria also impact the resi-

dent microbiota by direct antagonism. Natural competition between pro-

biotics and opportunistic pathogens could also be mediated through the

production of bacteriocins that are exploited to modulate microbiota.

The indirect mechanisms through which probiotics modulate inherent

microbiota include enhancement of intestinal barrier function that can al-

ter release rates of host-derived micronutrients and suppression of

proinflammatory cytokines resulting in a reduction of gut inflammation

(Zyrek et al., 2007). Reduction in inflammation can alter the gut environ-

ment sufficiently to impact on the microbiota. Additionally, administra-

tion of probiotics can also bolster the innate and acquired immune

responses leading to subtle changes in the overall composition of the

gut microbiota (Gill & Rutherfurd, 2001a, 2001c). There is adequate

information in literature to indicate that administration of probiotics in

high dosage impacts the diversity of gut microflora (Preidis et al.,

2012). However, detailed studies are required to understand the

interplay of diet, microbiota, and host factors in determining the

outcomes to allow its manipulation.
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4. WILD-TYPE AND BIOENGINEERED PROBIOTICS TO
CONTROL FOODBORNE ENTERIC PATHOGENS
Foodborne pathogens are a major concern worldwide due to

increased mortality and morbidity (Flint et al., 2005). Thus, various afford-

able intervention strategies including improved food-processing methods

along with probiotic-based natural and functional food systems must be de-

veloped to protect people against foodborne infections. Probiotics are live

nonpathogenic microorganisms that are administered to maintain and to im-

prove intestinal microbial balance and also to protect the consumers from

untoward infection from pathogens. Among the various etiologic agents,

bacterial, viral, and mycotoxins are of major concerns. Several studies have

demonstrated the efficacy of either wild-type or recombinant probiotics

against foodborne pathogens thereby help improving animal health and

preventing foodborne infections (Bhunia, 2012; Dobson et al., 2012;

Paton, Morona, & Paton, 2006; Salminen et al., 2010). This section

discusses the various probiotic-based intervention strategies in controlling

foodborne pathogens. Mechanism of probiotic-mediated antimicrobial

action in gastrointestinal tract is illustrated in Fig. 5.3.
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Figure 5.3 Mechanism of probiotic action against foodborne pathogens in the gastro-
intestinal tract depicting immunological and cellular responses.
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4.1. Probiotics to control bacterial pathogens

4.1.1 E. coli O157:H7
EHEC is commonly implicated in foodborne illness. Control of E. coli

O157:H7, a predominant EHEC, is particularly important because of its

low infectious dose, acid tolerance, and is harbored in healthy cattle

(Ferens & Hovde, 2011; Soon et al., 2011). Among the many

intervention strategies investigated, probiotics are found to be effective.

Lema, Williams, and Rao (2001) demonstrated the efficacy of several

probiotics including L. acidophilus, L. casei, L. fermentum, L. plantarum, and

E. faecium in reducing E. coli O157:H7 shedding by sheep. The microbial

supplements were fed with freeze-dried fermentation products of the

probiotics for a period of 7 weeks. The animal group fed with the

probiotic supplement showed a significantly lower numbers of E. coli

O157:H7 shedding in the feces and an increase in average daily weight

gain and feed conversion. In addition to reducing fecal shedding,

administration of Bifidobacteria in mice showed a decrease in Shiga toxin

production. Mice that were fed with Bifidobacterium breve had a significant

reduction in body weight loss and mortality compared to the control

group demonstrating that B. breve is capable of protecting mice from

E. coli O157:H7 infection (Asahara et al., 2004). A study conducted by

Stephens, Loneragan, Karunasena, and Brashears (2007) also demonstrated

that direct-fed probiotics consisting of L. acidophilus at different doses led

to a dose-dependent decrease in fecal shedding and presence on the hide.

In addition to the use of Lactobacillus, studies using nonpathogenic E. coli

such as E. coli 1307 and Nissle strains also inhibited bacterial growth and

Shiga toxin production by STEC (Reissbrodt et al., 2009).

Studies using in vitro cell culture models have also been used to elucidate

the efficacy of probiotics in controlling E. coli O157:H7 (Sherman et al.,

2005). Intestinal cell monolayers (HEp-2 and T84) were exposed to

L. acidophilus R0052 and L. rhamnosus R0011 followed by infection with

EHEC or EPEC (E. coli O157:H7 or E. coli O127:H6), respectively.

Following infection, the adherence and cytotoxicity induced by EHEC

and EPEC were examined. Exposure to the probiotic strains significantly

reduced pathogen attachment to the monolayers. In addition, the probiotics

also protected the monolayers from pathogen-induced loss of transepithelial

resistance and tight junction integrity (Sherman et al., 2009). Besides reduc-

ing the adherence and cell injury, L. acidophilus cell-free spent media resulted

in downregulation of several virulence genes involved in the colonization of

EHEC (Medellin-Pena et al., 2007). Similar studies conducted using E. coli
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O157:H7-infected BALB/c mice demonstrated that preexposure to L. para-

casei resulted in an upregulation of dendritic cells and helper T cell, antibody

production, and downregulation of proinflammatory cytokines yielding

enhanced protection of the intestinal integrity (Tsai, Cheng, & Pan, 2010).

In addition to using wild-type probiotics, Paton et al. (2005) generated

a recombinant nonpathogenic E. coli carrying chimeric lipopolysaccharide

capable of binding enterotoxin produced by enterotoxigenic E. coli (ETEC).

The recombinant probiotic was able to neutralize 93% of enterotoxin in cul-

ture lysates of diverse ETEC strains (Paton et al., 2006). Similarly, a recom-

binant L. casei strain carrying the K88 fimbriae from ETEC was able to

reduce the attachment of ETEC to porcine intestinal brush border in a

dose-dependent manner and to reduce infection in a mice model (Wen

et al., 2012). These studies demonstrate that bioengineered probiotics can

be used in the targeted control of specific enteropathogens.
4.1.2 Salmonella
Salmonella infection is the leading cause of foodborne gastroenteritis in

humans worldwide and is commonly associated with raw or uncooked poul-

try and eggs, and fruits and vegetables (Foley, Lynne, & Nayak, 2008; Weill

et al., 2006). In the United States, nontyphoidal Salmonella is responsible for

11% of total foodborne illness and 35% of hospitalizations (Scallan et al.,

2011). Salmonella utilizes numerous virulence factors to initiate infection

and colonizes effectively on the epithelial cells in the gut (Ahmer & Gunn,

2011). Therefore, control strategies have to be applied along the food

production chain to prevent the entry into human food supply (Vandeplas,

Dubois Dauphin, Beckers, Thonart, & Théwis, 2010). Several studies have

demonstrated that inoculation of cultures of one or several probiotic strains

into broiler chickens may inhibit Salmonella contamination (Audisio,

Oliver, & Apella, 2000; Higgins et al., 2007, 2008; Van Coillie et al.,

2007). Neonatal broiler chicks were challenged with Salmonella Enteritidis

and then challenged with Lactobacillus probiotic culture at different doses

orally. Lactobacillus significantly reduced Salmonella incidence in chicks by

85% (Higgins et al., 2008). Similar study conducted in grower pigs

challenged with S. enterica serotype Typhimurium and administered with

L. plantarum resulted in a reduction in fecal shedding of the pathogen.

In addition, probiotic feeding also improved the performance of the pigs

(Gebru et al., 2010). L. rhamnosus was also able to reduce epithelial cells

stress induced by heat or cytotoxicity induced by S. Typhimurium

infection in a cultured epithelial cell model (Burkholder & Bhunia, 2009).
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Commercially available probiotic cocktails were evaluated for their abil-

ity to inhibit Salmonella colonization in neonatal broiler chickens and turkey

poults. Administration of probiotic cultures (FloraMax, IVS-Wynco LLC,

Springdale, AR) significantly reduced Salmonella counts in the tonsils and

ceca of chickens and poults (Menconi et al., 2011). Furthermore, adminis-

tration of Lactobacillus reuteri strain that produced reuterin (bacteriocin) sig-

nificantly reduced Salmonella populations and increased the survival rate in

chicks (Zhang, Li, & Li, 2012). Probiotic Bacillus subtilis DSM 17299 was

also able to significantly reduce cecal loads of Salmonella (Knap et al.,

2011). An in vitro gut fermentation cellular model was used to evaluate

the protective effect of probiotics against Salmonella. Addition of Bacillus

thermophilusRBL67 to Salmonella in the reactors of the colonic fermentation

model revealed a protective effect on epithelial integrity and increased the

transepithelial resistance by 58% (Zihler, Gagnon, Chassard, & Lacroix,

2011). Probiotic has also been effective against antibiotic-resistant S. Typ-

himuriumDT104 (Asahara et al., 2011). Administration of L. casei Shirota in

mice challenged with S. Typhimurium significantly reduced the pathogen

growth and subsequent extraintestinal dissemination. The increase in con-

centration of organic acids and lowering of pH in the intestine were thought

to reduce probiotic colonization, which correlated with the antimicrobial

activity (Asahara et al., 2011).

The mechanism underlying the antibacterial effect of Lactobacillus is mul-

tifactorial and involves lowering of the pH, production of lactic acid, and

production of bacteriocins, nonbacteriocins, and nonlactic compounds

(Dobson et al., 2012). It was observed that L. johnsonii La1, L. rhamnosus

GG, L. casei Shirota YIT9029, L. casei DN-114001, and L. rhamnosus

GR1 dramatically reduced the viability of S. enterica serovar Typhimurium

through the production of nonlactic acid molecules, while the complete

inhibition of Salmonella growth was observed to be due to a pH-lowering

effect (Fayol-Messaoudi et al., 2005). In another study, soluble factors pro-

duced by B. bifidum also suppressed gene expressions in S. Typhimurium

that are required for adhesion and invasion for systemic spread (Bayoumi

&Griffiths, 2012). In vivo study using amousemodel demonstrated that con-

tinued administration of L. casei CRL diminished Salmonella counts in the

intestine as well as its spread outside this organ. The probiotic-associated

immunomodulatory effect involved both the innate and adaptive immune

responses. Probiotic administration reduced neutrophil infiltration, acti-

vated phagocytic activity, increased IgAþ cells, and released sIgA specific

to the pathogen in the intestinal fluid (de LeBlanc, Castillo, & Perdigon,
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2010). Besides antimicrobial actions, probiotics also increased feed conver-

sion and the performance in chickens and turkey poults.

4.1.3 Campylobacter
In poultry, Campylobacter is another predominant bacterial pathogen that is

responsible for numerous outbreaks. Several probiotic strains have been

evaluated for their efficacy in controlling Campylobacter. Human colon

T84 and embryonic Int-407 epithelial cells were pretreated with Lactobacillus

strains and then infected with C. jejuni. It was observed that L. helveticus

R0052 reduced C. jejuni invasion into T84 cells and Int-407 cells by

35–41% and 55%, respectively. In addition, L. helveticus R0052 adhered

efficiently to the epithelial cells suggesting that the inhibition of pathogen

invasion could be due to competitive exclusion (Wine, Gareau, Johnson-

Henry, & Sherman, 2009). In in vivo experiments conducted using a defined

humanmicrobiota-associated BALB/cmice were orally infected with either

C. jejuni or Salmonella and then subsequently challenged with probiotic

Lactobacilli and Bifidobacteria. Probiotics were able to enhance colonization

resistance by successfully excluding both pathogens from mice and also

increased proliferation of lymphocytes against Salmonella antigens. This

study indicates that the probiotic administration reversed the immunosup-

pressive activity of Salmonella in BALB/c mice (Wagner, Johnson, &Rubin,

2009). Baffoni et al. (2012) evaluated the use of synbiotics to controlC. jejuni

in poultry. Prebiotic galacto-oligosaccharide was used with probiotic B.

longum subsp. longum PCB133, and this synbiotic significantly reduced C.

jejuni population in poultry feces thereby highlighting the positive effect

of employing the synbiotic approach to reduce pathogen loads.

4.1.4 L. monocytogenes
Among the various pathogens causing foodborne illness, hospitalizations, and

deaths, Listeria is responsible for 19% of the associated deaths (Scallan et al.,

2011). Upon arrival in the gastrointestinal tract, L. monocytogenes invades

the intestinal epithelium and disseminates from the mesenteric lymph nodes

to the spleen and liver (Vazquez-Boland et al., 2001). During bacteremia, the

organism reaches to liver, spleen, gall bladder, brain, and placenta. In the pla-

centa, it can cause villous necrosis and microabscesses resulting in preterm

abortion and infection of the fetus leading to stillbirth or neonatal listeriosis

(Bakardjiev, Theriot, & Portnoy, 2006; Jiao et al., 2011). Several

probiotics have been evaluated for their ability to control L. monocytogenes

infection. dos Santos et al. (2011) evaluated the monoassociation of
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L. delbrueckii in gnotobiotic mice and their effect on Listeria colonization.

Administration of L. delbrueckii was capable of protecting the mice against

death caused by L. monocytogenes and also led to a faster clearance of the

bacteria from various organs such as the liver, spleen, peritoneal cavity, and

the gut. Additionally, probiotic-fed mice also showed an increase in IFN-g
and IL-10 signifying the role for effector molecules in probiotic-induced

cytoprotection. Similar results were obtained in a study where rats were

fed with L. casei Shirota strain. In addition to reducing Listeria populations

in the gut, spleen, liver, and feces, the probiotic strain also increased

cellular immunity as determined by the delayed-type hypersensitivity

response against heat-killed L. monocytogenes (de Waard, Garssen, Bokken,

& Vos, 2002). Puertollano et al. (2008) evaluated the immunomodulatory

effects of L. plantarum against L. monocytogenes infections in mice.

Administration of L. plantarum in mice infected with L. monocytogenes

resulted in a reduction in the production of proinflammatory cytokines

which circumvented Listeria-mediated cytotoxicity. Several species of

Lactobacillus and Bifidobacterium were also able to inhibit L. monocytogenes

infection in a cell culture model (Corr, Gahan, & Hill, 2007). Later, the

anti-infective property of probiotic L. salivarius was shown to be due to

the production of a bacteriocin that protected mice from listeriosis when

challenged with L. monocytogenes (Corr, Li, et al., 2007). In addition to the

use of wild-type probiotics, Koo, Amalaradjou, and Bhunia (2012)

generated a recombinant L. paracasei strain to control L. monocytogenes

infection in a cell culture model. The recombinant probiotic was designed

to express Listeria adhesion protein, an essential virulence factor

(Burkholder & Bhunia, 2010; Jagadeesan et al., 2010) aiding Listeria in

transepithelial translocation during intestinal phase of infection.

Preexposure of intestinal monolayers to the recombinant probiotic

followed by Listeria infection led to a reduction in adhesion and

paracellular translocation by 44% and 46%, respectively. The recombinant

probiotic also protected the monolayers from Listeria-mediated

cytotoxicity and tight junction compromise. The use of such recombinant

probiotics can help in the targeted elimination of enteric pathogens.

4.1.5 Miscellaneous bacterial pathogens
Probiotics have been evaluated for the control of C. perfringens in turkey

poults (Rahimi, Kathariou, Grimes, & Siletzky, 2011). Administration of

Primalac, a commercial probiotic cocktail to turkey poults, significantly

reduced cecal C. perfringens counts compared to the control. In another
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study, a recombinant Pichia pastoris containingC. perfringens alpha toxin gene

significantly increased weight gain, feed efficiency, sero conversion, and an

absence of adverse reactions in histopathological evaluation of broiler chicks

(Gil de los Santos, Storch, Fernandes, & Gil-Turnes, 2012). Probiotic bac-

teria have also been used to control Vibrio parahaemolyticus attachment in cell

culture model. L. plantarum AS1 was shown to attach efficiently to HT-29

cells and reduce V. parahaemolyticus attachment by competitive exclusion

and displacement (Satish Kumar et al., 2011). A recombinant probiotic

expressing a chimeric lipopolysaccharide was able to bind to cholera toxin

and protected infant mice challenged with virulent V. cholera (Focareta,

Paton, Morona, Cook, & Paton, 2006). Probiotics have also been shown to

be effective against other pathogens such as Shigella sonnei, S. aureus, E. faecalis,

Proteus mirabilis, and P. aeruginosa (Varma, Dinesh, Menon, & Biswas, 2010).

4.2. Probiotics to control viral pathogens
Probiotics have alsobeenused to control viral infections.Gnotobiotic pigs fed

with L. acidophilus andL. reuteri enhanced IFN-g and IL-4 responses in serum
and decreased human Rotavirus infection (Wen et al., 2009). Protection

against rotavirus-induced diarrhea was also induced by administration of

L. paracasei expressing variable domain of llama heavy-chain antibody frag-

ments (Pant et al., 2006). Another major enteric virus responsible for 58%

of foodborne illness is Norovirus (Marshall & Bruggink, 2011; Mattison,

2011). Probiotic-fermented milk containing L. casei Shirota strain has been

evaluated for its efficacy in controlling norovirus gastroenteritis in a health

service facility. A total of 77 people were enrolled in the study. Intake of

probiotic-fermented milk by the treatment group resulted in a reduction

in the mean duration of fever after the onset of gastroenteritis (Nagata

et al., 2011). Wang, Yu, Gao, and Yang (2012) generated a recombinant

Lactobacillus strain expressing the hemagglutinin of the avian influenza virus

H5N1. Oral administration of this recombinant probiotic BALB/c mice

triggered both mucosal and systemic immune responses. There was an

increase in anti-HA IgA and anti-HA IgG levels with an associated

increase in IL-4 production. Recombinant L. casei expressing human

Lactoferrin was shown to exhibit antibacterial and antiviral activities in

in vitro and in vivo models (Chen et al., 2010).

Receptor mimetics has been used as a strategy to control foodborne

pathogens. Many enteric pathogens recognize oligosaccharides expressed

on host cells as receptors for toxins and adhesion factors. This interaction

between the ligand and the receptor is essential for the initiation of infection
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process. This critical step in the infection process can be adapted to develop

intervention strategies. This involves the expression of molecular mimics of

host oligosaccharides in probiotic bacteria to control enteric pathogens

(Paton,Morona, & Paton, 2010). Such designer probiotics can bind bacterial

toxins to competitively inhibit pathogen binding to its receptor in the gut.

Such receptor mimic probiotics have been developed against STEC and

ETEC (Paton et al., 2005, 2006), Cholera (Focareta et al., 2006), and

C. jejuni (Yuki et al., 2004). In addition to the enteric pathogens,

probiotics have also been developed against many other pathogens and

infectious agents summarized in Table 5.8.

4.3. Probiotics to neutralize toxins in food
Fungal pathogens could be controlled by inactivation of their toxins (myco-

toxins) that cause foodborne infections. Mycotoxins are of clinical impor-

tance due to their ability to induce acute and chronic toxicity in the host

(Kabak, Dobson, & Var, 2006). These mycotoxins can be mutagenic, car-

cinogenic, teratogenic, and immunosuppressive in nature (Salminen et al.,

2010). Probiotics are known to bind and neutralize toxins. This attribute

of the probiotic has been exploited in the reduction of dietary exposure

to fungal toxins. Specific strains of probiotics have proved to be highly ef-

fective in removing mycotoxins in model systems. Armando et al. (2012)

have demonstrated that Saccharomyces cerevisiae strains can adsorb ochratoxin

and zearalenone in a mycotoxin binding assay under simulated gastrointes-

tinal conditions. It was also observed that toxin binding was a function of cell

wall thickness and binding occurs through physical adsorption. Similar stud-

ies conducted using a food system (grape juice) also demonstrated the ability

of Saccharomyces strains to adsorb ochratoxin (Bejaoui, Mathieu, Taillandier,

& Lebrihi, 2004).

Rats fed with aflatoxin-containing diet showed that administration of

Lactobacilli casei andL. reuteri significantly reduced the oxidative stress induced

by aflatoxins in comparison to the control group that did not receive any

probiotics (Hathout et al., 2011). Similar experiment conducted in rats

fed with different doses of aflatoxin (AFB-1) followed by administration

with L. reuteri demonstrated significantly lower levels of AFB-1 in the intes-

tine than in the control group. This study demonstrated that probiotic strains

can bind to toxin in the intestine and act as a barrier to toxin-induced cell

cytotoxicity (Hernandez-Mendoza, González-Córdova, Vallejo-Cordoba,

& Garcia, 2011). Besides aflatoxin, ochratoxin, and zearalenone, other fun-

gal toxins such as patulin and fumonisin can also be neutralized by probiotics.



Table 5.8 Lactic acid bacteria-based intervention strategies (vaccines)
Vaccine target Vehicle Antigen Model Effect Reference

Helicobacter pylori L. plantarum Urease B Mouse Reduction in colonization Corthesy, Boris, Isler,

Grangette, and Mercenier

(2005)

Tetanus Lactococcus lactis Tetanus toxin

fragment C

Mouse Survival after tetanus toxin

challenge

Robinson et al. (2004)

Streptococcus pneumoniae L. plantarum and

L. helveticus

PsaA Mouse Reduction in nasal

colonization

Oliveira et al. (2006)

ETEC L. acidophilus K99 Pig Inhibition of adhesion Tarahomjoo (2012)

SARS-associated

coronavirus

L. casei Spike antigen

segments

Mouse Viral neutralizing

antibody elicited

Lee et al. (2006)

Rotavirus L. lactis VP7 Mouse Neutralizing antibody

against VP7

Perez, Eichwald, Burrone,

and de Mendoza (2005)

Group B Streptococcus L. lactis Pilus Mouse Survival of offspring from

vaccinated mothers after

infectious challenge

Buccato et al. (2006)

Adapted from Wells and Mercenier (2008).
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Several probiotic strains such as Propionibacterium, L. rhamnosus GG,

L. plantarum, L. casei Bacillus species, and E. faeciumwere demonstrated to bind

and neutralize mycotoxins (Danicke & Doll, 2010; Hernandez-Mendoza,

Garcia, & Steele, 2009; Hernandez-Mendoza et al., 2011; Khanafari, Soudi,

Miraboulfathi, & Osboo, 2007; Niderkorn, Morgavi, Aboab, Lemaire, &

Boudra, 2009; Topcu, Bulat, Wishah, & Boyaci, 2010).

5. DELIVERY SYSTEM FOR PROBIOTICS TO THE GUT

When using probiotics for control of infections, it is essential that they
survive the acidic gastric pH, the intestinal enzymes, bile, and alkaline pH to

be able to exert their protective effect. This is critical when using recombi-

nant probiotic to ensure production of the foreign protein at the target site.

In general, probiotic supplements have been delivered as capsules, tablets, or

powders. The choice of delivery matrix is also important to ensure pro-

biotics activity and viability (Hajela, Nair, Abraham, & Ganguly, 2012).

Probiotic encapsulation technology (PET) has emerged as the principal

method for delivery of probiotics. A wide range of microbes have been

immobilized using semipermeable and biocompatible materials that modu-

late their delivery and release. Probiotics are either entrapped or encapsu-

lated. Entrapment refers to the trapping of material within or throughout

a matrix. Encapsulation involves the formation of a continuous coating

around the inner matrix that is present within the capsule wall as a core

of the encapsulated material. Encapsulation helps to stabilize cells, enhancing

their viability and stability during production, storage, and handling. PET

helps in the controlled and continuous delivery of probiotic cells in

the gut. The biomaterials used in the encapsulation of probiotics include al-

ginate, carrageenan, gelatin, chitosan,wheyproteins, cellulose acetatephthal-

ate, locust bean gum, and starches (Anal & Singh, 2007; Chandramouli,

Kailasapathy, Peiris, & Jones, 2004; Krasaekoopt, Bhandari, &Deeth, 2003).

Alginate gels are insoluble in acidic media and hence protect probiotics

from gastric acidity (Gbassi, Vandamme, Ennahar, & Marchioni, 2009).

Carrageenan is used for its ability to form gels that can entrap the probiotics

bacteria (Doleyres, Fliss, & Lacroix, 2004; Doleyres, Paquin, LeRoy, &

Lacroix, 2002). Cellulose acetate phthalate is insoluble at pH below 5 but

soluble when pH is greater than 6. This is especially advantageous for the

stability of encapsulated probiotic in the stomach and for controlled

release in the intestine (Anal & Singh, 2007). Microencapsulation of

probiotics is performed by freeze-drying, extrusion, or emulsification.
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Freeze-drying results in the formation of concentrated dry powder that has

longer shelf life but do not protect probiotics from gastric fluid or bile

(Rokka & Rantamaki, 2010). It is essential to provide probiotics with

physical barriers to protect them from the adverse conditions encountered

in the gut. For this purpose, extrusion and emulsification techniques

intended to develop gel beads or capsules were applied (Lacroix, Paquin, &

Arnaud, 1990). Extrusion technique involves the mixture of probiotics

with the hydrocolloid finally resulting in the formation of gelled droplets

called beads (Gouin, 2004). Emulsification involves the mixture of

probiotics with a continuous phase resulting in a water-in-oil emulsion.

This technique has been used to develop encapsulated probiotics (Shima,

Morita, Yamashita, & Adachi, 2006). Emulsification results in the

formation of oily or aqueous droplets called capsules (Gbassi &

Vandamme, 2012).

Alginate microcapsules coated with chitosan were evaluated for their

ability to increase gastrointestinal viability of B. breve. Chitosan stabilizes

the alginate microcapsules at pH above 3. Coating with chitosan also in-

creased the survival of B. breve in simulated gastric fluid and prolonged its

release upon exposure to intestinal pH (Cook, Tzortzis, Charalampopoulos,

& Khutoryanskiy, 2011). Calinescu and Mateescu (2008) developed a tablet

dosage system based on carboxylated methyl high amylose starch (CM-

HAS) and chitosan excipient for probiotic colon delivery. CM-HAS ensures

protection in the gastric pH while chitosan helps with slow release of the

probiotic in the intestine. This encapsulation of L. rhamnosus resulted in

an improved percentage of delivered bacteria in simulated intestinal condi-

tions. To enhance the slow and sustained release of probiotics in the gut, a

coacervate extended-release microparticulate delivery system was developed

(Alli, 2011). Core mucoadhesive L. rhamnosus was prepared using hyper-

mellose and subsequent enteric coating with hypermellose phthalate.

Hypermellose has good mucoadhesive and release rate controlling properties,

which are preferred inmucoadhesive formulations. Use of suchmicroparticles

in simulated intestinal conditions exhibited appreciable mucoadhesion

compared to the freeze-dried cultures.

In addition to the use of the above-mentionedmatrices, DNA-based gels

have also been evaluated as a vehicle for oral delivery of probiotics. DNA-

based gels were initially prepared to protect lactic acid bacteria from extreme

conditions in commercial yogurts (Jonganurakkun, Liu, Nodasaka,

Nomizu, & Nishi, 2003; Jonganurakkun, Nodasaka, Sakairi, & Nishi,

2006). The DNA forms complexes with gelling agents such as gelatin and
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k-carrageenan at low pH. This resulted in the formation of two kinds of gel:

hydrogels and complex gels. In a hydrogel, the bacteria are fixed in the gel

when the yogurt containing bacteria is added to the precooled mixture of

DNA and gelling agent. In a complex gel, a mixture of yogurt and cacao

oil is added to the gel solution containing the DNA and the gelling agent

to form the encapsulated probiotic. It was seen that complex gel was able

to protect the probiotic from adverse simulated gastric conditions.

Hydrogels in addition to protecting from acidic conditions were also

more stable during 4 �C storage which corresponds to the storage

temperature at which the product would be maintained for prolonged

storage (Jonganurakkun et al., 2006). Thus, DNA-based hydrogels offer a

potential delivery system for oral administration of probiotics.

6. CONCLUSION AND FUTURE PERSPECTIVES

Probiotics have been extensively studied in in vitro and in vivomodels.
Ample evidence is documented to support the potential application of pro-

biotics for the prevention and treatment of enteric infections. Health ben-

efits of probiotics include the prevention of diarrhea, atopic eczema,

antibiotic-associated diarrhea, traveler’s diarrhea, prevention of dental

carries, colorectal cancers, and treatment of IBD. However, as with any

potential intervention strategies, probiotics also have a safety concern.

Therefore, it is essential that toxic and metabolic effects of probiotics on

humans are assessed for patient safety, especially for critically ill or immuno-

compromised patients. Significant challenges still exist in the effective appli-

cation of probiotics in pathogen control. Future studies are essential to define

optimal doses and their correct combinations of various probiotic species

based on their molecular mode of antimicrobial action. There is also a need

for improvement of production techniques to understand and develop better

approaches to probiotic delivery and bioavailability in the gut as we move

from theoretical benefits to clinical application. Now with the possibility

to express different molecules in probiotic bacteria, such as enzymes, cyto-

kines, receptor mimics, adhesion molecules, antibodies, and host targeting

molecules, future researchcanhelpoptimize applications anddevelopbiolog-

ically contained strains to support clinical trials. Thus, probiotic bacteria can

be used to control and prevent pathogen colonization in the food animals to

improve food safety and a realistic therapeutic option in humans to control

enteric pathogens.
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