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Abstract.—The human microbiome is the ensemble of genes in the microbes that live inside and on the surface of humans.
Because microbial sequencing information is now much easier to come by than phenotypic information, there has been
an explosion of sequencing and genetic analysis of microbiome samples. Much of the analytical work for these sequences
involves phylogenetics, at least indirectly, but methodology has developed in a somewhat different direction than for other
applications of phylogenetics. In this article, I review the field and its methods from the perspective of a phylogeneticist,
as well as describing current challenges for phylogenetics coming from this type of work. [human microbiome; human
microbiota; metagenome; microbial ecology; phylogenetic methods; 16S]

The parameter regime and focus of human-associated
microbial research sits outside of the traditional
setting for phylogenetics methods development and
application; why should our community be interested
in what microbial ecologists and medical researchers
have done? The answer is simple: this system is
data- and question-rich. Microbes are now primarily
identified by their molecular sequences because such
molecular identification is much more straightforward
to do in high throughput than morphological or
phenotypic characterization. Indeed, microbial ecology
has recently become for the most part the study of
the relative abundances of various sequences derived
from the environment, even if the framework for
understanding between-microbe relationships includes
metabolic information and other information not
derived directly from sampled molecular sequences.

Although there is something of a divide between
phylogeny as practiced as part of microbial ecology
on one hand and that for multicellular organisms on
the other, there are many parallels between the two
enterprises. Both communities struggle with issues
of sequence alignment, large-scale tree reconstruction,
and species delimitation. However, approaches differ
between the microbial ecology community and that of
eukaryotic phylogenetics, in part because the scope of
the former contains an almost unlimited diversity of
organisms, leading to additional problems above the
usual. The species concept is even more problematic for
microbes than for multicellular organisms, and hence
there is also considerable discussion concerning how to
group them into species-like units. Organizing microbes
into a sensible taxonomy is a serious challenge, especially
in the absence of obvious morphological features.

Because of this high level of diversity and challenges
with species definitions, microbial ecology researchers
have developed their own explicitly phylogenetic
techniques for comparing samples rather than
comparing on the level of species abundances. Although
there is some overlap with previous literature, these

techniques could be used in a wider setting and may
deserve broader consideration by the phylogenetics
community.

The human-associated microbial assemblage is
specifically interesting because questions of microbial
genomics, translated into questions of function, have
important consequences for human health. Additionally,
due to more than a century of hospital laboratory work,
our knowledge about human-associated microbes is
relatively rich. This collection of microbes living inside
and on our surfaces is called the human microbiota, and
the ensemble of genetic information in those microbes
is called the human microbiome, although usage of these
terms varies (Boon et al. 2013).

In this review, I will describe phylogenetics-related
research happening in microbial ecology and contrast
approaches between microbial researchers and what
I think of as the typical Systematic Biology audience.
Despite an obvious oversimplification, I will use
eukaryotic phylogenetics to indicate what I think of as the
mainstream of SB readership, and microbial phylogenetics
to denote the other. I realize that there is substantial
overlap—for instance the microbial community is very
interested in unicellular fungi, and additionally many
in the SB community do work on microbes—but this
terminology will be useful for concreteness. There is
of course also substantial overlap in methodology;
however, as we will see there are significant differences
in approach and the two areas have developed somewhat
in parallel. I will first briefly review the recent literature
on the human microbiota, then describe novel ways in
which human microbiome researchers have used trees.
I will finish with opportunities for the Systematic Biology
audience to contribute to this field. I have made an
explicit effort to make a neutral comparison between two
directions rather than criticize the approximate methods
common in microbial phylogenetics; indeed, microbial
phylogenetics requires algorithms and ideas that work
in parameter regimes an order of magnitude larger than
typical for eukaryotic phylogenetics.
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THE HUMAN MICROBIOTA

The human microbiota is the collection of microbial
organisms that live inside of and on the surface
of humans. These organisms are populous: it has
been estimated that there are ten times as many
bacteria associated with each individual than there are
human cells of that individual. The microbiota have
remarkable metabolic potential, being an ensemble of
genes estimated to be about 150 times larger than the
human collection of genes (Qin et al. 2010). Much of
our metabolic interaction with the outside world is
mediated by our microbiota, as it has important roles
in immune system development, nutrition, and drug
metabolism (Kau et al. 2011; Maurice et al. 2013). Our
food and drug intake, in turn, impacts the diversity
of microbes present. Traditionally, our microbiota have
been transmitted from mother to infant in the birth
canal and by breastfeeding (reviewed in Funkhouser and
Bordenstein 2013). In this section, I will briefly review
what is known about the human microbiota and its effect
on our health.

The human microbiota form an ecosystem. It is
dynamic in terms of taxonomic representation but
apparently constant in terms of function (Consortium
2012). There is a “core” microbiota which is shared
between all humans (Turnbaugh et al. 2008). The human
microbiota is spatially organized, as can be seen on skin
(Grice et al. 2009), with substantial variation in human
body habitats across space and time (Costello et al. 2009).
There is a substantial range of interindividual versus
intraindividual variation (Consortium 2012).

Our actions can shift the composition of our
microbiota. Changes in diet can very quickly shift
its composition, but there is also a strong correlation
between long-term diet and microbiota (Li et al. 2009; Wu
et al. 2011). Antibiotics fundamentally disturb microbial
communities, resulting in an effect that lasts for years
(Jernberg et al. 2007; Dethlefsen et al. 2008; Jakobsson
et al. 2010; Dethlefsen and Relman 2011).

The microbiota interact on many levels with host
phenotype (reviewed in Cho and Blaser 2012). The
gut microbiota, in particular, correlates with health
of individuals from the elderly in industrialized
nations (Claesson et al. 2012) to children with acute
metabolic dysfunction in rural Africa (Smith et al.
2013). Considerable attention has also been given to
the interaction between gut microbiota and obesity,
although the story is not yet clear. An intervention study
has established human gut microbes associated with
obesity (Ley et al. 2006). A causal role for the microbiota
leading to obesity has been established for mice: an obese
phenotype can be transferred from mouse to mouse by
gut microbial transplantation (Turnbaugh et al. 2006),
the pregnant human gut microbiota leads to obesity in
mice (Koren et al. 2012), and probiotics can lead to a lean
phenotype and healthy eating behavior (Poutahidis et al.
2013). However, these promising leads have not yet been
confirmed causally or in population studies of humans
(Zhao 2013). For example, a study of obesity in the

old-order Amish did not find any correlation between
obesity and particular gut communities (Zupancic et al.
2012).

Bacteria have been the primary focus of human
microbiota research, and other domains have been
investigated to a lesser extent. Changes in archaeal and
fungal populations have been shown to covary with
bacterial residents (Hoffmann et al. 2013) and have a
nonuniform distribution across the human skin (Findley
et al. 2013). Viral populations have been observed to be
highly dynamic and variable across individuals (Reyes
et al. 2010; Minot et al. 2011, 2013). We will focus on
bacteria here.

In this article, we will primarily be describing the
human microbiota from a community-level phylogenetic
perspective rather than from the fine-scale perspective
of immune-mediated interactions between host and
microbe (reviewed in Hooper et al. 2012). Our
understanding of the true effect of the microbiota
will eventually come from such a molecular-level
understanding, although until we can characterize all
of the molecular interactions between microbes and the
human body, a broad perspective will continue to be
important.

INVESTIGATING THE HUMAN MICROBIOME VIA SEQUENCING

It is now possible to assay microbial communities
in high throughput using sequencing. One way is to
amplify a specific gene in the genome for sequencing
using polymerase chain reaction (PCR). Scientists
typically pick a “marker” gene in that case that is meant
to recapitulate the “overall” evolutionary history of the
microbes. Another way is to randomly shear input DNA
and/or RNA and then perform sequencing directly. We
will consistently refer to the former as a survey and the
second a metagenome, although these words have not
always been consistently used in the literature.

The Human Microbiome Project (Methé et al. 2012)
generated lots of survey, metagenome, and whole-
genome sequencing data and these data are available on
a dedicated website (http://www.hmpdacc.org/). The
MetaHIT study (Qin et al. 2010) also generated lots of
data but it is not available to outside researchers.

Inferring Microbial Community Composition Using Marker
Gene Surveys

Our modern knowledge of the microbial world is in
a large part derived from the methods of Carl Woese
and colleagues who pioneered the use of marker genes
as a way to distinguish between microbial lineages (Fox
et al. 1977). Their work, and the scientists who followed
them, focused on the 16S ribosomal gene (henceforth
simply “16S”) as a genetic marker. This gene was chosen
because it has regions of high and low diversity, which
enable resolution on a variety of evolutionary time
scales. Regions of low diversity in 16S also enabled the

http://www.hmpdacc.org/
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development of the first “universal” 16S PCR primers
(Lane et al. 1985), which enabled detection of almost all
bacteria and archaea regardless of whether they can be
cultured.

In microbial ecology, the census of bacteria in a
given environment using marker gene amplification and
sequencing are generally called “marker gene surveys.”
This terminology is equivalent to the “barcoding”
terminology more commonly used for eukaryotic
surveys using 18S or the fungal internal transcribed
spacer (ITS). Such surveys would ideally return a
census of all the microbes in a sample along with their
abundances.

Where Woese and colleagues labored over digestion
and gel electrophoresis to infer sequences, modern
researchers have the luxury of high-throughput
sequencing. This can be done with a high level of
multiplexing, making an explicit trade-off between
depth of sequencing for each specimen and the number
of specimens able to be put on the sequencer at the
same time. This has led to extensive parallelization, most
recently by sequencing dozens of samples at a time
on the Illumina instrument (Degnan and Ochman 2011;
Caporaso et al. 2012). This brings up the question of how
many sequences are needed to characterize the microbial
diversity of a given environment. To distinguish between
two rather different samples, relatively few sequences
per sample are required (Kuczynski et al. 2010);
however, to compare more similar samples deeper
sequencing is required. In addition to sequencing
samples across individuals, this parallelization has also
enabled sampling through time (e.g., Caporaso et al.
2011).

Despite the high throughput and low cost of
modern sequencing, inherent challenges remain for
applications of marker gene sequencing to take a census
of microbes. Most fundamentally, various microbes
have different DNA extraction efficiencies, even with
stringent protocols, meaning that a collection of
sequences need not be representative of the communities
from which they were derived (Morgan et al. 2010).
Current high-throughput sequencing technology is
limited to a length that is shorter than most genes, which
limits the resolution of the analyses. “Primer bias,”
or differing amplification levels of various sequences
based on their affinity for the primers (Suzuki and
Giovannoni 1996; Polz and Cavanaugh 1998), is a
challenge and has led to the standardization of primers
(Methé et al. 2012). Worse, multiplex PCR is known to
create chimeric (i.e., spurious recombinant) sequences
via partial PCR products (Hugenholtz and Huber 2003;
Ashelford et al. 2005; Haas et al. 2011; Schloss et al. 2011).
Correspondingly, chimera checking software has been
developed (including Ashelford et al. 2006; Edgar et al.
2011). Also, 16S can be present in up to fifteen copies and
there can be diversity within the copies (Klappenbach
et al. 2001). This can distort inferences concerning
actual microbe abundances based on read copy number.
Recent work by Kembel et al. (2012) implements the
independent contrasts method (Felsenstein 1985) to

correct for copy number, which has been helpful despite
a moderate evolutionary signal in copy number variation
(Klappenbach et al. 2000). Some groups have reported
advantages to using alternate single-copy genes as
markers for characterization of microbial communities
(e.g., McNabb et al. 2004; Case et al. 2007); however, 16S
remains the dominant locus used by a large margin.
A final cause of noise is next-generation sequencing
error: this is certainly a problem for both surveys and
metagenomes, but is becoming less of a problem as
technology improves. I will not address it specifically
except in the inference of operational taxonomic units
(OTUs) as described below.

Metagenomes
As described above, “metagenome” means that DNA

is sheared randomly across the genome rather than
amplified from a specific location, and thus the genetic
region of a read is unknown in addition to the organism
from which it came. Because metagenomes do not
proceed through an amplification step, they do not
have the same PCR primer biases as a marker gene
survey; however, extraction efficiency concerns remain
and multiplex sequencing is known to have biases of
its own.

It is possible to subset metagenomic data to marker
genes. That is, one can use 16S reads that appear in the
metagenome as well as reads from other “core” genes
that are expected to follow the same evolutionary path
and are present in a large proportion of microorganisms.
This is proven to be a useful strategy, and several
groups have built databases of core gene families
as well as provided programs and/or web tools to
phylogenetically analyze metagenomes subset to those
core genes (Von Mering et al. 2007a; Wu and Eisen 2008a;
Stark et al. 2010; Kembel et al. 2011; Darling et al. 2014).
However, because of the variability of gene repertoire
in microbes, this core gene set may be relatively small:
even the largest collection of genes in these databases
only recruits around 1% of a metagenome. At least some
portion of the rest of the other approximately 99% of the
metagenome can be taxonomically classified using one
of the methods described below.

Metagenomic data sets are often used to infer
information about metabolism rather than phylogenetic
nature (Abubucker et al. 2012; Greenblum et al. 2012).
Discussing these methods is beyond the scope of this
article, as is the sequencing of mRNA in bulk which is
called “metatranscriptomics.”

Whole Genomes
In addition to conventional genome sequencing for

microbial genomes, whole-genome sequencing from
culture is currently being used for microbial outbreak
tracking (Köser et al. 2012; Snitkin et al. 2012). The Food
and Drug Administration maintains GenomeTrakr,
an openly accessible database of whole genomes



[14:11 8/12/2014 Sysbio-syu053.tex] Page: e29 e26–e41

2014 MATSEN—PHYLOGENETICS AND THE HUMAN MICROBIOME e29

sampled from the environment and grown in culture
(http://www.fda.gov/Food/FoodScienceResearch/
WholeGenomeSequencingProgramWGS/). These data
may become more common for unculturable organisms
as single-cell sequencing methods improve (reviewed
in Kalisky and Quake 2011). The assembly of complete
genomes from metagenomes, once limited to samples
with a very small number of organisms (Baker et al.
2010), is now becoming feasible for more diverse
populations with improved sequencing technology and
computational approaches (Emerson et al. 2012; Howe
et al. 2012; Iverson et al. 2012; Pell et al. 2012; Podell et al.
2013).

TREE-THINKING IN HUMAN MICROBIOME RESEARCH

In this section, I consider the ways in which
phylogenetic methodology has impacted human
microbiome research. What may be most interesting
for the Systematic Biology audience is the way in which
phylogenetic trees are being used to actively revise
taxonomy as well as being used as a structure on which
to perform sample comparison.

Before proceeding, we note that phylogenetics for
microbes differs in some important respects from, say,
mammalian phylogenetics. Where phylogenetic research
on mammals is converging on one or two possible
basic structures for their evolution, much of the deep
history of microbes remains obscure. Inference of this
history is complicated by the fact that any tree-like
signal in the deep evolutionary relationships between
bacteria is restricted to a small set of so-called “core”
genes (Bapteste et al. 2009; Leigh et al. 2011; Lang et al.
2013).

Phylogenetics and Taxonomy
Phylogenetic inference has had a substantial impact

on microbial ecology research by changing our view of
the taxonomic relationships between microorganisms.
The clearest such example is the discovery that archaea,
although similar to bacteria in their gross morphology,
form their own separate lineage (Woese and Fox
1977).

Several groups are continually revising taxonomy
using the results of phylogenetic tree inference. These
attempts are less ambitious than the PhyloCode project
(to develop a taxonomic scheme expressed directly in
terms of a phylogeny; see Forey 2001), and simply work
to revise the hierarchical structure of the taxonomy
while for the most part leaving taxonomic names
fixed. Bergey’s Manual of Systematic Bacteriology has
officially adopted 16S as the basis for their taxonomy
(Holt et al. 1984), although the actual revision process
appears opaque. The GreenGenes group (DeSantis et al.
2006a) has been very active in updating their taxonomy
according to 16S, first with their GRUNT tool (Dalevi
et al. 2007) and more recently with their tax2tree

tool (McDonald et al. 2011). Tax2tree uses a heuristic
algorithm to reassign sequence taxonomic labels so that
they are concordant with a given rooted phylogenetic
tree in a way that allows polyphyletic taxonomic groups.
Matsen and Gallagher (2012) developed algorithms to
quantify discordance between phylogeny and taxonomy
based on a coloring problem previously described
in the computer science literature (Moran and Snir
2008). Although it is wonderful that several groups
are actively working on taxonomic revision, it can
be frustrating to have multiple different taxonomies
with no easy way to translate between them or to
the taxonomic names provided in the NCBI or EMBL
sequence databases.

An obvious application of phylogenetics is to perform
taxonomic classification, as the taxonomy is at least
in part defined by phylogeny. However, comparisons
of taxonomic classification programs (Liu et al. 2008;
Bazinet and Cummings 2012) have indicated that
current implementations of phylogenetic methods do
not perform as well as simple classifiers based on
counts of DNA substrings of a given length, which
are often called k-mer classifiers (Wang et al. 2007;
Rosen et al. 2008). For those studies and others,
the conventional metrics of classification performance
such as precision and recall are applied to data
simulated from known and taxonomically classified
genomes. Some authors report that a combination
of composition-based and homology-based classifiers
work best (Brady and Salzberg 2009; Parks et al.
2011). The MEGAN program (Huson et al. 2007,
2011) BLASTs an unknown sequence onto a database
of sequences with taxonomic labels and assigns the
sequence the lowest (i.e., narrowest) taxonomic group
shared by all of the high-quality hits; as such it is
somewhat phylogenetic in that it uses the structure
of the taxonomic tree. Munch et al. (2008a, 2008b)
infer taxonomic assignment by automatically retrieving
sequences equipped with taxonomic information and
building a tree on them along with an unknown
sequence. Srinivasan et al. (2012) find that phylogenetic
methods to do taxonomic classification can outperform
composition-based techniques at least for certain
taxonomic groups. Segata et al. (2012) propose a
clever approach to inferring organisms present in a
metagenomic sample by compiling a database of clade-
specific genes, then classifying a given read as being
from the only clade that has the corresponding gene.
They show that this has good sensitivity and specificity;
however, this method can only be used to identify
the presence of organisms whose genome has been
sequenced. Other metagenomic classification techniques
have been reviewed by Mande et al. (2012); interesting
recent progress has been made by Lanzén et al. (2012),
Koslicki et al. (2013), and Dröge et al. (2014). Treangen
et al. (2013) report shorter run times and much higher
accuracy (again, for taxonomic classification using reads
simulated from full genomes) for such metagenomic
classification when reads are assembled before they are
classified.

http://www.fda.gov/Food/FoodScienceResearch/WholeGenomeSequencingProgramWGS/
http://www.fda.gov/Food/FoodScienceResearch/WholeGenomeSequencingProgramWGS/
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The role of OTUs
Although there continues to be a lively debate on if

there is a meaningful concept of species for microbes
(Bapteste et al. 2009; Caro-Quintero and Konstantinidis
2012), a substantial part of human microbiome research
has replaced any traditional species concept with the
notion of OTUs. An OTU is a proxy species concept that
is typically defined with a fixed divergence cutoff, most
commonly at 97% sequence identity, such that each OTU
is a cluster of sequences that are closer to each other than
that cutoff. It is common for trees to be built on sequence
representatives from these OTUs, and the abundance
of an OTU to be given by the number of sequences
that sit within that cluster. I briefly describe the mini-
industry of OTU clustering techniques to contrast with
the phylogenetic literature on species delimitation (Pons
et al. 2006; Yang and Rannala 2010). I will use the term
OTU inference despite the fact that there is no clear
definition of the OTU concept.

It is not straightforward to define a clear notion of
optimality for OTU inference. Although in phylogenetics
we would like to compare reconstructions to an object
that is generally not knowable—the “true” historical
phylogenetic tree—OTU inference has a variety of
desirable outcomes, only some of which are knowable.
Wang et al. (2013) divide performance measures into
external measures, which compare an inferred clustering
to some defined outcome, and internal measures,
which give overall descriptive statistics on an inferred
clustering. External measures applied to observed or
simulated data include obtaining the same number of
OTUs as taxonomic groups at some level (e.g., Edgar
2013), scoring deviation from a decomposition of a
phylogenetic tree (e.g., Navlakha et al. 2010), or a given
set of taxonomic classifications (e.g., Cai and Sun 2011).
Internal measures evaluate the clustering in various
ways without reference to a “true” clustering, with the
general idea that within-cluster distances should be
small compared to between-cluster distances.

There are many OTU inference methods with various
speeds and strategies. Some methods proceed through
a list of sequences and progressively add each either
to an existing cluster or start a new cluster with
that sequence, such as CD-HIT (Li and Godzik 2006)
and USEARCH (Edgar 2010), whereas UPARSE (Edgar
2013) uses a similar strategy while also attempting to
correct for sequencing error. White et al. (2010) show
that different ways of doing this genre of heuristic
clustering can result in very different results. Cai and
Sun (2011) perform highly efficient clustering using a
pseudometric-based partition tree, which can be thought
of as a hierarchical clustering tree with a fixed set of
internal node heights. Navlakha et al. (2010) take a semi-
supervised approach in that input includes sequences
along with a subset of sequences that are equipped with
taxonomic classifications; the algorithm then groups
all sequences (many in novel clusters) into clusters
that have similar properties as the example taxonomic
clusters. Wang et al. (2013) optimize a criterion of

cluster modularity. Hao et al. (2011) use a Gaussian
mixture model formulation for clustering to avoid fixed
cutoff values, and Cheng et al. (2012) use a two-step
process, first with a Dirichlet multinomial mixture
on 3-mer profiles, and then a minimum description
length criterion. Zhang et al. (2013) have developed a
phylogenetic means to do species delimitation that scales
to a relatively large number of sequencing reads and so
can be used as an OTU clustering method.

The centrality of the OTU concept can be seen by the
fact that the by-sample table of OTU observations (i.e.,
the matrix of counts with rows representing samples
and columns representing OTUs) is considered to be
the fundamental data type for 16S studies (McDonald
et al. 2012), or that methods have been devised to find
OTUs from nonoverlapping sequences (Sharpton et al.
2011). A significant amount of effort has been made to
distinguish sequencing error in environmental samples
from true rare variants; much of this work has played
out in the OTU inference literature (Quince et al. 2009,
2011; Bragg et al. 2012; Edgar 2013) as such errors are
especially problematic there. With the exception of the
work of Sharpton et al. (2011) and Zhang et al. (2013),
OTU inference is not considered to be a phylogenetic
problem but rather something to be performed before
phylogenetic inference begins.

Diversity Estimates Using Phylogenetics
Because 16S surveys are inherently complex and noisy

data, summary statistics are often used; summaries
of the diversity of a single sample are often called
alpha diversity. For the most part, this literature adapts
methods from the classical ecological literature by
substituting OTUs for taxonomic groups. For example,
the most commonly used index is the Simpson index
(Simpson 1949), which is simply the sum of the squared
frequencies of the OTUs. The drawback of applying such
a diversity metric to a collection of OTUs is that the
large-scale structure of the diversity is lost, such that two
closely related OTUs contribute as much to the diversity
measure as two distant ones. Phylogenetic diversity (PD)
metrics, which do take this overall diversity structure
into account, are also used. However, whereas just about
every one of the hundreds or thousands of 16S surveys
applies an OTU-based alpha diversity estimate, only a
few involve PD.

PD measures use the structure and branch lengths of
a phylogenetic tree to quantify the diversity of a sample
(Fig. 1). The (unweighted) PD of a set of taxa S in an
unrooted phylogenetic tree is simply the total length of
the branches that sit between taxa in S (Faith 1992). It
quantifies the “amount of evolution” contained in the
evolutionary history of those taxa. Unweighted PD has
been applied to some 16S survey data (Lozupone and
Knight 2007; Costello et al. 2009) and to metagenomic
reads in a set of marker genes (Kembel et al. 2011).

Although abundance weighted nonphylogenetic
diversity measures such as Simpson (1949) and Shannon
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FIGURE 1. Unweighted phylogenetic diversity (PD, left) and
an abundance-weighted PD measure (right), where taxa present in
a sample are shown as circles and abundances are shown as the
size of the circles. Unweighted PD takes the total length of branches
sitting between tree tips represented in a sample. Abundance-weighted
measures take a weighted sum of branch lengths where weight is
determined in some way by the abundance of the taxa on either side
of the branch: if we give edges width according to their weight, the
abundance-weighted measure can be thought of as the sum of the total
area of the edges. One such abundance-weighted measure simply takes
the absolute value of the difference of the total read abundance on one
side compared with the other.

(1948) are commonly used in human microbiome
studies, abundance weighted PD measures are not.
Abundance-weighted measures take a sum of branch
lengths weighted by abundance, such that branches
that connect abundant taxa get a higher weight than
ones that do not (Fig. 1). Thus, rare taxa and artifactual
sequences are down-weighted compared with abundant
taxa. Such measures do exist (Rao 1982; Barker 2002;
Allen et al. 2009; Chao et al. 2010; Vellend et al. 2010).
Abundance-weighted measures commonly weight
edges in proportion to abundance, but one can also
construct “partially abundance weighted” measures
by weighting edges by abundances transformed by
a sublinear function. McCoy and Matsen (2013) have
recently shown that such partially abundance weighted
diversity measures do a good job of distinguishing
between dysbiotic and “normal” states of the human
microbiota; in particular, that they do a better job than
the commonly used OTU-based measures. Nipperess
and Matsen (2013) have also determined formulas for
the expectation and variance of PD under random
subsampling (see discussion of rarefaction below).

Community Comparison Using Phylogenetics
The level of similarity between samples or groups of

samples is called beta diversity. As with alpha diversity, it
is not uncommon to use classical measures (e.g., Jaccard
1908) applied to OTU counts; however, phylogenetics-
based methods are the most popular. They are generally
variants of the “UniFrac” phylogenetic dissimilarity
measure (as described and named by Lozupone and
Knight 2005). Kuczynski et al. (2010) claim that the
UniFrac framework is superior to other methods for
community comparison via real data and simulations

FIGURE 2. The UniFrac divergence measure (figure adapted
from Lozupone and Knight 2005). Assume that the sequence data
to build the phylogenetic tree derives from two samples: the light-
shaded sample and the dark-shaded sample (green and blue in the
online version). When the samples are interspersed across the tree (left
tree), they have a smaller fraction of branch length that sits ancestral to
clades that are uniquely composed of one sample or another, compared
with when they are separate (right tree). The bottom pictorial equation
shows the ratios of interest for UniFrac: the branch length unique to one
sample divided by the total branch length. The ratio is smaller when
the samples are interspersed (left) than they are when separate (right
tree).

(for a contrary viewpoint using simulations see Schloss
2008).

To calculate the unweighted UniFrac (“unique
fraction”) divergence between two samples of reads, one
builds a global tree based on both samples and then
calculates the fraction of the total tree length found in
only one (i.e., the fraction of the tree unique to one) of
the two samples (Fig. 2; Lozupone and Knight 2005).
Weighted UniFrac is an abundance weighted version
(Lozupone et al. 2007). These dissimilarity measures
have hundreds of citations. Evans and Matsen (2012)
showed that weighted UniFrac is in fact a specific case of
the earthmovers distance, and that the commonly used
randomization procedure for significance estimation has
a central limit theorem approximation. The earthmovers
distance (Monge 1781; Villani 2003) between two
probability distributions in this case can be defined
using a physical analogy as the minimum amount of
“work,” defined as mass times distance, required to move
probability mass in one distribution to another along the
tree. In this case, the size of the dirt piles is proportional
to the number of reads mapping to that location in
the tree (Fig. 3). Chen et al. (2012) have shown that a
partially abundance-weighted variant of UniFrac may
have greater power to resolve community differences
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FIGURE 3. Part of a minimal mass movement to calculate the
earth-mover’s distance between two probability distributions on a
phylogenetic tree. For this, each probability distribution is considered
as a configuration of dirt piles (round bumps in the figure) on the tree,
and the distance between two such dirt pile configurations is defined
to be the minimum amount of physical “work” required to move the
dirt in one configuration to the other.

than either unweighted or weighted UniFrac. There are
clear connections between UniFrac and PD explored by
Faith et al. (2009), who point out related measures in
Faith’s earlier work.

The most common way to use a distance matrix
obtained from applying UniFrac to all pairs of samples
is to apply an ordination method such as principal
coordinates analysis. Indeed, the separation of two
communities in a principal components plot is often
used as prima facie evidence of a difference between them
(e.g., Lozupone and Knight 2007; Costello et al. 2009;
Yatsunenko et al. 2012), while the lack of such a difference
is interpreted as showing that the communities are not
different overall.

There have been several efforts to augment these
ordination visualizations with additional information
giving more structure to the visualizations. Biplots
display variables (in the microbial case summarized
by taxonomic labels) as points along with the points
representing samples (e.g., Hewitt et al. 2013; Lozupone
et al. 2013). Purdom (2008) describes how generalized
principal component eigenvectors can be interpreted
via weightings on the leaves of a phylogenetic tree.
Matsen and Evans (2013) have developed a variant of
principal components analysis that explicitly labels the

axes with weightings on phylogenetic trees that indicate
their influence.

In another vein, La Rosa et al. (2012b) consider the
induced taxonomic tree of a sample as a statistical object
and, using a framework where a sampling probability
is defined in terms of a distance between such induced
trees, define and investigate maximum likelihood
estimation of and likelihood ratio tests for these trees.
They focus on distances between trees induced by matrix
metrics on the corresponding adjacency matrices. A
similar framework was used by Steel and Rodrigo (2008)
to construct maximum likelihood supertrees, for which
they use common distance measures in phylogenetics
such as the subtree prune–regraft metric.

Phylogeny and Function
16S distance is frequently used as a proxy for a

functional comparison between human microbiome
samples. Indeed, researchers using UniFrac do not
always think of their comparisons as being in terms
of a single gene, but rather in terms of an abstracted
measure of community function. Those accustomed to
microbial genetics may think this surprising, because
the genetic repertoire of microbes is commonly acquired
horizontally as well as vertically, and horizontal
transmission leaves no trace in 16S ancestry.

However, Zaneveld et al. (2010) have shown that
organisms that are more distant in terms of 16S are
also more divergent in terms of gene repertoire. Such
observations surround a fit nonlinear curve, and the
extent to which they lay on the curve appears to
be phylum-dependent. This “proxy” approach has
recently been taken to its logical conclusion by Langille
et al. (2013), who develop methods to infer functional
characteristics from a 16S sample using discrete trait
evolution models on 16S gene trees by either parsimony
(Kluge and Farris 1969) or likelihood (Pagel 1994)
methods via the ape package (Paradis et al. 2004).

Similar logic has been applied to prioritize microbes
for sequencing. Wu et al. (2009) have derived a
“phylogeny-driven genomic encyclopaedia of Bacteria
and Archaea” by selecting organisms for sequencing
that are divergent from sequenced organisms. They
have recovered more novel protein families using these
phylogeny-based approaches than they would have
using methods organized by selecting microbes to
sequence based on their taxonomic labels. In a similar
effort for the human microbiome (Fodor et al. 2012),
phylogenetic results were not shown although the
authors state that phylogenetic methods did give similar
results to their analysis.

Horizontal Gene Transfer
With some notable exceptions, mainstream

applications of phylogenetics to a collection of human-
associated microbes have typically been with the idea
of finding “the” tree of such a collection rather than
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explicitly exploring divergence between various gene
trees. As described above, whole-genome data sets are
typically used to directly infer functional information
rather than information concerning ancestry. The
continuing debate concerning whether a microbial
tree of life is a useful concept (Bapteste et al. 2009;
Caro-Quintero and Konstantinidis 2012) does not seem
to have dampened human microbiome researchers’
enthusiasm for using a single such tree.

Nevertheless, the work that has been done concerning
horizontal gene transfer in the human microbiome has
revealed interesting results. Hehemann et al. (2010)
found that a seaweed gene has been transferred into a
bacterium in the gut microbiota of Japanese such that
individuals with this resulting microbiota are better
able to digest the algae in their diet. Following on
this work, Smillie et al. (2011) found that the human
microbiome is in fact a common location for gene
transfer. Stecher et al. (2012) found that in a mouse
model, horizontal transfer between pathogenic bacteria
is blocked by commensal bacteria except for periods
of gut inflammation. Horizontal transfer of genes is
inferred in these studies by finding highly similar
subsequences in otherwise less related organisms.

PHYLOGENETIC INFERENCE AS PRACTICED BY HUMAN

MICROBIOME RESEARCHERS

Alignment and Tree Inference
In general, human microbiome researchers are

interested in quickly doing phylogenetic inference on
large data sets, and are less interested in clade-level
accuracy or measures of uncertainty. This is defended
by saying that for applications such as UniFrac, the tree
is used as a framework to structure the data, and there
is a certain amount of flexibility in that framework that
will give the same results. Furthermore, given that the
underlying data sets are typically 16S alone we can expect
some topological inaccuracy in reconstructing the “tree
of cells” even with the best methods. Additionally, as
specified below, these data sets can be very large. There
does not seem to be contentious discussion of specific
features of the inferred trees equivalent to, say, the
current discussion around the rooting of the placental
mammal tree (Morgan et al. 2013; Romiguier et al. 2013).
Given this perspective, it is not surprising that Bayesian
phylogenetic methods and methods that incorporate
alignment uncertainty are absent.

Alignment methods are primarily focused on
developing automated methods to extend a relatively
small hand-curated “seed alignment” with additional
sequences; several tools have been created with exactly
this application for 16S in mind (DeSantis et al.
2006b; Caporaso et al. 2010a; Pruesse et al. 2012). The
community also uses profile hidden Markov models
(Eddy 1998) and CM models (Nawrocki 2009; Nawrocki
et al. 2009) to achieve the same result.

The large data sets associated with human microbiome
analysis require highly efficient algorithms for de novo

tree inference. Historically, this has meant relaxed
neighbor joining (Evans et al. 2006), but more recently
FastTree 2 (Price et al. 2010) has emerged as the de facto
standard. Researchers do most phylogenetic inferences
as part of a pipeline such as mothur (Schloss et al. 2009)
which has incorporated the clear-cut code (Sheneman
et al. 2006), or QIIME (Caporaso et al. 2010b), which
wraps clear-cut, FastTree, and RAxML (Stamatakis
2006).

The scale of the data has motivated strategies other
than complete phylogenetic inference, such as the
insertion of sequences into an existing phylogenetic tree.
Although such insertion has long been used as a means
to build a phylogenetic tree sequentially (Kluge and
Farris 1969), the first software with insertion specifically
as a goal was the parsimony insertion tool in the ARB
program by Ludwig et al. (2004). ARB is commonly used
to reconstruct a full tree by direct insertion.

There are also other methods with the less ambitious
goal of mapping sequences of unknown origin into a so-
called fixed reference tree, sometimes with uncertainty
estimates. These programs (Von Mering et al. 2007b;
Monier et al. 2008; Wu and Eisen 2008b; Matsen
et al. 2010; Stark et al. 2010; Berger et al. 2011) have
various speeds and features. This work has also spurred
development of specialized alignment tools for this
mapping process. Berger and Stamatakis (2011) focus
on the problem of inferring the optimal alignment
and insertion of sequences into a tree. Mirarab et al.
(2012) use data set partitioning to improve alignments
on subsets of taxa specifically for this application.
Brown and Truszkowski (2013) use locality-sensitive
hashing to obtain placement more than two orders of
magnitude faster than the pplacer program of Matsen
et al. (2010).

Considerable effort goes to the creation of large
curated alignments and phylogenetic trees on 16S. There
are two major projects to do so: one is the SILVA database
(Pruesse et al. 2007; Quast et al. 2013), and the other is the
GreenGenes database (DeSantis et al. 2006a; McDonald
et al. 2011). Because of the high rate of insertion and
deletion of nucleotides in 16S, these alignments have a
high percentage of gap. Taking the length of 16S to be
1543 nucleotides, the 479,726 sequence SILVA reference
alignment version 115 is over 96% gap, whereas the
1,262,986 sequence GreenGenes 13_5 alignment is almost
80% gap. The SILVA-associated “all-species living tree”
project (Yarza et al. 2008) started with a tree inferred by
maximum likelihood and has been continually updated
by inserting sequences via parsimony. The GreenGenes
tree is updated by running FastTree from scratch for
every release. There appears to be a commonly held
belief that FastTree in particular works well even with
such gappy alignments (e.g., Sharpton et al. 2011).

In addition to these 16S-based resources, the
MicrobesOnline resource (Dehal et al. 2010) offers a very
nice interactive tree-based genome browser. On a much
smaller scale, there are microbiome body site-specific
reference sequence sets (Chen et al. 2010; Griffen et al.
2011; Srinivasan et al. 2012).
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PHYLOGENETIC CHALLENGES AND OPPORTUNITIES IN

HUMAN MICROBIOME RESEARCH

Many phylogenetic challenges remain in human
microbiome research. Some of them are familiar, such
as how to build large phylogenies on data that has many
insertions and deletions. I review some others here.

One clear challenge is to fill the gap between on one
hand complete de novo tree inference versus sequence
insertion or placement that leaves the “reference tree”
fixed, with the idea that such an algorithm would retain
the efficiency characteristics of placement algorithms
while allowing the reference tree to change. For example,
sequence data sets are continually being added to large
databases, motivating methods that could continually
update trees with this new sequence data while allowing
the previous tree to change according to this new
information. Izquierdo-Carrasco et al. (2014) have taken
a step in this direction by developing an informatic
framework that updates alignments and builds larger
trees using previous smaller trees as starting points.

In this review, I have devoted considerable space
to the ways in which microbial ecologists have used
the 16S tree as a proxy structure for the complete
evolutionary history of their favorite organisms. They
have even shown that 16S distance recapitulates gene
content divergence and used this correlation to predict
gene functions. It is well known, however, that any
single tree will not give a complete representation of the
evolutionary history of a collection of microbes.

The apparent success of 16S tree-based comparisons
raises the question of if a more complete representation
of the evolutionary history of the microbes would yield
better comparisons. This suggests a practical perspective
on the theoretical issue of the tree of life: what is the
representation of the genetic ancestry of a set of microbes
that allows us to best perform proxy whole-genome
comparison? This representation could be simple. For
example, one of the results of Zaneveld et al. (2010)
is that 16S correlates better with gene repertoire in
some taxonomic groups than others. If we were to
equip the 16S tree with some measure of the strength
of that correlation, would that allow for more precise
comparison? If we allow an arbitrary “hidden” object,
what such object would perform best? Parks and Beiko
(2012) have expanded the range of choices by defining
community comparison metrics on phylogenetic split
systems. An alternative would be to use collections of
reconciled gene trees in the presence of gene deletion,
transfer, and loss (e.g., Szöllősi et al. 2013a, 2013b).

It appears that neutral models involving phylogenetics
could be more fully developed. Methods explicitly
invoking trait evolution are notably absent, with the
recent exception of the work by Langille et al. (2013). The
results of this simple method are reasonable, but would
a collection of gene trees reconciled with a species tree
allow for better prediction? Perhaps improved methods,
say involving whole-genome evolutionary modeling or
models of metabolic network evolution, could shed light
on the problem. Here again the “tree of life” problem can

be formulated in a practical light: what representation
allows for the best prediction of features of underlying
genomes? How might one formulate a useful notion
of independent contrasts (Felsenstein 1985) on such an
object? It is quite possible that inference using a more
complete representation would not be able to overcome
the inherent noise of the data, but further exploration
seems warranted as simple methods give reasonable
results.

Although developing community assembly models
forms an important project for microbial ecology
generally and human-associated microbial ecology in
particular, phylogeny-aware methods could be further
developed. One way to model microbial community
assembly is to apply Hubbell’s neutral theory (Costello
et al. 2012; Fierer et al. 2012). O’Dwyer et al. (2012) model
community assembly with an explicitly phylogenetic
perspective, and include some comparison of models to
data. Continued work in this direction seems warranted,
given the way in which phylogenetic tree shape statistics
have had a significant impact on macroevolutionary
modeling (Mooers and Heard 1997; Aldous et al.
2011). In this case, various (alpha and beta) diversity
statistics would play the role of tree shape statistics by
reducing a distribution on the tips of a tree down to
a real number. Another challenge is to bring together
macroevolutionary modeling with species abundance
modeling, where some initial work has been done by
Lambert and Steel (2013) in another setting.

Diversity preservation is of interest for microbiota
researchers like it is for eukaryotic organisms, but has
not received the formalization and algorithmic treatment
surrounding PD for larger organisms (Hartmann and
Steel 2006; Pardi and Goldman 2007). Martin Blaser, in
particular, has argued that changes in our microbiota
are leading to an increase in autoimmune disease
and certain types of cancer (reviewed in Cho and
Blaser 2012) and has made passionate appeals to
preserve microbiota diversity (Blaser 2011). Because
a child’s initial microbiota is transmitted from the
mother (reviewed in Funkhouser and Bordenstein 2013),
there is a somewhat equivalent notion of microbiota
extinction when the chain is interrupted via cesarean
section and infant formula. In order to characterize
extant diversity, Yatsunenko et al. (2012) have explicitly
contrasted microbiota development in urban, forest-
dwelling, and rural populations, whereas Tito et al.
(2012) have endeavored to characterize the microbiota
from ancient feces. How might phylogenetic methods
be used in these preservation efforts?

There are indications of coevolution between
microbiota and their hosts. Ochman et al. (2010) found
identical tree topologies for primate and microbiome
evolution. For the microbiota, they used maximum
parsimony such that each column represented a
microbe and each such entry took discrete states
according to how much of that microbe was present.
Although parsimony gave an interesting answer here,
the presence of such coevolution raises the question of
what sort of forward-time models are appropriate for
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microbiota change? Would methods using these models
do better than parsimony or commonly applied phenetic
methods applied to the distances described above? Some
studies (e.g., Phillips et al. 2012; Delsuc et al. 2013) see
a combination of historical and dietary influences. How
can such forces be compared in this setting?

As described above, Morgan et al. (2010) showed that
various microbes have different DNA extraction
efficiencies, meaning that the representation of
marker gene sequences is not representative of the
actual communities. Furthermore, there was no clear
taxonomic signal in their observations of the variability
of extraction efficiency, which seems to preclude a
correction strategy based on “species-tree” phylogenetic
modeling. However, presumably something about their
genome is determining extraction efficiency; it would
be interesting and useful to search for the genetic
determinants. As described above, abundances are
commonly used as part of community comparison, thus
a better quantification of error in those observations of
abundance would be a great help.

In a similar vein, assessing the significance level
of an observed difference between communities
poses difficult problems. The randomization of group
membership commonly used in combination with
UniFrac to determine significance does not have
appropriate properties in the regime of incomplete
sampling with nonindependent observations, which
is certainly the correct regime for surveys and
metagenomes. Such nonindependence can lead to
incorrect rejection of the null hypothesis. Imagine, for
example, that we have a random process as follows.
Each sample from the process takes a random subset
of “observations” from the leaves and then throws
down some number of reads for each observation
in that subset, with the number of reads having a
mean significantly greater than 1. If the number of
leaves is large compared with the number of sample
observations, then two draws will always appear
significantly different even though they are from the
same underlying process. In trying to remedy such
false-positive identification of differences, it becomes
clear that even basic definitions pose a challenge: the
question of whether two communities are the “same”
and “different” probably needs to be approached from
the perspective of ecosystem modeling.

For both alpha and beta diversity measurement, read
count normalization has not received nearly the attention
that it has in other applications of high-throughput
sequencing (such as RNA-Seq, e.g., Anders and Huber
2010; Robinson et al. 2010). One type of normalization
handles differential depths of sequencing across
samples. The presently used approach is rarefaction,
which means uniform subsampling to the number of
reads in the lowest abundance sample (Schloss et al. 2009;
Caporaso et al. 2010b). In addition to throwing away
data, this normalization implicitly assumes a model
whereby reads are sequenced independently of one
another. This is not the case. An alternative is provided

by O’Dwyer et al. (2012), who provide a “UniFrac score
normalization curve” based on a sampling model of
community assembly. This is a good start, but more work
should be done exploring results under deviation from
that model.

Another type of normalization seeks to infer the
true abundances from noisy observations of the various
taxonomic groups or OTUs. Holmes et al. (2012) and
La Rosa et al. (2012a) use models where read counts
are modeled as overdispersed samples of the true
abundance and provide methods for statistical testing.
Paulson et al. (2013) estimate true abundances using a
zero-inflated Gaussian mixture model for read counts,
whereas McMurdie and Holmes (2014) claim better
performance using a Gamma-Poisson mixture.

This work could be extended to a phylogenetic context
by making use of the relationship between OTUs, and
modeling the way in which the abundance of one OTU
may increase the abundance of a related OTU because of
sequencing error or a change of condition that changes
the abundance of both.

Finally, the conventional wisdom that UniFrac analysis
is robust to tree reconstruction methodology begs
further exploration. Would it be possible to infer
an equivalence class of phylogenetic trees, where
two trees are deemed equivalent if they induce the
same principal coordinates projection given the same
underlying presence/absence or count data? Given that
a tree is an integral part of a UniFrac analysis, it would
be interesting to be able to infer the features of a tree that
determine the primary trends in a projection.

DISCUSSION

What can we expect next at the intersection of
phylogenetics and the human microbiota? At least for the
next several years we can expect the research questions
described above to continue to unfold. Future research
projects will continue to bring deeper sequencing
on more samples. The uBiome (http://ubiome.com/)
and American Gut (http://americangut.org/) projects
promise to bring gut microbiome sequencing to the
average citizen for a low price. Comparative studies
will continue to investigate what shapes and is shaped
by the microbiota. However, some of the initial
excitement may have died down, as neither the Human
Microbiome Project nor the MetaHIT project were
extended.

There are limitations to what we can learn using
genetic sequences because more intricate processes
such as gene regulation may be at play, limiting what
sequence-level phylogenetics can do. Future work may
move from general ecological models to models that
include specific interactions between microbes and the
host (reviewed in Hooper et al. 2012).

Opportunities for clinical applications will present
themselves, although the specifics will change. For
example, routine 16S sequencing is likely to be replaced

http://ubiome.com/
http://americangut.org/
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soon by Matrix-Assisted Laser Desorption Ionization–
Time of Flight (MALDI-TOF) mass spectrometry for
assignment of a single microbe grown in culture to
a database entry (Clark et al. 2013). However, for
diagnoses that are on the level of microbial communities,
sequencing and consequent analysis methods (possibly
including phylogenetics) will still be required (reviewed
in Rogers et al. 2013). Inexpensive whole-genome
sequencing will certainly have a profound impact on
clinical practice and epidemiological studies (Didelot
et al. 2012), and this genome-scale data require
evolutionary analysis methods to interpret it. For all of
these measures, it will be important to have rigorous
means of quantifying uncertainty for robust diagnostic
applications.

Human microbiome research has experienced a
frenetic rate of expansion over the past decade, and
sometimes the hype has outmatched the science.
However, our microbes are here to stay and so is research
on them. Thus we can look forward to the field of human
microbiome analysis settling down to a comfortable
and mature middle age as an interesting intersection
between ecology and medicine. Phylogenetics has
already contributed significantly to research on the
human microbiome and will continue to do so.
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Szöllősi G. J., Tannier E., Lartillot N., Daubin V. 2013b. Lateral gene
transfer from the dead. Syst. Biol. 62:386–397.

Tito R. Y., Knights D., Metcalf J., Obregon-Tito A. J., Cleeland L., Najar
F., Roe B., Reinhard K., Sobolik K., Belknap S., Foster M., Spicer P.,
Knight R., Lewis Jr, C. M. 2012. Insights from characterizing extinct
human gut microbiomes. PloS ONE 7:e51146.

Treangen T. J., Koren S., Sommer D. D., Liu B., Astrovskaya I., Ondov B.,
Darling A. E., Phillippy A. M., Pop M. 2013. MetAMOS: a modular
and open source metagenomic assembly and analysis pipeline.
Genome Biol. 14:R2.

Turnbaugh P. J., Ley R. E., Mahowald M. A., Magrini V., Mardis
E. R., Gordon J. I. 2006. An obesity-associated gut microbiome with
increased capacity for energy harvest. Nature 444:1027–1131.



[14:11 8/12/2014 Sysbio-syu053.tex] Page: e41 e26–e41

2014 MATSEN—PHYLOGENETICS AND THE HUMAN MICROBIOME e41

Turnbaugh P. J., Hamady M., Yatsunenko T., Cantarel B. L., Duncan A.,
Ley R. E., Sogin M. L., Jones W. J., Roe B. A., Affourtit J. P., Egholm
M., Henrissat B., Heath A. C., Knight R., Gordon J. I. 2008. A core
gut microbiome in obese and lean twins. Nature 457:480–484.

Vellend M., Cornwell W. K., Magnuson-Ford K., Mooers A. 2010. In:
Magurran A. E., McGill B. J., editors. Biological Diversity: Frontiers
in Measurement and Assessment. Oxford: Oxford University Press.

Villani C. 2003. Topics in Optimal Transportation. Providence:
American Mathematical Society.

Von Mering C., Hugenholtz P., Raes J., Tringe S., Doerks T., Jensen L.,
Ward N., Bork P. 2007a. Quantitative phylogenetic assessment of
microbial communities in diverse environments. Science 315:1126–
1130.

Von Mering C., Hugenholtz P., Raes J., Tringe S., Doerks T., Jensen
L., Ward N., Bork P. 2007b. Quantitative phylogenetic assessment
of microbial communities in diverse environments. Science
315:1126.

Wang Q., Garrity G., Tiedje J., Cole J. 2007. Naive Bayesian classifier
for rapid assignment of rRNA sequences into the new bacterial
taxonomy. Appl. Environ. Microbiol. 73:5261–5267.

Wang X., Yao J., Sun Y., Mai V. 2013. M-pick, a modularity-
based method for OTU picking of 16S rRNA sequences. BMC
Bioinformatics 14:43.

White J., Navlakha S., Nagarajan N., Ghodsi M., Kingsford C.,
Pop M. 2010. Alignment and clustering of phylogenetic markers-
implications for microbial diversity studies. BMC Bioinformatics
11:152.

Woese C. R., Fox G. E. 1977. Phylogenetic structure of the prokaryotic
domain: The primary kingdoms. Proc. Nat. Acad. Sci. 74:5088–5090.

Wu G. D., Chen J., Hoffmann C., Bittinger K., Chen Y.-Y., Keilbaugh
S. A., Bewtra M., Knights D., Walters W. A., Knight R., Sinha R.,
Gilroy E., Gupta K., Baldassano R., Nessel L., Li H., Bushman
F. D., Lewis J. D. 2011. Linking long-term dietary patterns with gut
microbial enterotypes. Science 334:105–108.

Wu M., Eisen J. 2008a. A simple, fast, and accurate method of
phylogenomic inference. Genome Biol. 9:1–11.

Wu M., Eisen J. A. 2008b. A simple, fast, and accurate method of
phylogenomic inference. Genome Biol. 9:R151.

Wu D., Hugenholtz P., Mavromatis K., Pukall R., Dalin E., Ivanova
N. N., Kunin V., Goodwin L., Wu M., Tindall B. J., Hooper S. D.,
Pati A., Lykidis A., Spring S., Anderson I. J., Dhaeseleer P., Zemla
A., Singer M., Lapidus A., Nolan M., Copeland A., Han C., Chen
F., Cheng J.-F., Lucas S., Kerfeld C., Lang E., Gronow S., Chain P.,
Bruce D., Rubin E. M., Kyrpides N. C., Klenk H.-P., Eisen J. A. 2009. A
phylogeny-driven genomic encyclopaedia of Bacteria and Archaea.
Nature 462:1056–1060.

Yang Z., Rannala B. 2010. Bayesian species delimitation using
multilocus sequence data. Proc. Nat. Acad. Sci. 107:9264–9269.

Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K.-H.,
Ludwig W., Glöckner F. O., Rosselló-Móra R. 2008. The All-Species
Living Tree project: A 16S rRNA-based phylogenetic tree of all
sequenced type strains. Syst. Appl. Microbiol. 31:241–250.

Yatsunenko T., Rey F. E., Manary M. J., Trehan I., Dominguez-Bello
M. G., Contreras M., Magris M., Hidalgo G., Baldassano R. N.,
Anokhin A. P., Heath A. C., Warner B., Reeder J., Kuczynski J.,
Caporaso J. G., Lozupone C. A., Lauber C., Clemente J. C., Knights
D., Knight R., Gordon J. I. 2012. Human gut microbiome viewed
across age and geography. Nature 486:222–227.

Zaneveld J. R., Lozupone C., Gordon J. I., Knight R. 2010. Ribosomal
RNA diversity predicts genome diversity in gut bacteria and their
relatives. Nucleic Acids Res. 38:3869–3879.

Zhang J., Kapli P., Pavlidis P., Stamatakis A. 2013. A general species
delimitation method with applications to phylogenetic placements.
Bioinformatics 29:2869–2876.

Zhao L. 2013. The gut microbiota and obesity: From correlation to
causality. Nat. Rev. Microbiol. 11:639–647.

Zupancic M. L., Cantarel B. L., Liu Z., Drabek E. F., Ryan K. A.,
Cirimotich S., Jones C., Knight R., Walters W. A., Knights D.,
Mongodin E. F., Horenstein R. B., Mitchell B. D., Steinle N., Snitker
S., Shuldiner A. R., Fraser C. M. 2012. Analysis of the gut microbiota
in the old order Amish and its relation to the metabolic syndrome.
PloS ONE 7:e43052.


	Phylogenetics and the Human Microbiome
	DISCUSSION


