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Abstract

For the most part metazoan genomes are highly methylated and harbor only small regions with low or absent methylation.
In contrast, partially methylated domains (PMDs), recently discovered in a variety of cell lines and tissues, do not fit this
paradigm as they show partial methylation for large portions (20%–40%) of the genome. While in PMDs methylation levels
are reduced on average, we found that at single CpG resolution, they show extensive variability along the genome outside
of CpG islands and DNase I hypersensitive sites (DHS). Methylation levels range from 0% to 100% in a roughly uniform
fashion with only little similarity between neighboring CpGs. A comparison of various PMD-containing methylomes showed
that these seemingly disordered states of methylation are strongly conserved across cell types for virtually every PMD.
Comparative sequence analysis suggests that DNA sequence is a major determinant of these methylation states. This is
further substantiated by a purely sequence based model which can predict 31% (R2) of the variation in methylation. The
model revealed CpG density as the main driving feature promoting methylation, opposite to what has been shown for CpG
islands, followed by various dinucleotides immediately flanking the CpG and a minor contribution from sequence
preferences reflecting nucleosome positioning. Taken together we provide a reinterpretation for the nucleotide-specific
methylation levels observed in PMDs, demonstrate their conservation across tissues and suggest that they are mainly
determined by specific DNA sequence features.
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Introduction

DNA methylation in metazoan genomes occurs mainly in the

context of CpG dinucleotides and for the most part genomes are

highly methylated and harbor only small regions with low or

absent methylation [1]. These include CpG islands [1], CpG

island shores [2] and distal regulatory regions [3,4]. Partially

methylated domains (PMDs) depart from this notion. They were

initially discovered through whole-genome bisulfite sequencing in

human fibroblasts [5] and correspond to large genomic domains

(mean = 153 kb) with average methylation levels of less than 70%,

covering almost 40% of the genome. Interestingly these domains

were not detected in H1 human embryonic stem cells. The PMDs

in IMR90 were shown to harbor genes with reduced expression, to

correlate with repressive and to anti-correlate with active histone

marks. In a subsequent study PMDs were detected in three

additional cell types, namely foreskin fibroblasts (FF), adipose-

derived stem cells (ADS) and adipocytes (ADS-adipose) [6]. While

every cell type showed specific patterns of PMD localization,

overall a high fraction of PMDs co-localized in all cell types. On

induction of pluripotency, the presence of PMDs was strongly

reduced in all the cell types examined. In later studies, PMDs were

found in SH-SY5Y neuronal cells [7], human mammary epithelial

cells [8] as well as colorectal cancer samples where they were

shown to coincide with late replicating and nuclear lamina

associated regions [9]. Very recently and importantly, human

placenta was shown to contain PMDs, representing the first known

uncultured and non-cancer tissue type with PMDs [10].

Understanding methylation levels in PMDs is of great interest as

they represent a widespread methylation pattern that is distinct

from the reduced methylation state of CpG islands [1] and at DHS

[3,4,11], which are indicative of transcription factor binding [11],

or the fully-methylated state in most of the genome. Additionally,

PMDs may be directly linked to hypomethylation that is frequently

observed in cancer [8,12,13]. Studies on PMDs so far focused

mainly on their macroscopic properties, their genomic locations

and conditions in which they are formed or abolished. In this study

we set our main focus on the microscopic aspects of PMDs,

investigating how this phenomenon manifests at the level of single

nucleotides. We show that single-CpG methylation levels in

PMDs, in contrast to the remainder of the genome, are roughly

uniformly distributed, spanning the entire range from 0 to 100

percent methylation, and display a seemingly disordered pattern

along the genome. Surprisingly, these patterns are conserved
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across PMD-containing cell types and sequence analysis suggests

that the DNA sequence itself is a major determinant of their

methylation states. A position-specific dinucleotide model reveals

CpG density and various dinucleotides immediately flanking the

CpG as the main drivers of methylation levels in PMDs.

Importantly these sequence features are specific to PMDs as they

contribute only little to the methylation levels in the remainder of

the genome.

Results

CpG methylation levels in PMDs are highly variable along
the genome

So far, the main feature that has been used to characterize and

localize PMDs is reduced mean methylation calculated over large

windows containing many CpGs [5,6,7,9]. To investigate the

phenomenon on the single nucleotide level, we visualized the

methylation status of single CpGs in one genomic region covering

10% of chromosome 10 (Figure 1a). In human embryonic stem

cells (H1), high methylation is predominant with a relatively small

number of hypomethylated regions. In IMR90 fibroblasts

however, the situation is dramatically different. There exist distinct

domains with clear boundaries that display aberrant methylation

levels. On average these domains exhibit decreased (partial)

methylation levels. Importantly however this decrease in average

methylation is not a result of a constant overall reduction at all

CpGs. It is mainly attributed to an extensive increase in the

variability in methylation along the genome. Single CpG

methylation levels in PMDs span the full range from 0% to

100% in a roughly uniform fashion (Figure 1a). Due to this high

variability PMDs appear as domains of highly disordered

methylation. However this is not a reflection of a random process

at the single cell level. The methylation level for a given CpG

refers to the percentage of alleles carrying the methyl group in a

population of cells, thus a randomly established methylation state

at the single cell level would average out to a methylation level of

50% for each CpG. This is not in accordance with the data and

therefore strongly argues that a mechanism must exist which acts

in individual cells and determines the likelihood of methylation. In

particular this likelihood needs to be CpG-dependent.

It is well known that DNA methylation is generally reduced at

CpG islands [1]. More recently this has also been shown to be the

case for DHS outside of CpG islands [3,4]. To investigate to what

extent the variability of methylation levels in PMDs in IMR90 can

be attributed to the presence of these regions, we determined the

genome-wide distribution of methylation levels for CpGs within

CpG islands, DHS and the remaining ones within PMDs. As a

contrast, we performed the same analysis for CpGs outside of

PMDs, which display the typical well-known patterns of mamma-

lian methylomes (Figure 1a). The majority of CpG islands and

DHS in PMDs show reduced methylation, similar to what is

observed outside of PMDs (Figure 1b and c). The remaining

CpGs, which constitute the large majority of CpGs in PMDs,

however, display a roughly uniform distribution in methylation

levels. This is in stark contrast to the situation outside of PMDs,

where the large majority of CpGs outside of islands and DHS are

fully methylated. It thus appears that unlike outside of PMDs, most

of the variability in methylation within PMDs cannot be attributed

to the presence of CpG islands nor DHS. For all the subsequent

analyses, we therefore considered only the CpGs outside of CpG

islands and, if available, outside of DHS.

PMDs have been shown to be located predominantly in

heterochromatic, gene-poor regions [5], which are rich in repeat

elements. To investigate the relationship between the presence of

particular repeat elements and methylation levels in PMDs, we

grouped CpGs according to repeat annotation and monitored

their distribution of methylation levels (Figure 1d). In contrast to

repeat elements outside of PMDs, which are generally fully

methylated, repeats inside PMDs do not maintain the fully-

methylated state and show markedly increased variability,

comparable to non-repeat regions. SVAs (composite unit of SINE,

VNTR and Alu [14]), which make up only a small fraction of the

genome, constitute an exception as they partially maintain their

fully methylated state. SVAs are known to be active and are

generally methylated [15,16], but the functional significance of this

methylation is still unclear[17]. We conclude that the variability of

methylation levels in PMDs cannot simply be explained by the

preferential methylation levels of particular repeat types and their

distribution along the genome.

Levels of CpG methylation in PMDs are conserved across
cell types

To gain more insight into methylation levels in PMDs, we

compared single CpG methylation levels in PMDs across different

PMD-containing tissues. To identify PMDs across methylomes, we

previously developed an algorithm which makes direct use of the

uniformity of methylation levels in PMDs, a functionality which

we provide as part of the MethylSeekR R package [18]. We

identified high-confidence (see Materials and Methods) PMDs in

IMR90 (covering 1.32 Gb) and separately in FF (1.36 Gb) and

selected PMDs common to both cell types (1.22 Gb). A

comparison of methylation levels along the genome revealed a

strong agreement between the two cell types at the single CpG

level (Figure 2a). To globally assess this trend, we quantified, for

every PMD, the similarity between single CpG methylation levels

in IMR90 and FF using the pearson correlation coefficient.

Strikingly, methylation levels are conserved across the two cell

types with correlation coefficients ranging from 0.7 to 0.9

(Figure 2b). This high similarity between the methylation at

individual CpGs within PMDs is not confined to fibroblast tissues.

A comparison of IMR90 to human mammary epithelial cells

(HMEC, 1.20 Gb of PMDs, 1.03 Gb in common with IMR90) [8]

Author Summary

Methylation is an essential DNA modification, which is
attracting a lot of attention as a regulator of gene
expression. Recent technological advances have allowed
the genome-wide measurement of methylation at single-
nucleotide resolution, leading to the discovery of several
new types of methylation patterns. One prominent
example are partially methylated domains (PMDs), which
are regions with reduced average methylation, covering
up to 40% of the genome. PMDs are found in only a subset
of cell types, particularly in differentiated and cancer cells.
An outstanding question is how methylation levels in
PMDs are determined and how they can be interpreted at
the single-nucleotide level. Here we provide a new model
of methylation in PMDs. Single-nucleotide methylation
levels in PMDs, albeit reduced on average, are highly
variable along the genome. Furthermore, they are
precisely set and can be predicted using DNA sequence
features, establishing a new link between methylation and
the underlying genetic information. This results in a high
correlation of methylation levels in PMDs across different
cell types. Our findings suggest that in any comparative
analyses, PMDs should be analyzed as entities, strongly
reducing the complexity of high-resolution DNA methyl-
ation analyses.

DNA Explains Disordered Methylation in PMDs
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revealed high correlations ranging from 0.5 to 0.7 (Figure 2c).

Interestingly, the same holds true in a comparison of IMR90 to

colorectal cancer cells (1.39 Gb of PMDs, 1.06 Gb in common

with IMR90), which were shown to contain PMDs [9] (Figure 2c).

It is important to note that in these cancer cells, it appears that

CpG islands within PMDs tend to have increased rather than

reduced methylation as in healthy tissue [9]. This, however, does

not influence our analysis as we exclude CpGs overlapping CpG

islands from our analysis.

The surprising similarity of methylation levels between PMD-

containing cell-types substantiates the requirement for a mecha-

nism that accounts for the specificity of methylation at the single

CpG level. Since methylation is binary on an allele level, the

process that sets the methylation mark must be stochastic in

Figure 1. CpG methylation levels in PMDs are highly variable along the genome. (a) Methylation status of single CpGs in one genomic
region covering 10% of chromosome 10 (hg18 human genome assembly) for the cell types H1 and IMR90. One dot represents one CpG, the y-axis
denotes percentage methylation (both strands combined). Only CpGs covered by at least 10 reads are shown. Methylation levels were jittered by
+22% to reduce overplotting. PMDs [5] and CpG islands are shown as black rectangles. The numbered triangles indicate example CpG islands
illustrated in (b) in an expanded view. (c) Genome-wide methylation level distributions of single CpGs in CpG islands, DHS outside of CpG islands and
the rest of the genome, both inside and outside of PMDs, shown for all autosomal CpGs covered by at least 10 reads in IMR90. (d) Genome-wide
distribution of methylation levels of CpGs classified by repeat annotation. Only repetitive elements with at least 1000 CpGs are shown.
doi:10.1371/journal.pgen.1004143.g001

DNA Explains Disordered Methylation in PMDs
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nature. For example for a CpG with a methylation level of 20% in

the population, the probability of obtaining a methyl mark for a

single allele must be 0.2. Where does the information come from

that is required by each cell to determine this probability for every

single CpG within a PMD? One likely candidate is the underlying

DNA sequence or its chromatin state.

From a bird’s eye view as illustrated in Figure 1a, it seems that

there is no dependence of methylation levels between consecutive

CpGs. However this might be solely due to the fact that CpGs are

scarce and irregularly spaced. In order to account for this, we

calculated correlations for consecutive CpGs in a distance–

dependent manner (Figure 2d). This analysis revealed that CpGs

in very close proximity (,15 nt) correlate very well (r = 0.8) but

that this correlation deteriorates rapidly with distance. CpGs at the

average spacing of 109 bp show only little spatial coupling

(r = 0.23). Furthermore we identified a weaker signal with a

periodicity of 10 bp, which is likely related to the turn of the DNA

helix wrapped around the nucleosome [19]. Finally we detected a

local maximum at about 180 bp [20] corresponding to typical

distances between nucleosomes. Taken together this suggests that

nucleosomes might be involved in the process that determines

methylation levels for individual CpGs. It is known that

positioning of nucleosomes is at least partially dependent on the

underlying DNA sequence [21]. We therefore investigated if DNA

sequence or nucleosome positioning can explain the methylation

levels of single CpGs.

DNA sequence can predict methylation levels in PMDs
To ask if DNA sequence has the potential to predict

methylation levels of single CpGs in PMDs of fibroblasts, we

performed two types of analyses, one based on a comparative

sequence approach and one based on a nucleotide model. Firstly

we addressed the question whether methylation levels tend to be

conserved in CpGs with identical surrounding sequence. To do so,

for each CpG in a PMD, we extracted the surrounding sequence

(centered around the CpG) and grouped all the CpGs based on

that sequence. This allowed us to calculate correlation coefficients

from pairs of CpGs with identical flanking sequences. We

performed this procedure for various sequence lengths ranging

from 10 bp to a maximum of 140 bp. Longer sequences could not

be studied due to the limited read lengths of 87 bp provided in the

methylome. At a sequence context of 140 bp (with the CpG in the

center), at most 17 bp remain to uniquely map the bisulfite read as

it also needs to overlap the central CpG to quantify the

methylation level. The analysis revealed that with increasing

sequence context, correlation of methylation increases dramati-

cally from r = 0.28 at 10 bp to r = 0.86 at 140 bp. (Figure 3a). This

suggests that the DNA sequence plays a key role in determining

exact methylation levels in PMDs. One limit of this analytic

approach is that with increasing context length, preferentially

those pairs of CpGs that reside within repetitive parts of the

genome remain for quantification. These regions might be atypical

and thus introduce a bias. To investigate this issue, we partitioned

the CpG pairs according to their UCSC repeat annotation. To

retain a sufficient number of pairs per category, we selected the

flanking sequences of length 80 bp, which corresponds to 12K

pairs of CpGs and a correlation of 0.69 (Figure 3a). Whereas, as

expected, the large majority of CpG pairs overlap with repeat

elements, there still remain 16.4% of CpG pairs that lie outside of

repeats which we analyzed separately. This revealed that even

within each annotation class, similar sequences exhibit similar

methylation levels. In particular, there is no substantial difference

between repeat and non-repeat sequences (Figure 3b).

To characterize the role of sequence features beyond identical

sequence contexts, we created a purely sequence based DNA

methylation predictor which can be applied to all the CpGs within

Figure 2. Levels of CpG methylation in PMDs are conserved across cell types. (a) Example profile illustrating the similarity of single CpG
methylation levels between IMR90 and FF. For better visibility, CpGs have been drawn at equal distance from each other. (b) For each PMD present in
IMR90 and FF, we quantified the similarity in the single CpG methylation levels between the two tissues using the pearson correlation coefficient. The
histogram shows the distributions of all the correlation coefficients (one for each PMD). (c) Same as b), but comparing IMR90 to HMEC as well as
colorectal cancer cells. (d) Distance-dependent correlation of the methylation levels of adjacent CpGs in PMDs (IMR90).
doi:10.1371/journal.pgen.1004143.g002
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PMDs. To this end, we generated a position specific linear

dinucleotide model (see Materials and Methods) and trained it on

100K (out of 6.1M) single CpG methylation data points. The

accuracy of the model on an independent set of 100K data points

was 31%, corresponding to a correlation of r = 0.56 between the

predicted and the actual methylation data (Figure 4a). While this is

less striking than the correlation of r = 0.8 between IMR90 and

FF, it still provides additional evidence that DNA sequence most

likely provides the information required to set the methylation

status of a given CpG. This signal is PMD-dependent, as

performing the same analysis in H1 which contains virtually no

PMDs results only in a correlation of r = 0.20. The model

furthermore allows us to infer the relative importance of the

various sequence features (Figure 4b). The most informative

feature is CpG content +220 bp around the central CpG. This

means that the methylation status of a CpG depends on the

presence of other CpGs in its environment. The two CpGs

immediately surrounding the central CpG have an exceptionally

high impact on methylation. Outside of the +220 bp band the

impact of CpGs decreases substantially. The level of methylation

generally rises with increasing numbers of CpGs. Interestingly this

is the opposite of what occurs in CpG islands where high CpG

density coincides with strongly reduced methylation levels [1].

Furthermore, various dinucleotides immediately flanking the CpG

show positive as well as negative contributions. While TT and AA

negatively influence the methylation levels on both sides, TG, CT,

CA and AG have opposite contributions on either side of the CpG.

Finally, various dinucleotides show a more subtle but clearly

periodic signal of 10 bp reminiscent of the DNA helix turn. This

again suggests that the nucleosome might play a role in

determining methylation levels in PMDs. From this analysis it is

however unclear to what extent methylation levels can be

explained by positioned nucleosomes.

To investigate whether similar sequence preferences exist in other

PMD-containing tissues, we trained our dinucleotide model on

HMEC and colorectal cancer cells (Figure 4c). This revealed

consistent sequence features across all PMD-containing methylomes.

Additionally, applying the model to the CpGs outside of PMDs

showed that these sequence features are PMD-specific. As a control,

we trained the model on H1 using the IMR90 PMD annotation (as

the tissue itself does not contain PMDs). This analysis did not reveal

any clear sequence preferences (Figure 4c). In accordance with these

findings, the respective models can predict methylation levels within

PMDs with good accuracy, but fail to do so outside of PMDs and in

methylomes without PMDs (Figure 4d). We conclude that the high

variability of methylation levels in PMDs are, to a significant extent,

determined by specific DNA sequence features that are conserved

across diverse cell types.

Validation of the dinucleotide features
Allele-specific analysis provides a powerful tool to validate our

inferred dinucleotide features. The dinucleotide model suggested

that the change of a particular dinucleotide in the vicinity of a

CpG can influence its methylation level. Heterozygous SNPs close

to a homozygous CpG should therefore result in differences in

methylation between the CpGs of the two alleles. Bisulfite reads

which overlap both the SNP and the CpG in the vicinity can be

uniquely assigned to one allele. This does not only allow us to

calculate methylation levels for the CpG on both alleles separately,

but also to compare the difference in methylation to the nucleotide

variation at the heterozygous SNP (see Material and Methods).

Starting from a total set of 647K heterozygous SNPs in IMR90,

we found 56K CpGs in PMDs which were present on both alleles,

had exactly one single SNP within a window of +240 bp (see

Materials and Methods) and showed a coverage of at least 10

bisulfite reads for both alleles. From this dataset we inferred the

contribution of each dinucleotide, at each distance, to the

measured methylation difference between the two alleles (see

Materials and Methods). Figure 4e displays the results in the same

fashion as the previous non-allele specific analysis (Figure 4b). Side

by side comparison shows that the sequence features obtained

from the two different analytical approaches are highly similar, in

particular the central role of the CpG density and the various

dinucleotides immediately flanking the central CpG. The periodic

Figure 3. CpGs with identical flanking sequence display similar methylation. (a) For each CpG in a PMD, the surrounding sequence (CpG in
the center) was extracted and used to identify sequences occurring multiple times in the genome. Correlation coefficients for pairs of CpGs with
identical flanking sequences are depicted on the y-axis. This procedure was performed for various sequence lengths ranging from 10 bp to 140 bp.
The inlet displays the actual data points giving rise to the correlation coefficient at 140 bp. In the case where a sequence occurred more than twice in
the genome, only one randomly selected pair was considered. The legend denotes the number of pairs of data points available for each sequence
length. (b) Scatter plots of methylation levels for CpG pairs with identical sequence context of length 80 (yellow square in (a)) separated by repeat
annotation. Only repeat classes with at least 100 data points are shown.
doi:10.1371/journal.pgen.1004143.g003

DNA Explains Disordered Methylation in PMDs
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Figure 4. DNA sequence can predict methylation levels in PMDs in IMR90. (a) Performance of the positional dinucleotide model (see
Materials and Methods) in PMDs. Depicted is the 2D-density for a total of 100K CpGs in PMDs. The x-axis denotes the measured methylation level and
the y-axis denotes the predicted methylation level. (b) Inferred parameters of the positional dinucleotide model (see Materials and Methods) which
predicts methylation levels in PMDs. The contributions of the 16 dinucleotides within a window of +260 bp around the central CpG are color coded
and displayed as a heatmap. (c) Same as (b) for the indicated tissues, separately for PMDs and regions outside of PMDs. For H1, which does not
contain PMDs, the PMD annotation of IMR90 was used. In contrast to (b), CpGs overlapping DHS were not removed as the necessary DHS dataset
were not available for all cell types. Thus panel b) and the upper left panel in c) only differ with respect to the inclusion or exclusion, respectively, of
CpGs based on DHS. (d) Performance of the dinucleotide model for the same tissues and regions as in (c). (e) Contribution of each dinucleotide to

DNA Explains Disordered Methylation in PMDs
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10 bp signal is not as clear as before but this is likely due to the

limited number of data points available for allele-specific analysis.

Nucleosome positioning explains only a limited amount
of variation in methylation in PMDs

In order to relate methylation levels to positioned nucleosomes,

we created a high coverage nucleosome map in IMR90 by

Micrococcal nuclease (MNase) treatment and sequencing of

mononucleosomal DNA. We obtained a total of 517 million

uniquely mapping reads, which is comparable to the amount

generated in previous high coverage nucleosome studies [20]. To

determine if nucleosome positioning shows methylation dependent

patterns in PMDs, we stratified the CpGs according to their

methylation levels into 5 equally spaced bins and created

composite MNase profiles for each individual bin (Figure 5).

The profiles show that methylated CpGs within PMDs overlap less

frequently with positioned nucleosomes (180 bp periodicity) and

tend to lie on a single side of the double helix (10 bp periodicity).

Others have previously analyzed the relationship of methylation

and nucleosome positioning outside of PMDs and have found

either decreased [22] or increased methylation at positioned

nucleosomes [19]. Although our data gives support to the former

finding, Figure 5 also shows that the MNase enrichments

(compared to the average over all CpGs) are very small (1.2 fold).

This suggests that nucleosome positioning may have only little

predictive power. To test this we performed a linear regression

using positional MNase read counts (centered around the CpGs) as

predictors and methylation levels as the response variable. This

resulted in a correlation of only r = 0.15, substantially less than the

performance of the nucleotide model (r = 0.56). The correlation of

0.15 is an upper bound to the potential explanatory power of the

MNase signal and might even be substantially lower due to

possible confounding factors such as the cutting preferences of the

MNase enzyme or sequencing biases [23]. We thus conclude that

nucleosome positioning plays only a minor role in determining the

exact methylation levels in PMDs. Sequence features, in particular

the local CpG density provides substantially more information

about the methylation status.

Discussion

PMDs have been characterized as long domains

(mean = 153 kb) with decreased average methylation [5]. In this

study, we showed that in IMR90, this overall decrease is

accompanied by a strong increase in the variability along the

genome, with methylation levels ranging from 0% to 100% in a

roughly uniform fashion. These seemingly disordered methylation

patterns however are conserved across cell types at the single CpG

level suggesting a mechanism that provides high local specificity.

Using comparative sequence analysis as well as a positional

dinucleotide model, we showed that outside of CpG islands and

DHS specific DNA sequence features contribute to the methyl-

ation levels observed in PMDs. These include CpG density as the

main driving feature followed by various dinucleotides immedi-

ately flanking the CpG, as well as a minor contribution from

sequence preferences reminiscent of the sequence preference of

positioned nucleosomes. CpG density, in particular, showed the

strongest contribution in a +220 bp band, with an exceptionally

high impact of the two CpGs immediately surrounding the central

CpG. This may suggest cooperative behavior on two distinct

levels. In the case of two adjacent CpGs, the DNA methyltrans-

ferase (DNMT) depositing the methylation mark on the first CpG

might directly methylate the neighboring CpG whereas in the case

of a wider distance, cooperativity might be caused by a DNMT

sliding along the DNA, or the recruitment of an a additional

DNMT depositing the second mark. Importantly, CpG density is

positively correlated with methylation levels and thus promotes

methylation. An early indication of this finding, without a link to

PMDs, has been given by [24] and is, interestingly, the opposite to

what has been shown for CpG islands [25]. We additionally

investigated the role of nucleosome positioning by creating a high

coverage map in IMR90. While we provide evidence for a slight

decrease in methylation at positioned nucleosomes, we concluded

allelic methylation differences in PMDs. The sketch at the top depicts the investigated genomic configuration, namely a CpG conserved in both alleles
but flanked by a SNP. The difference of one nucleotide is used to assign the bisulfite reads covering the SNP to an allele (Reference or Alternative).
The reads that cover both, the SNP as well as the conserved CpG are used to quantify the allele specific methylation level of the conserved CpG. Given
the nucleotides involved in the SNP and the difference in methylation level between the two alleles, we calculated the allele specific contribution of
each dinucleotide at a given distance from the conserved CpG (see Materials and Methods). The analysis was performed within a window of +240 bp
due the low number of data points available at larger distances.
doi:10.1371/journal.pgen.1004143.g004

Figure 5. Nucleosome positioning explains only limited variation in methylation in PMDs. Composite MNase profiles in IMR90 for CpGs
within PMDs stratified by methylation level.
doi:10.1371/journal.pgen.1004143.g005

DNA Explains Disordered Methylation in PMDs
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that nucleosome positioning plays only a minor role in determin-

ing the exact methylation levels in PMDs. Sequence features, in

particular the local CpG density provided substantially more

information about the methylation status.

In embryonic stem cells, the methylation machinery maintains a

fully methylated state in most of the genome. In fibroblasts

however, large domains covering 35% of the genome show

reduced levels of methylation (PMDs). This suggests that the

DNMTs are impaired in their capacity of maintaining the fully

methylated state at those domains. Interestingly this loss in

methylation, on the level of single CpGs, reveals a methylation

pattern that is not apparent in all cell types. We speculate that this

could be caused by a reduced access of the methylation machinery

in PMDs. As this would lead to a reduced effective concentration,

there might be a critical point where the concentration of the

DNA methylation machinery becomes rate limiting for the process

of methylation. In this case, the intrinsic sequence preferences

might surface whereas in a normal configuration, these patterns

would be overwritten and converted into a fully methylated state.

Our dinucleotide model provides indirect evidence for this

hypothesis, as it shows that the methylation status of a CpG in

PMDs depends on the presence of other CpGs in the vicinity. This

cooperative aspect of the methylation machinery would result in

increased methylation levels in genomic regions with higher CpG

density. A recent experimental study in a mouse lung-cancer

model [26] suggests that the de novo methyltransferase Dnmt3a

may be an important player in this process as it is required to

maintain the fully-methylated state in active regions. It could thus

be hypothesized that it is the reduced access of Dnmt3a to PMDs

which leads to the reduction of methylation.

The relationship between methylation and DNA sequence

features has been extensively investigated in the past. These studies

were either performed on limited sets of CpGs for which

methylation measurements were available [27,28] or with a

particular focus on CpG islands. The latter methods were initially

based on sequence alone [25,29] and were later augmented with

epigenetic data [30,31,32]. The analysis presented here departs

from these earlier studies by focusing on the large majority of

CpGs that lie outside of CpG islands and by explaining the

previously unknown and unexplained extensive variability in

methylation levels within PMDs. The relationship between

methylation levels outside of CpG islands and specific sequence

features irrespective of PMDs has been investigated in a recent

study about allele-specific methylation in mouse [33]. The authors

identified sequence motifs enriched in the immediate vicinity

(+22 bp) of CpGs methylated in an allele-specific fashion.

Although the reported sequence features are comparable to our

findings, they differ in the extent of the sequence environment

(+22 bp compared to +220 bp) and thus differently assess the

contribution of the CpG dinucleotide in the wider sequence

context. It is however intriguing that when projecting the inferred

motifs to various human methylomes, they see highest agreement

in the tissues containing PMDs. This supports our finding that

sequence features are much more predictive of methylation levels

inside versus outside of PMDs.

Due to the ever-decreasing costs in sequencing, researchers can

now generate large numbers of single-base methylomes in a variety

of conditions. PMDs occur in only a subset of conditions but if

present can cover up to 40% of the genome. This will inevitably

lead to a large number of differentially methylated CpGs. Here we

provide a sequence-based explanation for the methylation

differences in PMDs and suggest that these should be treated

separately from the changes outside of PMDs. This study adds to

the growing body of literature that aims at disentangling the

wealth of information contained in base-pair resolution methyla-

tion maps and should thus be of great importance for the

interpretation of the large number of methylomes that will be

generated in the nearby future.

Materials and Methods

Data processing for the various methylomes
Unless stated differently, all methylomes in this study have been

processed as follows: Methylaton levels from both strands of a

given CpG were combined. CpGs in CpG islands (www.genome.

ucsc.edu) were removed after extending the CpG islands by

100 bp. CpGs overlapping DHS were removed as well for the cell

types H1 and IMR90 for which DHS datasets were available.

Only autosomal CpGs with a minimum coverage of 10 were

considered. All CpGs overlapping a SNP from dbSNP (09.11.10)

were removed to ensure that the methylation levels are not

cofounded by polymorphisms. We used the software MethylSeekR

[18] to detect PMDs in the various methylomes and created a high

confidence set by considering only the PMDs with a length of least

200 kb. CpGs outside PMDs were defined as the CpGs, which did

not overlap any PMD. For Figure 1, PMD coordinates from the

original publication [5] were used to avoid circular inference of the

uniform distribution of methylation levels in PMDs. MethylSeekR

makes explicit use of the distribution of methylation levels while in

the original publication PMDs were only defined by a reduction in

mean methylation. Classification of the CpGs into repeat classes

was done based on UCSC (genome.uscsc.edu) repeat annotation

using the repClass column in the rmsk table. All analyses

throughout the manuscript were performed in R (www.r-project.

org) using core packages from bioconductor [34].

Positional dinucleotide model
To predict methylation levels from DNA sequence, we created a

linear regression using dinucleotide features as predictors and the

measured methylation level as the response. For each CpG in

consideration, the sequence environment (+278 bp) was extracted

and split into non-overlapping blocks of dinucleotides. Each

dinucleotide was interpreted as a categorical variable with 16

states (15 dummy variables in the regression). Thus in total the

regression contained 78*15 = 1170 variables. For visualization as a

heatmap, the left out dinucleotide was introduced back (as a zero)

into the list of coefficients. These were then normalized to

mean = 0. Training and testing was performed on separate sets of

100K data points selected randomly.

Positional dinucleotide model to predict allelic
differences in methylation

To create an allele specific methylation map for the IMR90 cell

lines, we downloaded the mapped reads, a list of SNPs in IMR90

(see datasets) and realigned the reads using the bioconductor

package QuasR (www.bioconductor.org/packages/2.12/bioc/

html/QuasR.html). From the list of SNPs, two separate genomes

were produced (Reference and Alternative). After C to T

conversion of the reads and the genomes, alignments were

performed using bowtie [35]. Only unique mappers with at most

three mismatches were considered. The two separate alignments

were combined into one, by flagging reads mapping equally well to

both genomes as ‘‘Unknown’’ and reads mapping better to one

genome than to the other as ‘‘Reference’’ or ‘‘Alternative’’. Using

this flag, methylation levels for CpGs were calculated separately

for the Reference and the Alternative allele. Only CpGs covered

by at least 10 bisulfite reads in both alleles were considered for

further analysis. From a total set of 647K heterozygous SNPs in
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IMR90, we found 56K CpGs in PMDs which were present on

both alleles and had exactly one single SNP within a window of

+240 bp. From this dataset, we inferred the contribution of each

dinucleotide to the difference in the methylation between the

alternative allele and the reference allele (dm = m_A-m_R). Since

each CpG contains only one SNP in its environment, inference

can be performed for each position independently. However since

a change in sequence involves two dinucleotides (one on each

allele), the values for delta methylation dm need to be interpreted

as the change in methylation caused by converting a particular

dinucleotide to another one. This relationship is described by the

equation dm = s_d(A)–s_d(R), where s_d(A) represents the contri-

bution of the dinucleotide present in the alternative genome and

s_d(R) represents the contribution for the dinucleotide in the

reference genome. Since there are multiple data points, this leads

to a linear regression (no constant term) with 16 variables and as

many equations as there are SNPs at a particular position (between

538 and 1942 in this dataset). This regression however is singular

as an arbitrary constant can be added to the coefficients without

having any effect on the quality of the fit. We thus set the

dinucleotide TT arbitrarily to zero and used it as a reference. Thus

the final regression consisted of 15 variables and was performed

independently for each position. For visualization as a heatmap,

the coefficients (including a value of zero for TT) were mean

normalized.

Mononucleosome-BisSeq (MN-BisSeq) library preparation
Chromatin isolation from IMR90 was performed under native

conditions as described [36]. MNase treatment was performed

with 5 U (Roche Nuclease S7, catalog number 10107921001) at

37uC for 30 min per 1 million cells. Digestion was tested on 2%

agarose gel resulting in the highest proportion of mononucleoso-

mal fraction. Mononucleosomal fraction was then extracted from

the agarose gel using QIAquick Gel Extraction Kit (Qiagen).

Library preparation was performed using Illumina Genomic DNA

Sample Preparation Guide starting with 2 mg of mononucleosomal

fraction DNA. Single End Genomic Adapter Oligo Mix was used

and the library was amplified for 10 cycles using Illumina PCR

primers 1.1 and 2.1. Final PCR product was purified using

Agencourt AMPure XP beads (Beckman Coulter). Quality of the

libraries and template size distribution were assessed by running

an aliquot of the library on an Agilent 2100 Bioanalyzer (Agilent

Technologies).

Analysis of the MNase data
A total of 697M single-end reads were mapped to hg18 using

bowtie [35]. 517M uniquely mapping reads were considered for

further analysis. Given the footprint of 147 bp of the nucleosome,

the reads were shifted by +/274 bp dependent on the strand.

Reads starting exactly within the interrogated CpGs (before

shifting) were not considered as we observed strong discontinuities

of the MNase signal when creating average profiles with respect to

a central CpG. We assumed that this is caused by sequence

specific biases of the MNase treatment and thus decided to remove

the critical alignments. The raw data as well as processed files were

submitted to GEO (www.ncbi.nlm.gov/geo) and can be retrieved

using the accession GSE44985.

Publicly available datasets used in this study
Methylomes for H1, IMR90, IMR90-iPSC and FF as well as

the mapped reads from IMR90 (used for the allele specific

analysis) were downloaded from http://neomorph.salk.edu/

ips_methylomes/data.html. The Colorectal cancer methylome

was downloaded from http://epigenome.usc.edu/publicationdata/

berman20101101/. IMR90 SNPs were downloaded from http://

www.genboree.org/EdaccData/SBS-SNPs/IMR90.Methyl-C.Hg18.

SNPs/. The HMEC methylome was downloaded from GEO

(accession number GSM721195). The DNase I hypersensitive sites

for IMR90 and H1 were downloaded from the ENCODE

Consortium data repository at genome.ucsc.edu/ENCODE (nar-

rowPeak lists). All datasets were provided in coordinates for the

hg18 human genome assembly.
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