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Abstract
Introduction  The diagnosis of COVID-19 is normally based on the qualitative detection of viral nucleic acid sequences. 
Properties of the host response are not measured but are key in determining outcome. Although metabolic profiles are 
well suited to capture host state, most metabolomics studies are either underpowered, measure only a restricted subset of 
metabolites, compare infected individuals against uninfected control cohorts that are not suitably matched, or do not provide 
a compact predictive model.
Objectives  Here we provide a well-powered, untargeted metabolomics assessment of 120 COVID-19 patient samples 
acquired at hospital admission. The study aims to predict the patient’s infection severity (i.e., mild or severe) and potential 
outcome (i.e., discharged or deceased).
Methods  High resolution untargeted UHPLC-MS/MS analysis was performed on patient serum using both positive and 
negative ionization modes. A subset of 20 intermediary metabolites predictive of severity or outcome were selected based 
on univariate statistical significance and a multiple predictor Bayesian logistic regression model was created.
Results  The predictors were selected for their relevant biological function and include deoxycytidine and ureidopropionate 
(indirectly reflecting viral load), kynurenine (reflecting host inflammatory response), and multiple short chain acylcarnitines 
(energy metabolism) among others. Currently, this approach predicts outcome and severity with a Monte Carlo cross validated 
area under the ROC curve of 0.792 (SD 0.09) and 0.793 (SD 0.08), respectively. A blind validation study on an additional 
90 patients predicted outcome and severity at ROC AUC of 0.83 (CI 0.74–0.91) and 0.76 (CI 0.67–0.86).
Conclusion  Prognostic tests based on the markers discussed in this paper could allow improvement in the planning of 
COVID-19 patient treatment.
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1  Introduction

The severe acute respiratory syndrome coronavirus-2 
(SARS-CoV-2) outbreak started in Wuhan, China, in 2019, 
and quickly resulted in a worldwide pandemic, challeng-
ing healthcare systems with the need to provide intensive 
care to a previously inconceivable number of patients (Ben-
net et al., 2020). SARS-CoV-2 presents with a wide range 
of symptoms. These range from minor, unspecific ones, 
including anosmia, a dry persistent cough, fever, diarrhoea, 
in certain cases combined with mild pneumonia, to more 
severe, potentially life-threatening symptoms, such as severe 
pneumonia with dyspnoea, tachypnoea and disturbed gas 
exchange. Approximately 5% of severely infected patients 
develop lung dysfunction, requiring ventilation, and shock or 

 *	 Marina Wright Muelas 
	 m.wright-muelas@liverpool.ac.uk

 *	 Douglas B. Kell 
	 douglas.kell@liverpool.ac.uk

1	 Department of Biochemistry and Systems Biology, Institute 
of Systems, Molecular and Integrative Biology, University 
of Liverpool, Liverpool, UK

2	 Department of Clinical Biochemistry and Metabolic 
Medicine, Liverpool Clinical Laboratories, Royal Liverpool 
University Hospitals Trust, Liverpool, UK

3	 Centre for Metabolomics Research (CMR), Department 
of Biochemistry and Systems Biology, Institute of Systems, 
Molecular and Integrative Biology, University of Liverpool, 
Liverpool, UK

4	 Novo Nordisk Foundation Centre for Biosustainability, 
Technical University of Denmark, Building 220, 
Chemitorvet, 2000 Kgs Lyngby, Denmark

http://orcid.org/0000-0002-4775-4358
http://crossmark.crossref.org/dialog/?doi=10.1007/s11306-021-01859-3&domain=pdf


	 I. Roberts et al.

1 3

6  Page 2 of 19

multiple organ failure (Marietta et al., 2020; Wu & McGoo-
gan, 2020). In some cases, symptoms remain for an extended 
period (‘long COVID’).

The reasons behind the wide variability in individual 
responses to COVID-19, i.e., the illness resulting from 
SARS-CoV-2 infection, are still poorly understood, though 
some appear to involve interferon responses (Arunachalam 
et al., 2020; Hadjadj et al., 2020; Zhang et al., 2020). Much 
research, and evidence from the clinic, points towards the 
idea that severe complications in COVID-19 arise through 
a vasculopathy and coagulopathy elicited by infection 
rather than via the typical inflammatory responses normally 
observed in acute respiratory distress syndrome or cytokine 
release storms (Fox et al., 2020; Grobler et al., 2020; Leis-
man et al., 2020; Libby & Lüscher, 2020; Paranjpe et al., 
2020; Pretorius et al., 2020; Zheng et al., 2020). Prognostic 
scores attempt to transform complex clinical pictures into 
tangible numerical values. However, many of these novel 
COVID-19 prognostic scores have been found to have a high 
risk of bias, possibly reflecting the fact that they have been 
developed in small cohorts, and many have been published 
without clear details of model derivation and testing (Knight 
et al., 2020; Wynants et al., 2020).

Understanding changes in the biochemistry of an indi-
vidual who is ostensibly healthy (Dunn et al., 2011, 2015), 
including when they may show no overt symptoms of infec-
tion with SARS-CoV-2, remains a huge challenge (Alene 
et al., 2021). Similar questions apply to understanding who 
is likely to survive (unaided or via intervention) and who is 
likely to die from COVID-19 once diagnosed.

For fundamental reasons, the metabolome is a more sen-
sitive indicator of the biochemical status of a cell or organ-
ism than is a proteome or a transcriptome (Fuhrer et al., 
2017; Kell & Oliver, 2016; Oliver et al., 1998; Raamsdonk 
et al., 2001). Consequently, metabolomic analyses of patient 
samples promise to enable understanding of biochemical 
changes in relation to poorly understood processes (John-
son et al., 2016), for instance as recently shown in human 
frailty in ageing populations (Rattray et al., 2019). Metabo-
lomics studies measure the effects on the host and not simply 
the presence of the infecting agent, therefore, such studies 
could provide a set of markers that can be of significant use 
for rapid tests, complementary to current polymerase chain 
reaction (PCR) or antibody tests, for confirmation of SARS-
CoV-2 infection, disease severity, and potential outcome.

A continuously increasing number of studies have applied 
metabolomics to investigate COVID-19 in human patients; 
a selection of which is presented in Supplementary infor-
mation Table S1. Most of the studies have highlighted dis-
ruption of lipid metabolism (López-Hernández et al., 2021; 
Overmyer et al., 2020; Thomas et al., 2020), along with 
tryptophan metabolism in relation to inflammation (Ansone 
et al., 2021; Blasco et al., 2020; López-Hernández et al., 

2021; Overmyer et al., 2020; Sindelar et al., 2021; Thomas 
et al., 2020) and changes in pyrimidine metabolism (Blasco 
et al., 2020) as metabolic features of COVID-19 patients 
against controls. Some of these studies were clearly limited 
by patient numbers and may therefore not be fully repre-
sentative of the variation in human responses to COVID-19, 
and some lacked proper statistical tests see (Broadhurst & 
Kell, 2006). Moreover, many of these markers of COVID-19 
infection, severity and outcome have also been described in 
patients with sepsis and acute respiratory failure (Migaud 
et al., 2020). Most importantly, many of the early studies 
simply compare patients with healthy controls, which, given 
that the disease status is in fact known (and current diagnos-
tics very rapid), does not of itself have either diagnostic or 
prognostic value. However, more recent studies with larger 
cohorts such as (López-Hernández et al., 2021; Sindelar 
et al., 2021) have also considered more interesting aspects 
such as severity and included longitudinal follow up of the 
infection. Since presence of the disease is already known, 
our work here is focused on this more pertinent question: 
can the metabolome distinguish patients with COVID-19 
in terms of either disease severity (mild/severe) or outcome 
(deceased/survived)?

To that end, we adopted an untargeted metabolomics 
approach using UHPLC-MS/MS to cohorts of serum sam-
ples collected at the Royal Liverpool University Hospital 
(RLUH). 120 patient samples were obtained at the time of 
admission and diagnosis with COVID-19. This study ena-
bled us to identify prognostic biomarkers of both COVID-19 
severity (severe vs mild) and outcome. Subsequently, the 
findings were validated in a blind study on 90 additional 
patients. Moreover, longitudinal data were acquired from 
28 severe patients with divergent outcome, i.e., 13 deceased 
and 15 discharged to explore further the temporal evolution 
of the selected predictors.

Here we present the study results via a set of different 
models. We first validate that untargeted metabolomics pro-
vides better severity and outcome distinction vs using solely 
demographics and clinical data, via multiblock chemometric 
analysis. A high dimensional predictive model is then pre-
sented, based on more than 900 metabolites, showing prom-
ising predictive performance. Next, with the goal of clinical 
application in mind, we present results from a predictive 
model based of 20 compounds selected largely on the basis 
of our confidence in the metabolites’ identity and known 
biological function. We discuss in detail the approaches 
used to make this selection via pathway enrichment analy-
sis and manual curation. Moreover, we explore (and largely 
discount) the possible confounding effects of demographic 
factors and underlying conditions of the selected metabolic 
predictors. Finally, we validate the predictive power of the 
selected compounds in a blind study of a new patient cohort.
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2 � Results

2.1 � Discovery study

Serum from 120 patients was acquired at the Royal Liv-
erpool University Hospital (RLUH) on the first positive 
SARS- CoV-2 test. Severity scoring was based on the level 
of respiratory support required and overall patient outcome 
where severe corresponds to required fraction of inspired 
oxygen (FIO2) > 40% and/or required Continuous Positive 
Airway Pressure (CPAP) and/or required invasive ventilation 
and/or did not survive. Patients were also stratified using 
the 4C Mortality Score (Knight et al., 2020). Patient demo-
graphics grouped by severity and outcome are presented in 
Table 1, where mild cases encompass mild to moderate dis-
ease severity.

Untargeted UHPLC-MS analysis was performed on the 
patient serum samples with a ThermoFisher Scientific Van-
quish UHPLC system coupled to a ThermoFisher Scientific 
Q-Exactive mass spectrometer (ThermoFisher Scientific, 
UK). Pre-processing of UHPLC-MS data in Compound Dis-
coverer resulted in 5234 retained metabolic features (i.e., 
m/z and RT) in positive electrospray ionization (ESI +) and 
2465 in negative electrospray ionization (ESI-). Features 
were excluded based on standard filters; i.e., removal of 
background features (Maximum Sample/Blank parameter 
to 5), features with coefficient of variation (CV) > 30% in 
the quality control (QC) samples’ and features present in less 
than 80% of the QCs samples as described in (Wright Mue-
las et al., 2020). Additionally, metabolic features detected 
in less than 25% of the experimental samples were also 
excluded. We note that this final step allowed the removal of 
small number of metabolic features mostly related to drugs 
(and their metabolites) taken by the patients for pre-existing 
conditions, which would otherwise simply have complicated 
and confounded the analysis.

2.2 � Exploratory analysis

Principal components analysis (PCA) was performed on 
both ESI + and ESI− data separately and no clear clustering 
in severity or outcome could be observed (Fig. S1), indicat-
ing that a simple, unsupervised method such as PCA would 
fail to capture the differences in metabolic profiles related 
to COVID-19 infection and potential outcome in complex 
data resulting from UHPLC-MS analysis. In contrast, when 
PCA was applied to the metadata associated with the 120 
patients which include gender, age, body mass index (BMI), 
pulse, temperature, blood pressure, respiratory rate (full list 
is provided in the methods section), a clearer separation 
between severe and mild patients was observed (Fig. S2A). 
This alone is not overly interesting because the severity 

assessment was drawn from a few variables in these meta-
data. However, when the metadata and the UHPLC-MS data 
were analysed together by using a multiblock PCA (Smilde 
et al., 2005; Xu & Goodacre, 2012) the separation improved 
(Figure S2B), indicating that there is relevant discriminatory 
information within the UHPLC-MS data which could not 
be revealed by PCA had been discovered in a multiblock 
model with presence of a meta data block. These findings 
are also valid in fatal outcomes where no clear clustering is 
observed in the metadata PCA block (Fig. S2A). Individual 
block figures from the multiblock analysis are available in 
the supplementary information (Figure S3). Clearly PCA 
is not a classification technique and the lack or presence of 
clusters does not translate directly to any predictive poten-
tial of the data. To investigate if differences in metabolic 
profiles are capable of predicting the severity and outcome 
of COVID-19 infection, the next section explores in detail 
predictive models based on the UHPLC-MS data.

2.3 � Predictive models

Four multi-predictor models were trained: extreme gra-
dient boosted trees (Chen & Guestrin, 2016; Friedman, 
2001), Lasso regularization with elastic net (Zou & Hastie, 
2005), logistic regression, and Bayesian logistic regression 
(Goodrich, 2020). All these models, when trained on the 
complete data of > 7000 metabolic features, showed clear 
signs of overfitting despite the use of tuning based on cross-
validation and regularization. To overcome this, the set of 
predictors was filtered based on individual significance 
as determined by volcano plot analysis (p-value and fold 
change) as illustrated in Figure S4 for outcome and Figure 
S5 for severity.

Significance filtering based on volcano plot analysis 
reduced the number of metabolic features to 1987/ 935 
(ESI ± respectively) for severity and/or outcome combined. 
For those features, signal curation based on chromatogram 
and spectral quality (see UHPLC-MS signal curation section 
in Methods), was performed in Compound Discoverer and a 
total of 526/409 (ESI ± respectively) features were retained. 
Table S2 provides a breakdown of those metabolic features 
along with their identification level according to the Metab-
olomics Standards Initiative (MSI) (Sumner et al., 2007), 
ranging from MSI level 1 to 4.

Evaluation of the four predictive models on this reduced 
set of 935 ESI ± metabolic features in total from ESI + and 
ESI− identified that Bayesian logistic regression had the 
best generalization performance; therefore, all the following 
results are based on this model. The mean area under the 
curve (AUC) was found to be at 0.836 (SD 0.069) for sever-
ity and 0.807 (SD 0.081) for outcome, demonstrating good 
predictive power of the patient metabolome. However, a 
mass spectrometry-derived model with some 900 metabolic 
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Table 1   Patient demographics by severity and outcome

Cohort demographics are presented as counts and percentages (%) for categorical data and means with interquartile range for continuous 
data. P-values indicating significant differences between groups follow ‘star’ notation i.e., ‘***’ correspond to p-values < 0.001, ‘**’ < 0.01, 
‘*’ < 0.05, ‘.’ < 0.1 and missing when > 0.1. P-values were not calculated for the group counts (N). This study looked at the serum samples from 
120 COVID-19 patients. 49 patients developed severe symptoms and 31 patients died as a result of the infection. Severity score metrics based 
on the 4C Mortality score (Knight et al., 2020) are provided as group means. Some disparity can be observed in gender as women represent 13% 
of the severe cases and only 29% of the deceased patients. Age groups of severe and deceased patients also tend to be slightly higher. BMI is 
not significantly different between the groups. O2 support indicates the number of patients that required oxygen support at any time during their 

Condition Severity Outcome

Mild Severe P-v Discharged Deceased P-v

N 71 49 – 89 31 –
4C score 8.39 (4.75–12) 12.87 (10.00–16) *** 8.91 ( 5.25–12) 14.34 (13.00–16) ***
Male 38 (54%) 32 (65%) 48 (54%) 22 (71%)
Female 33 (46%) 17 (35%) 41 (46%) 9 (29%)
Age 66.0 (54–77) 69.2 (56–87) 63.8 (52.0–77.0) 77.1 (65.5–88.5) ***
BMI 26.4 (21.8–28.6) 27.0 (23.0–32.0) 26.7 (22.3–29.0) 26.4 (21.9–29.6)
O2 support 32 (45%) 49 (100%) *** 50 ( 56%) 31 (100%) ***
Mechanical respiratory support 1 (1%) 12 (25%) *** 3 (10%) 10 (11%)
Max FiO2 24.7 (21–28) 71.6 (40–100) *** 33.3 (21–35) 74.2 (36–100) ***
Required O2 on presentation 17 (24%) 39 (80%) *** 34 (38%) 22 (71%) **
FiO2 (%) on presentation 22.8 (21–21) 47.0 (28–60) *** 28.2 (21.0–28) 45.5 (22.5–60) **
NEWS 2.56 (1–4) 7.27 (5–10) *** 3.47 (1–6.0) 7.40 (6–10.8) ***
Hypertension 28 (39%) 26 (53%) 35 (39%) 19 (61%) *
Cardiac disease 20 (28%) 17 (35%) 25 (28%) 12 (39%)
Kidney disease 24 (34%) 19 (39%) 28 (31%) 15 (48%)
eGFR 67.7 (49–90) 56.5 (30–90) * 67.7 (48.0–90.0) 49.9 (26.5–68.5) **
Liver disease 7 (9.9%) 6 (12.2%) 9 (10%) 4 (13%)
Malignancy 13 (18%) 6 (12%) 13 (15%) 6 (19%)
Fever 34 (48%) 30 (61%) 49 (55%) 15 (48%)
Cough 33 (46%) 29 (59%) 43 (48%) 19 (61%)
SOB 35 (49%) 29 (59%) 48 (54%) 16 (52%)
Pulse (BPM) 87.9 (72.0–102) 102.8 (91.8–114) *** 90.6 (74–106) 103.8 (92–114) **
Temp. (°C) 37.1 (36.6–37.4) 37.5 (36.7–38.1) * 37.2 (36.6–37.5) 37.3 (36.7–37.9)
BP (mmHg) 137 (120–151) 123 (102–138) ** 135 (120–149) 120 (102–130) **
Respiratory rate 20.1 (17–22) 26.6 (20–30) *** 21.7 (17.0–22) 25.7 (19.2–30) *
Hb (g/L)
Male [133–168]
Female [118–148]

126 (111–141) 124 (107–146) 127 (113–140) 120 ( 96–146)

WBC (× 109/L)
[3.5–11.0]

8.28 (4.8–10.9) 9.98 (5.9–11.7) 8.63 (5.1–11.0) 9.97 (6.5–11.6)

Lymphs (× 109/L)
[1.0–3.5]

1.25 (0.75–1.4) 1.06 (0.60–1.6) 1.239 (0.7–1.50) 0.994 (0.5–1.35)

PLTS (× 109/L)
[150–400]

256 (176–306) 236 (166–292) 255 (175–305) 226 (169–259)

HCT (%) 0.372 (0.337–0.417) 0.371 (0.329–0.436) 0.375 (0.341–0.416) 0.361 (0.287–0.443)
ALT (U/L)
Male [≤ 41]
Female [≤ 33]

32.8 (13–31.8) 47.1 (16–39.0) 36.1 (15–39.0) 46.6 (13–31.5)

Urea (mmol/L)
[2.5–7.8]

8.29 (4.6–8.75) 13.05 (5.2–19.00) ** 8.53 (4.4–8.8) 15.12 (8.0–22.2) ***

Creatinine (µmol/L)
Male [59–104]
Female [45–84]

112 (66–104) 133 (70–168) 109 (65.0–105) 153 (84.5–184)

CRP (mg/L)
[< 4]

47.7 (11–61.2) 132.9 (49–190.0) *** 61.4 (13.5–79.5) 144.3 (52.5–209.5) ***
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features is not a practical solution (Kenny et al., 2010) for an 
assay of general utility, and thus subsets of these metabolic 
features were investigated further. The sub-group selection 
was guided by metabolic pathway enrichment analysis and 
manual curation of well identified (i.e., MSI level 1 or 2) 
compounds with known biological relevance. A final model 
with 20 compounds selected in this way showed a reasonable 
cross-validated mean AUC of 0.793 (SD 0.080) for severity 
and 0.792 (0.090) for outcome. Mean balanced accuracy was 
calculated at 0.716 (0.088) and 0.655 (0.098) for severity 
and outcome, respectively. Representative receiver operat-
ing characteristic (ROC) curves for one specific train-test 
split are shown in Fig. 1. Lastly, age and gender adjustment 

were considered in the model for severity, and these had 
very minor impact on AUC, did not change metabolite esti-
mate intervals and were themselves insignificant and centred 
around 0.

2.4 � Metabolic pathways linked to severity 
and outcome

Pathway enrichment analysis was performed with MUM-
MICHOG (Li et  al., 2013) as implemented in Metabo-
Analyst (Pang et al., 2020) as a way of selecting biologi-
cally relevant sub-groups of compounds. As expected, 
no ‘entire’ pathways showed significant p-values when 

hospitalization. Mechanical respiratory support indicates the need of invasive support or continuous positive airway pressure (CPAP). Max FiO2 
captures the maximum fraction of inspired oxygen required by the patient during the hospitalization period, where respiratory support captures 
the patients requiring any support at diagnosis and FiO2 represents the fraction of inspired oxygen required at time of sample acquisition. As 
expected, oxygen need and inspired fraction, are highly correlated with severity and fatal outcome. National Early Warning Score (NEWS) also 
showed correlation with both severity and outcome. Cardiac disease refers to multiple cardiovascular conditions, most frequently: ischemic heart 
disease, atrial fibrillation, and heart failure. Kidney disease is a grouping of stages G2 to G5 of chronic kidney disease as defined by the National 
Institute for Health and Care Excellence (NICE) (NICE, 2015). Liver disease in most cases refers to cirrhosis and hepatitis. Malignancy cases 
vary from lung, bladder, prostate, skin cancer to haematological. Those underlying conditions did not show significant differences in severe 
infections or poor outcome. Despite kidney disease classification not showing correlation, estimated Glomerular Filtration Rate (eGFR) levels 
were significantly different across severity and outcome classes. Fever (temperature ≥ 38 °C), cough and shortness of breath (SOB) were noted 
at time of sample acquisition and did not show relation to severity or outcome. Pulse, systolic blood pressure (BP) and respiratory rate also taken 
at samples acquisition showed correlation with severity and outcome, where higher pulse, higher respiratory rate and lower blood pressure are 
associated with severe cases and poor outcome. Haemoglobin levels (Hb), white blood cell count (WBC), lymphocyte count (Lymphs), platelets 
count (PLTs), haematocrit (HCT) and alanine aminotransferase (ALT) measured at sample acquisition did not show significant correlation with 
severity and outcome. Urea, creatinine, and C-reactive protein (CRP) concentrations are consistently elevated in severe and deceased patients. 
Hb, WBC, Lymphs, PLTs and HCT were measured on Beckman analyser. ALT, urea, creatinine and CRP were measured on a Roche analyser. 
Reference ranges are provided in square brackets [] when available

Table 1   (continued)

Fig. 1   Predictive model based on 20 compounds selected for their 
identification confidence and known biological role (see Fig. 4). Bal-
anced accuracy and AUC for the specific train / test split are in the 
0.70 s and 0.80 s, respectively. ROC 95% confidence intervals were 
calculated with 2000 stratified bootstrap replicates on the test data 

and are presented as blue shading around the mean curve. The bal-
anced accuracy calculated using Monte Carlo cross-validation for 
these models is 0.716 for severity and 0.655 for outcome. Cross-vali-
dated AUC was calculated as ~ 0.79 in both conditions
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ESI + and ESI− results were grouped together (Anderson 
et al., 2014; Kell & Goodacre, 2014; Kell & Westerhoff, 
1986). However, pathways that showed multiple significant 
hits were further investigated. These included pyrimidine 
metabolism and tryptophan metabolism. A number of these 
are in accordance with recently published studies compar-
ing COVID-19 patients to healthy controls (Blasco et al., 
2020; Overmyer et al., 2020; Thomas et al., 2020). The 20 
compounds selected with this approach (shown with their 
significance in patient outcome Fig. 2) are further discussed 
below. Selected compound significance in the prediction of 
COVID-19 severity is shown in Figure S6.

2.5 � Elevated serum deoxycytidine 
and ureidopropionate association with severity 
and outcome

Deoxycytidine levels were increased over twofold in patient 
samples at admission who went on to develop severe symp-
toms or subsequently died (Figs. S7A, B). Furthermore, urei-
dopropionate, a pyrimidine degradation product, showed the 
largest Fold Change (FC) increase of 2.4. Similarly, elevated 
cytosine levels were found in COVID-19 patients when com-
pared to against healthy controls and 15 days post infection 
in (Blasco et al., 2020), but severity or outcome were not 
discriminated as they were here.

Uridine, another pyrimidine, was found to be significantly 
decreased in fatal outcome cases; however, its FC was close, 
but not significant in severe cases. Moreover, pseudouridine, 
an isomer of uridine, was increased in patient samples with 

Fig. 2   Compounds retained for severity and outcome predictive 
model. Box plot shows compound area differences between dis-
charged and deceased patients ordered by fold change. Compound 
areas are standardized (mean = 0, SD = 1) to facilitate compari-
son. Boxes represent the quartiles Q1 to Q3 with Q2 (i.e., median) 
line in the middle. The ‘whiskers’ depict the upper and lower limit 
i.e., Q1 ± (Q3-Q1). For visualization simplicity the data is clipped 
between 10 and 90 percentiles. The table on the right side of the 

figure shows detailed information about the compounds includ-
ing Fold Change (FC) and q-value (false discovery rate corrected 
p-value) following ‘star’ notation i.e., ‘***’ correspond to q-val-
ues < 0.001, ‘**’ < 0.01, and missing when > 0.1. In the case of 
‘180.05336@4.775 ‘, which was initially identified as nicotinuric acid 
at MSI level 3, further standard based validation refuted this identi-
fication. Therefore, the compound remains unknown. Further details 
can be found in ‘Compound identity validation’ section in Methods
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severe disease progression or deceased outcome. Pseudou-
ridine (Fig. 2) is a marker of cell ribosomal RNA (rRNA) 
turnover (Nakano et al., 1993), for instance in heart failure 
(Dunn et al., 2007).

2.6 � Tryptophan and kynurenine metabolism 
compounds associate with both severity 
and outcome

Kynurenine (a tryptophan degradation product) was signifi-
cantly increased in both severe cases and in patients who 
died, with a 1.5-fold change. The difference was even more 
marked for kynurenic acid in outcome, with levels increas-
ing over twofold.

In addition to changes in kynurenine and kynurenic acid, 
our results showed that a reduction in levels of serotonin 
(MSI level 3) and melatonin (MSI level 3) were associated 
with COVID-19 severity and death. We also observed an 
increase in serum levels of cortisol with q-value of 0.006 
and ~ 1.3-fold in severe cases as well as those who died. The 
observed changes in tryptophan metabolism appear to be 
related to an immune response to SARS-CoV-2 since the 
activity of tryptophan dioxygenase, a tryptophan-degrading 
enzyme, is upregulated by cortisol and initiates degradation 
of tryptophan to kynurenine. Previous research (Thomas 
et al., 2020) has found a correlation between increases of 
interleukin 6 and kynurenine levels in COVID-19 patients 
compared to controls. Finally, kynurenine pathway upregula-
tion as part of an inflammatory response is known to nega-
tively impact serotonin levels (Hunt et al., 2020; Li et al., 
2017), as was observed in our results.

Interestingly, we observed nicotinamide (MSI 1) levels 
to be 1.5-fold higher in severe cases, but not significantly 
changed with respect to outcome. It is important to note that 
nicotinamide is related to kynurenine/tryptophan metabo-
lism (Murray, 2003).

2.7 � Beta oxidation metabolites, acylcarnitines, 
increased in severe and deceased outcome 
patients

Multiple fatty acyl carnitines, in particular hydroxybu-
tyrylcarnitine (> twofold), hexenoylcarnitine (1.4-fold) and 
hydroxyoctanoylcarnitine (~ twofold), were found to be sig-
nificantly higher in both severe and poor outcome cases. 
Long chain fatty acyl carnitines were not reliably detected 
here as the UHPLC gradient used for data acquisition is 
optimized for more hydrophilic molecules. Therefore, fatty 
acyl carnitines with more than 10-carbon FA chains were 
excluded from the analysis. On the other hand, carnitine 
(MSI level 1) and its precursors, i.e., lysine (MSI 1) and 
methionine (MSI 1), were unchanged in both severity and 
outcome.

2.8 � Other compounds

The final selection of compounds also includes arginine 
(MSI level 1) and S-adenosylhomocysteine (MSI level 1), 
a precursor to homocysteine. Levels of these compounds 
were significantly increased in patients who developed 
severe COVID-19 and those with a fatal outcome. Indeed, 
higher levels of S-adenosylhomocysteine have been found 
in patients with various cardiovascular disorders, metabolic 
syndrome, and inflammatory disorders (Catena et al., 2015; 
Choi et al., 2014; Schaffer et al., 2014; Soda, 2018). Moreo-
ver, the model includes N1-acetylspermidine (MSI level 1) 
that was reported along with spermidine by (Thomas et al., 
2020) as increased in COVID-19 patient sera compared to 
controls. Interestingly, in contrast to N1-acetylspermidine, 
spermidine did not show significant changes in relation to 
either severity or outcome. N1-acetylspermidine was also 
found to be related to COVID-19 prognosis in a smaller, 
recent study (Danlos et al., 2021); however, in contrast to our 
findings lower levels were associated with an unfavourable 
outcome. Finally, the model includes creatinine (MSI level 
2) which, in accordance with the clinically acquired data, 
tends to increase in patients with fatal outcomes but did not 
increase with disease severity.

2.9 � Model compounds adjusted for demographic 
factors and underlying conditions

Confounders are an important issue in omics studies (Broad-
hurst & Kell, 2006), and several factors (age, gender, BMI, 
and existing inflammatory diseases) are recognised as pre-
disposing patients infected with COVID-19 to severe dis-
ease and poor outcome. Any impact on compound levels 
simply from population demographics and underlying con-
ditions was explored with logistic regression. Individual 
compounds’ OR and 95% CI for outcome as adjusted for 
age, gender, BMI, diabetes, liver, kidney, and cardiac dis-
ease and all together are presented in Table 2. The severity-
based table is available in the supplementary information 
(Table S3). It is important to note that identifying links 
between those factors and the compounds of interest is 
meaningful when evaluating their biological role; however, 
being ‘confounded’ does not invalidate their predictive 
power and relevance in a predictive model. Additionally, 
it can be observed that not all compounds (e.g. kynurenic 
acid, cortisol) selected for their significant q-value and fold 
change showed significance based on 95% CI.

An important result from this analysis is that deoxycy-
tidine and kynurenine remained significant regardless of 
patient demographics or underlying conditions. By contrast, 
increases in abundance of short and medium fatty acyl-
carnitines in severity and outcome appear to be partially 
explained by age and BMI, as ORs tended to decrease when 
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adjusted; this may be correlated to frailty in ageing (Rattray 
et al., 2019). After adjusting for all recorded conditions in 
the study, only butyrylcarnitine, 3-hydroxybutyrylcarnitine 
and hydroxyhexanoylcarnitine showed a strong relation to 
disease severity. In respect to outcome, butyrylcarnitine 
remained the most significant. This indicates that higher 
levels of acylcarnitines are likely linked to metabolic differ-
ences in the patients prior to the viral infection. As such they 
could potentially indicate a risk group. Moreover, pseudou-
ridine’s significance was impacted by age, BMI and mildly 
by cardiac conditions and hypertension. This in itself is not 
a confounding issue since both age and BMI also contribute 
statistically to the outcome of COVID-19 (Hussain et al., 
2020; Iaccarino et al., 2020).

Interestingly ureidopropionate, despite maintaining 
strong significance when adjusted for all factors, showed an 
increased OR when adjusted for age in fatal outcome case. In 
contrast, ureidopropionate’s OR dropped when adjusted for 
age and BMI in severe (vs mild) cases. Lower ureidopropi-
onate levels have also been associated with an increased risk 
of developing type 2 diabetes mellitus and coronary artery 
disease (Ottosson et al., 2018).

A recent publication found an association between gender 
and kynurenic acid levels in COVID-19 patients suggestive 
of sex-specific differences in immune responses and clinical 
outcomes (Cai et al., 2021). In our results, gender correc-
tion did not impact kynurenic acid OR in either outcome 
or severity. However, this simple observation does not dis-
prove the more complex and thoughtful analysis that was 
performed in the paper by Cai et al. Moreover, our attempt 
to further consider kynurenine to kynurenic acid ratio was 
unsuccessful due to wide variations in our cohort result-
ing in numerical instabilities in the regression method when 
applied to those ratios.

2.10 � Validation study

Validation is an important aspect in metabolomics stud-
ies not only to validate statistical results but to also ensure 
reproducibility (Gromski et al., 2015). The Bayesian logistic 
model described above was trained on the discovery cohort 
data and used to predict severity and outcome in a separate 
cohort of 90 patients in a blind manner i.e., data acquisi-
tion and data analysis (model predictions) were performed 

Table 2   Adjusted logistic regression results by outcome

Positive OR indicate increased levels in patients with poor outcome and are presented with OR (95% CI). Significance is presented in ‘star’ nota-
tion i.e., ‘***’ correspond to p-values < 0.001, ‘**’ < 0.01, ‘*’ < 0.05, ‘.’ < 0.1 and missing when > 0.1. Compounds are adjusted for age, gender, 
BMI, liver conditions, cardiovascular diseases, hypertension, kidney disease, diabetes and all together. Details of specific diseases in each cat-
egory are available in the Methods section
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without knowledge of patient outcome or severity. Results 
from this blind prediction are as follows: the outcome 
AUC was 0.83 (CI 0.74–0.91) for outcome and 0.76 (CI 
0.67–0.86) for severity (Fig. 3).

The validation study effort was focused on the 20 com-
pounds identified in the discovery study (Fig. 2). UHPLC-
MS/MS peak areas were extracted for these compounds in 
Trace Finder (see Materials and Methods) to allow for more 
detailed and controlled signal mapping between batches 
and studies. In the case of ‘deoxycytidine’ all three cyto-
sine events were summed up i.e., cytosine, cytidine, deoxy-
cytidine. This approach was employed because automatic 
software pre-processing in Compound Discoverer showed 
multiple alignment issues between batches of those cytosine 
events close in RT and resulting from cytosine, cytidine, and 
deoxycytidine source fragmentation (see Sect. 1.1). For this 
reason, these will be referred to as cytosine-based nucleo-
sides in the following paragraphs.

Kynurenic acid (ESI-) showed poor acquisition signal 
in the validation study and was removed from the model. 
Uridine (ESI-) and pseudouridine (ESI-) showed significant 
distribution differences after normalization between the 
data acquired for the discovery study patients and valida-
tion study patients. Such study bias can mislead the model 
therefore these two compounds were also removed from the 
validation model.

All areas for the remaining 17 ESI + compounds were 
normalized by batch (using pooled QC samples for each 
batch) and between batches (using inter batch IQAs) as 
described in methods for all discovery and validation 
batches. This ensured relative areas of the 17 compounds 
were comparable between the 2 studies so the model could 
be trained on the discovery study and used to predict the 
validation study patients.

It is important to note that at the time of the validation 
cohort, which was later than those in the discovery phase, 
patients were regularly treated with dexamethasone, an anti-
inflammatory corticosteroid that by this time was known to 
have efficacy as a treatment agent (NHS, 2020; RECOVERY, 
2021). This change in patient treatment is likely a possible 
explanation of the drop in AUC for severity prediction as this 
could have influenced the patient state severity perception.

As shown in Figure S8, higher levels of S-adenosylhomo-
cysteine, propionylcarnitine, ureidopropionate and kynure-
nine are highly influential factors in this multivariate out-
come model, combined with low levels of tryptophan and 
uracil. Interestingly creatinine, octanoylcarnitine and hex-
anoylcarnitine show a negative influence once conditioned 
on these other compounds. In terms of severity, ureidopro-
pionate and S-adenosylhomocysteine showed the strongest 
positive influence. However, these results need to be inter-
preted with caution due to conditioning e.g., on mediators. 

Still, it is interesting to note that there is broad agreement 
on directionality between the models.

2.11 � Longitudinal study

Finally, a longitudinal sample of 28 severe patients with 
divergent outcomes from the discovery cohort (13 deceased 
and 15 discharged) were analysed using UHPLC-MS in 
7 batches for a total of 198 samples. The samples were 
acquired throughout the patients’ stay on different days and 
with a different number of samples for each patient. Areas of 
the compounds previously selected in the predictive model 
were extracted in TraceFinder to allow for reliable compari-
son as alignment between batches suffered similar issues as 
those described in the validation study section.

Initial analysis of the longitudinal data via individual time 
series plots did not present clear patterns (not shown). This 
is most likely due to the irregular interval between samples, 
the different times of day of sample acquisition, medication 
interference, measurement variability and the general com-
plexity of biological processes. However, when focusing the 
analysis on the changes of those compounds throughout the 
hospital stay, i.e., the difference between the first and last 
sample of each patient, some compounds showed significant 
directional changes based on logistic regression analysis. 
Figure 4 shows the significant compounds, ureidopropionate 
(A), uracil (B), arginine (C) and tryptophan(D).

It appears that levels of ureidopropionate are signifi-
cantly increased in patients who subsequently died, but lev-
els remained unchanged in discharged patients. In addition, 
the role of this pathway is strengthened by the significant 
inverse relation in uracil levels (an increase) in discharged 
patients. Interestingly, cytosine-based nucleotides did not 
show significant differences in levels between deceased 
and discharged patients 0.67 (0.26–1.5) OR (95% CI), with 
the wide CI indicating strong variability between individu-
als. When it comes to tryptophan levels, we can see that 
discharged patients experienced increases in levels, where 
deceased patients saw a drop in tryptophan levels. Neither 
kynurenine 0.66 (0.27–1.4) or kynurenic acid 1.2 (0.52–3.6) 
showed significant deltas probably due to the broad varia-
tion between patients or possibly suffering from precursor 
deficiency in some cases.

3 � Discussion

In this study we employed untargeted metabolomics using 
UHPLC-MS/MS to detect and measure changes in the 
baseline serum metabolome of a cohort of 120 COVID-
19-infected patients at the point of hospital admission. We 
used this to build a predictive model of disease severity and 
outcome then validated our findings in a blind study on an 
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additional 90 patients. Furthermore, we explored the tem-
poral evolution of patient serum metabolome in the longi-
tudinal data of 28 severe patients. Our aim was to find not 
only prognostic markers of subsequent disease severity and 
outcome, but to also understand what impact COVID-19 
infection has on the patient’s metabolome, and conversely 
what effect patient biochemistry and physiology might have 
on infection development. These results could then be used 
to guide patient treatment and medical attention require-
ments following COVID-19 diagnosis. Most early studies 
applying metabolomics to COVID-19 human patients have 
compared them against healthy controls; this is of limited 
predictive value, as rapid PCR and point-of-care antibody 
tests exist and does not provide an insight into what bio-
chemical changes drive disease severity or outcome. Moreo-
ver, a number of these studies (Table S1), used either a small 
patient cohort or applied targeted metabolomics restricting 
the breath of possible findings; some also lacked proper sta-
tistical analysis (see Broadhurst & Kell, 2006; Trivedi et al., 
2017)).

Our results showed that distinct alterations in the serum 
metabolome were already capable of identifying patients 
with higher risk of severe illness or fatal outcome at the time 
of diagnosis and admission. More importantly, using both 
univariate and a multiple predictor Bayesian logistic regres-
sion model we found a subset of 20 metabolites (16 of which 
could be identified to MSI Level 1) with relevant biological 
functions that are predictive of subsequent disease severity 
and patient outcome with AUC 0.792 and 0.793 respectively. 
These metabolite differences are centred particularly around 
pyrimidine, tryptophan and acylcarnitine metabolism, which 
can be related to viral presence/replication (and/or the 
virus’s stimulation of host biosynthesis), host inflammation 
response and alterations in energy metabolism.

3.1 � Alterations in pyrimidine metabolites 
predictive of severity and outcome

Viral infections induce characteristic changes in host cell 
metabolism to enable effective viral replication (Thaker 
et  al., 2019). Moreover, the resulting metabolic impact 
and cellular reprogramming varies between viruses (even 
within the same family) and host cell type. In the case of 
SARS-CoV-2, cytosine has been described as pivotal in the 
virus’ evolution (Danchin & Marlière, 2020) where avoid-
ance of host defence mechanisms have favoured a reduced 
cytosine proportion in viral RNA, estimated at 17.6%. 
When compared to typical human RNA, the cytosine pro-
portion is significantly lower. In contrast to cytosine, the 
proportion of uracil in SARS-CoV-2 is estimated at around 
32.4% (Danchin & Marlière, 2020) and it is significantly 
higher than that in human RNA. This difference between 
host nucleotides anabolic processes and viral RNA needs 

could result in significant levels of cytosine-based ribonu-
cleotides and deoxyribonucleotides being accumulated in 
infected cells.

CTP synthetase, the enzyme converting UTP to CTP, is 
allosterically inhibited by CTP, therefore allowing the virus 
to thrive despite its RNA composition differences. However, 
the reduction of the ribonucleotides to deoxyribonucleotides 
by ribonucleotide reductase is nonspecific, and its activity 
is not modulated by CDP or CTP (Hofer et al., 2012). This 
could allow the small differences in CTP to UTP ratios to be 
amplified in their reduced form, consistent with the princi-
ples of metabolic control analysis (Kell & Mendes, 2012). 
The accumulation of CDP and CTP in infected cells could 
result in breakdown and potentially deoxycytidine being 
excreted from the cells as waste product or released at cell 
death. It is important to note that SARS-CoV-2 has been 
found to use lysosomal trafficking to exit the cell (Ghosh 
et al., 2020), therefore leaving an open question on how the 
deoxycytidine is being released into the systemic circulation.

The high levels of ureidopropionate, a product of pyrimi-
dine catabolism, observed in patients with severe disease 
and poor outcome also show activation of salvage pathways, 
most likely driven by an excess of nucleosides. It is impor-
tant to note that the first step of cytidine breakdown is the 
conversion to uridine by cytidine aminohydrolase therefore, 
reducing the gap between cytidine / uridine levels. High lev-
els of ureidopropionate have been linked to neuropathology 
and showed to act as endogenous neurotoxin (Kölker et al., 
2001).

Cytosine has been reported previously to discriminate 
between COVID-19 patients and uninfected controls (Blasco 
et al., 2020), but has not been assessed regarding severity or 
outcome. Here, our analyses showed that deoxycitidine lev-
els were predictive of subsequent disease severity and out-
come. Serum deoxycitidine levels were increased over two-
fold in serum from patient samples at admission who went 
on to develop severe symptoms or subsequently died (Figure 
S7 A and B). Given the reduced incorpration of cytosine into 
SARS-CoV-2, these results may indicate a higher viral load 
and replication, subsequently leading to the development of 
severe symptoms, in some cases resulting in death.

Increased viral reproduction could be due to an initial 
higher viral load, a host environment favourable to viral 
reproduction, or the effective stage of the infection. It is 
thus not possible to draw mechanistic conclusions from our 
results; nevertheless, the deoxycitidine OR remained stable 
when adjusted for demographic factors and known underly-
ing conditions indicating that those factors are not significant 
with respect to viral replication rates. This would be more 
consistent with the fact that the initial load before admis-
sion is the most important parameter affecting both disease 
severity and outcome.
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Given these results, measurement of deoxycitidine and 
ureidopropionate, could potentially allow tracking of viral 
activity and predict recovery or aggravation. However, as 
highlighted by (Migaud et al., 2020) the levels of certain 
nucleobases are also increased in patients who die from sep-
sis and acute respiratory failure. Further investigation would 
be required to tease out the contributions of SARS-CoV-2 
viral replication to the levels of these pyrimidines against the 
secondary effects of the virus on the host (human).

Pseudouridine, was also noted to be increased in severe 
cases and poor outcome. As mentioned previously, pseudou-
ridine (Fig. 2) is a marker of cell (rRNA) turnover (Nakano 
et al., 1993), for instance in heart failure (Dunn et al., 2007). 
When adjusting for cardiovascular disease this compound 
remained significant but showed slight correlation with 
hypertension and age (Table 2). Finally, when adjusted for 
all factors pseudouridine 95% CI lost significance indicating 
correlation with more than one factor. Interestingly, growing 
evidence points toward complications in COVID-19 aris-
ing through a vasculopathy and coagulopathy elicited by the 
infection (Pretorius et al., 2020) and thus, increased pseu-
douridine levels may be indicative of this process.

3.2 � Tryptophan—kynurenine degradation

The degradation of tryptophan to kynurenine is often associ-
ated with increase in inflammatory processes (Schröcksnadel 
et al., 2006). In the context of this study the non-significant 
decrease of tryptophan in severe cases could be explained 
either by a change in dietary habits, possible weight loss, 
sarcopenia, or more likely by the higher stimulation of tryp-
tophan to kynurenine degradation indicated by the signifi-
cant increase in levels of kynurenine and kynurenic acid. 
Upregulation of this process was further confirmed by the 
higher levels of cortisol, which stimulates tryptophan deg-
radation, especially in severe cases (Table 2). An increase in 
patient kynurenine levels has also been reported in COVID-
19 patients compared to controls (Thomas et al., 2020), asso-
ciated with severity (Overmyer et al., 2020), and also linked 
to fatal sepsis development (Migaud et al., 2020). This pro-
vides strong evidence of higher levels of immune response in 
severe cases and those with a fatal outcome. More recently, 
upregulation of tryptophan metabolites including kynure-
nine has been found to play a protective role in radiation 
injury during cancer radiotherapy (Guo et al., 2020) indi-
cating that these relationships are more complicated than 
previously thought, and also involve the gut microbiome.

3.3 � Fatty acid beta oxidation

The levels of short and medium chain acylcarnitines have 
been previously reported by (Thomas et al., 2020) as being 
reduced in COVID-19 patients versus controls irrespective 

of Interleukin 6 (IL6) levels. In this study we identified mul-
tiple short chain acyl carnitines as significantly increased in 
severe and fatal cases compared to mild cases and discharged 
patients. Changes in serum acylcarnitines have been previ-
ously associated with cardiovascular disease, diabetes and 
inflammation (Anderson et al., 2014). Moreover, increased 
levels of octanoyl-l-carnitine have been previously associ-
ate with arterial stiffness (Kim et al., 2015) and dysregu-
lation of the carnitine shuttle. Long chain acyl carnitines, 
not detected in this study, have been additionally reported 
in relation to frailty in the elderly (Rattray et al., 2019). 
Moreover, accumulation of fatty acid oxidation products 
was found linked to mitochondrial disfunction (Wajner & 
Amaral, 2016). Finally, fatty acid β-oxidation has been asso-
ciated with T-cell development and differentiation (Lochner 
et al., 2015).

Indeed, adjusted logistic regression results (Table 2) for 
these compounds in our study show that some of their sig-
nificance can be explained by BMI levels. This could pos-
sibly indicate differences in energy metabolism in response 
to viral infection linked to pre-existing phenotype; i.e., BMI 
and therefore represent a high-risk group.

3.4 � Compounds requiring further investigation

Our study highlighted several other compounds (not dis-
cussed here) that changed significantly in severity and 
outcome. However, as is common in metabolomic studies 
(Blaženović et al., 2018; Salek et al., 2013; Shrivastava 
et al., 2021), these require further rigorous identification 
following the Metabolomics Standards Initiative (MSI) for 
reporting metabolite identification (Sumner et al., 2007) and 
so were not included in the predictive model at this stage. 
Examples of such compounds include pentahomomethio-
nine (MSI 3) and trihomomethionine (MSI 3), both sulphur-
containing amino acids. These were both increased in severe 
cases and were especially high in patients with a fatal out-
come. Other sulphur-containing compounds such as cysteine 
and taurine have been found to be reduced in COVID-19 
cases compared to controls, and in COVID-19 patients with 
moderate-high IL-6 levels (Thomas et al., 2020). Homome-
thionines such as penta- and tri-homomethionine identified 
in our results are formed by transamination of oxo-acids that 
are themselves formed during fatty acid breakdown, pos-
sibly indicating a pro-catabolic phenotype as is common in 
inflammation (Underwood et al., 2006) and possibly sug-
gestive of sarcopenia.

Another compound worthy of further attention is ergot-
hioneine. Ergothioneine is a potent exogenous antioxidant, 
usually acquired via the consumption of mushrooms (Boro-
dina et al., 2019; Cheah & Halliwell, 2012). The potential 
protective value in SARS-CoV-2 infections of ergothioneine 
was recently reviewed by (Cheah & Halliwell, 2020). The 
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results of our study found ergothioneine levels to follow the 
expected trend, i.e., lower in severe cases and poor outcome 
in accordance with findings by (Wu et al., 2020); however 
its q-values (in a population whose mushroom consumption 
was neither monitored nor controlled) fell just slightly short 
of significance (see Fig. S12A, B). Moreover, piperine (MSI 
2) (representative of black pepper consumption) was inter-
estingly found significantly decreased in severe cases and 
poor outcome (see Fig. S12C, D). This most likely reflects 
dietary changes in the patients experiencing severe symp-
toms; however, the potential impact of piperine to the host 
organism is not fully understood.

3.5 � Limitations and future work

Whilst untargeted UHPLC-MS analysis can detect large 
number of compounds of diverse chemical classes, limita-
tions in the compound coverage can result from sample 
preparation methods, LC solvents and gradient elution pro-
files. In this study the serum extraction and LC gradient 
were targeted at hydrophilic compounds, and hence numer-
ous lipids were not reliably measured, e.g., long chain acyl 
carnitines. Despite this limitation several lipids that exhibit 
amphiphilic properties e.g., phospholipids and fatty acids 
were detected and showed significant changes between 
the patient groups studied. However, confirmation of their 
identity will require further work before being integrated 
into a predictive model.

Additional limitations in the presented work come from 
the preselection of metabolic features that were individu-
ally significant following volcano plot analysis. While this 
simple method of feature selection narrows the list of com-
pounds it also prevents us from identifying more complex 
interactions in the case of disjoint populations.

Despite these limitations, multiple significant biological 
processes were identified as key in discriminating between 
disease severity and outcome. Future work will aim to quan-
titate those changes.

3.5.1 � Conclusions

We have here performed a well-powered, untargeted metabo-
lomics analysis of serum of COVID-19 patients with the aim 
of finding prognostic markers of disease severity and out-
come. Using both univariate and a multivariable Bayesian 
logistic regression model we found a subset of 20 metabo-
lites with relevant biological functions that are predictive of 
subsequent disease severity and patient outcome. Although, 
no individual metabolite appeared be strongly discrimina-
tive on its own, a combined model based on viral activity, 
host immune response and underlying metabolic differences 
showed promising predictive results with AUC 0.792 and 
0.793, for outcome and severity, respectively. Furthermore, 
we validated those findings in a blind study on 90 additional 
patients with AUC of 0.83 and 0.76. Longitudinal explora-
tion of some of these potential markers showed strong rela-
tion to poor outcome opening opportunities to differentiate 
between recovery and aggravation states. These markers 
hold promise to improve patient care upon COVID-19 infec-
tion and diagnosis.

4 � Methods

All UHPLC-MS data acquired is freely available in mzML 
format in the MetaboLights repository (Haug et al., 2019) 
with study identifier MTBLS2997 (www.​ebi.​ac.​uk/​metab​
oligh​ts/).

Fig. 3   Predictive model perfor-
mance based on 17 ESI + com-
pounds previously selected 
in the discovery study. ROC 
95% confidence intervals were 
calculated with 2000 stratified 
bootstrap replicates on the test 
data and are presented as blue 
shading around the mean curve. 
A Monte Carlo cross-validation 
results estimate the model 
balanced accuracy at 0.63 for 
severity and outcome

http://www.ebi.ac.uk/metabolights/
http://www.ebi.ac.uk/metabolights/
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4.1 � Sample acquisition

All samples were acquired at the Royal Liverpool Univer-
sity Hospital (RLUH) on the first positive SARS- CoV-2 
test (not fasted and different times of the day). Surplus 
serum was saved after routine diagnostic testing on patients 
admitted to the hospital who subsequently tested positive 
for SARS-CoV-2 via PCR. Blood was initially collected 
into VACUETTE Clot Activator tubes (Greiner, Germany) 
within approximately 48 h of presentation and centrifuged 
at 1500×g for 10 min within 60 min of collection. Sur-
plus serum was stored at − 80 °C prior to processing and 
analysis. Ethical approval for the use of serum samples and 
associated metadata in this study was obtained from North 
West – Haydock research ethics committee (REC ref: 20/
NW/0332).

4.2 � Sample preparation for metabolomics analysis

Patient serum samples were thawed at room temperature and 
maintained on ice throughout the sample preparation pro-
cess. Samples were prepared by addition of 100 µL of sample 
to a 2 mL Eppendorf containing 350 µL methanol (LC–MS 
grade) previously cooled at − 80 °C and maintained on dry 

ice. The mixture of serum and methanol was vortexed vigor-
ously followed by centrifugation at 18,000×g for 15 min at 
4 °C to pellet proteins. Multiple 75 µL aliquots (for extrac-
tion replicates) of the resulting supernatant were then dried 
in a vacuum centrifuge (ScanVac MaxiVac Beta Vacuum 
Concentrator system, LaboGene ApS, Denmark) with no 
temperature application and stored at − 80 °C until required 
for UHPLC-MS/MS analysis.

Batch quality controls (QC) and conditioning QC sam-
ples were also prepared in this way by first pooling together 
equal amounts from each patient sample within a batch. 
Inter-batch quality assurance (IQA) samples were prepared 
with the same protocol using pooled serum samples of non-
COVID-19 patients provided by RLUH. Therefore, those 
samples are not representative of the study samples, but 
representative of the general hospital population and sam-
ple acquisition and storage practices. All IQA samples were 
prepared at the same time at the beginning of the study to 
minimize variation between batches resulting from sample 
preparation.

Additional inter-batch quality assurance samples were 
prepared using commercial pooled human serum (BioIVT, 
Lot BRH1413770, Cat: HMSRM, mixed gender 0.1 um fil-
tered) spiked with internal standards. Here, 100 µL sample 

Fig. 4   Level of selected compounds for significant change in level 
between first and last patient sample. Ureidopropionate (A), ura-
cil (B), arginine (C) and tryptophan (D) levels showed significantly 
different evolution measured by logistic regression OR and 95%CI. 

Y axes reflect the difference in ion counts or peak areas difference 
between the first sample and last sample per patient. Boxplot mark-
ings follow the same standard as Fig. 4
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were added to a 2 mL Eppendorf containing 330 µL metha-
nol (LC–MS grade) and 20 µL of an internal standard mix-
ture (ISTDs) as described in (Wright Muelas et al., 2020). 
The mixture of methanol and internal standards (ISTDs) was 
previously cooled at − 80 °C and maintained on dry ice 
when adding serum. A template run order and description 
of samples is provided in the Supplementary information 
(Table S4).

Extraction blanks were prepared in the same way as 
serum samples replacing serum with 100  µL of water 
(LC–MS grade).

Prior to analysis, samples were resuspended in 40 µL 
water (LC–MS), centrifuged at 17,000×g for 15 min at 4 °C 
to remove any particulates and transferred to glass sample 
vials.

4.3 � UHPLC‑MS/MS analysis of patient serum 
samples

Untargeted UHPLC-MS/MS data acquisition was per-
formed as described in (Wright Muelas et al., 2020) and 
using published methodologies and guidelines (Broadhurst 
& Kell, 2006; Broadhurst et al., 2018; Brown et al., 2005; 
Dunn et al., 2011; Mullard et al., 2015; Raad et al., 2016). 
Data were acquired using a ThermoFisher Scientific Van-
quish UHPLC system coupled to a ThermoFisher Scientific 
Q-Exactive mass spectrometer (ThermoFisher Scientific, 
UK). Samples for the longitudinal aspect of this study were 
analysed in the same way but using a ThermoFisher Scien-
tific ID-X Tribrid mass spectrometer (ThermoFisher Sci-
entific, UK). Mass spectrometer operation and details are 
provided in Supplementary Information.

Samples were analysed following guidelines set out in 
(Dunn et al., 2011) and (Broadhurst et al., 2018) and in 
the order per batch as described in Table S4. Briefly, blank 
extraction samples were injected at the beginning and end 
of each batch to assess carry over and lack of contamina-
tion. QC samples, prepared by pooling equal aliquots of ana-
lytical samples in each batch, were applied to condition the 
analytical platform, assess reproducibility and to correct for 
systematic errors within batches. Quality Assurance (QA) 
samples were also incorporated in every batch at regular 
intervals. Two pools of hospital patient serum (referred as 
Inter-batch quality assurance (IQA)) and commercial serum 
(referred as SQA) were prepared at the beginning of the 
study and used in every batch allowing batch alignment in 
the data processing step. Samples with isotopically labelled 
internal standards spiked in (SQA, see Sample preparation 
for metabolomics analysis) were used to monitor mass accu-
racy. IQA samples were subsequently used to correct peak 
areas across all batches. Four randomly selected samples 
from each analytical batch were run in duplicate replicates 
to further assess reproducibility.

4.4 � UHPLC‑MS/MS data pre‑processing and analysis

Untargeted compound pre-processing was used for the dis-
covery study and a targeted area extraction was employed 
in the validation study. However, data acquisition in both 
studies was performed with the same untargeted UHPLC-
MS method.

4.5 � Discovery study data pre‑processing

Raw instrument data from all batches in.RAW file format 
were exported to Thermo Fisher scientific Compound Dis-
coverer 3.1 (CD3.1) for deconvolution, alignment and anno-
tation (full workflow and settings as described in (Wright 
Muelas et al., 2020)) based on IQA samples.

Compound grouping was performed in CD3.1 where 
6971 metabolic features in ESI + and 3122 metabolic 
features in ESI- were retained. Retained compounds are 
selected based on presence in more than 80% of the IQA, 
CVs less than 30% and signal 5 times higher than the blank 
injections. From those metabolic features 267 in ESI + and 
142 in ESI- were identified against ThermoFisher Scientific 
‘mzCloud’ spectral library with score higher than 70% (MSI 
2) or against in-house spectral library with score higher than 
75% (MSI 1) and full match on proposed molecular formula 
from CD 3.1. For all data acquired, annotation and identifi-
cation criteria were according to (Sumner et al., 2007).

4.6 � Validation and longitudinal study data 
pre‑processing

Areas for the 20 compounds previously selected for the 
model were extracted in Thermo Fisher Scientific Trace 
Finder 5.1 software from the.RAW files. A compound 
fragmentation database was obtained from Compound Dis-
coverer from previous runs. The quan master method was 
employed to allow summing up of all events in cases of 
metabolic features eluting across multiple peaks such as 
cytosine and cytosine-containing compounds where source 
fragmentation was observed, or butrylcarnitine where mul-
tiple elution peaks were observed. The ICIS detection algo-
rithm was employed for all metabolic features; however, 
other detection algorithm settings (e.g., peak detection strat-
egy, peak threshold type) and retention times settings (i.e., 
detection type and RT window) were tuned individually to 
each metabolic feature allowing for controlled selection of 
the peak area in every sample. Exported areas were further 
processed in R for normalization and statistical analysis.

4.7 � Area normalization and batch correction

A custom 2-step normalization was used to correct for 
small within-batch runtime drift and larger between-batch 
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variations in both studies. To perform this, non-normalized 
peak areas from CD3.1 were exported as a.csv file. QC-
based area correction was performed in R (version 4.0.2) 
as discussed in (Dunn et al., 2011) using the fANCOVA 
package. The QC correction was performed on each batch 
independently to remove runtime drift intensity variations. 
Subsequently, variation between batches was corrected using 
correction to the mean based on IQA injections for each 
metabolite separately. PCA plots comparing the results for 
different normalization approaches are included in the sup-
plementary information (Figure S13). This approach was 
taken as no available tool (Misra, 2021) allowed to normal-
ize taking into account inter-batch time drift and between 
batch variation.

4.8 � Metadata and multiblock analysis

The following metadata variables were used for multivari-
ate analysis: gender, age, BMI, Glasgow coma scale (GCS), 
NEWS, pulse, temperature, blood pressure, respiratory rate, 
Hb, WBC, Lymphs, PLTs, HCT, ALT, total bilirubin, urea, 
creatinine, eGFR, CRP, FiO2 (%) and O2 saturation (%). The 
description of the biochemical tests is presented in Table 1. 
There were 1.44% missing values in this meta data set; these 
were imputed by using K-NN imputation algorithm (Troy-
anskaya et al., 2001).

The multiblock analysis was performed on three data 
blocks: UHPLC-MS ESI + /ESI− data and metadata. For 
each block, the data matrix was auto-scaled so that each var-
iable has a mean of 0 and a standard deviation of 1. In addi-
tion, a block scaling factor which is the inverse of the square 
root of the number of variables of this block was applied to 
compensate differences in variance due the difference in the 
number of variables. A multiblock PCA (MB-PCA) model 
called consensus PCA (Smilde et al., 2003; Xu & Goodacre, 
2012) was applied to the three blocks of data. The results 
of this MB-PCA model are consisted of one super scores 
matrix which represents the common trend of all the blocks 
and three block scores matrix which represents the pattern of 
each block under perspective of the common trend.

4.9 � Selection of significant metabolic features

Background features and metabolic features detected in 
less than 25% of the samples were excluded from further 
analysis. Metabolic features were further filtered based 
on False Discovery Rate (FDR) corrected p-value (i.e., 
q-value) significance < 0.05 and log2 fold change > 0.5 in 
severity (i.e., severe vs mild cases) and outcome (i.e., dis-
eased vs discharged patients). p-values were calculated using 
the Mann–Whitney as the data did not satisfy normality 
assumption required for a T-test. The usually adopted log 

transformation approach to satisfy T-test requirements also 
tended to overemphasize low abundance metabolic features.

Significant differences (q-value < 0.05 and absolute log2 
fold change > 0.5) were found for 1143/601 metabolic fea-
tures in ESI ± when comparing severe against mild cases, 
with 1650/680 metabolic features (ESI ±) when compar-
ing between outcomes. For simplicity, due to the overlap in 
patients across the two comparisons performed (severity and 
outcome), the union of significant features across these two 
comparisons was taken forward for further analysis, with a 
total of 1987/973 ESI ± metabolic features.

4.10 � UHPLC‑MS signal curation

Significant metabolic features were manually curated in 
CD3.1 based on the UHPLC signal quality and MS spec-
tra. UHPLC quality was assessed based on between-batch 
retention time (RT) overlap and clear peak separation with 
smooth peak appearance. MS spectra were evaluated on the 
detection of preferred ion i.e., [M + H]+ and [M-H]− with at 
least 2 isotopes. Additionally, metabolic features where the 
signal was filled by CD gap fill option for more than 20% of 
the QC samples and 90% of the samples were also excluded.

Where metabolic features of interest were detected in 
both ESI+ and ESI−, the clearest signal was retained for 
further analysis. When necessary, standards were run to con-
firm MS/MS, RT and signal intensity in each ESI polarity. 
Specifically, in the case of uridine and pseudouridine best 
separation and signal intensity detection of standards was 
achieved in ESI-, therefore negative polarity data was used 
for those compounds.

4.11 � Pathway enrichment analysis

Pathway enrichment analysis was performed in MUMMIC-
HOG (Li et al., 2013) version 2 incorporated in Metabo-
Analyst (Pang et al., 2020). To match the MUMMICHOG 
requested m/z feature format, resolved masses retrieved from 
CD analysis were altered to achieve [M + H]+ adduct for 
ESI + and ESI- results. The MUMMICHOG adduct option 
was set to recognize exclusively [M + H]+ adducts. This 
allowed processing of ESI+ and ESI− results together and 
minimize false hits due to multiple adduct matches. Path-
ways with a high number of significant hits were further 
manually investigated and hits subsequently verified by MS, 
RT, MS/MS and match against standards when available.

4.12 � Compound identity validation

The identity of the compounds retained for the model was 
validated against standards whenever possible. Standard 
validation was performed against RT and MS/MS profile of 
1 µM and 10 µM standards in water or appropriate solution. 
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In some cases, e.g., cytosine derivatives, asparagine and 
ureidopropionate the standards were also spiked in to pooled 
study serum at 5 µM to validate the RT in the matrix.

MS/MS profile exploration was performed in the case of 
ureidopropionate due to a poor MS/MS capture in the untar-
geted data acquisition. A targeted Parallel Reaction Monitor-
ing (PRM) method focused on the 133.06077 m/z ion at a 
limited scan range of 66.7 to 200 m/z was performed. The 
quadrupole isolation window was set to 1.2 m/z reflecting 
the original method value. This setup allowed for the acqui-
sition of the MS/MS profile of this compound at any UHPLC 
gradient stage for all ions in a 1.2 m/z window range around 
133.06077 m/z. This approach provided best results in cap-
turing low intensity signal in areas of the UHPLC gradient 
with high event load as was the case with ureidopropionate.

In the case of the unknown metabolic feature 
‘180.05336@4.775 ‘, which was initially identified as nic-
otinuric acid at MSI level 3, further validation demonstrated 
that despite significant fragmentation profile overlap with 
nicotinuric acid the compound of interest structure is unde-
niably different based on UHPLC gradient elution. There-
fore, its identity remains unknown. More details related to 
compound identity validation and area calculation choices 
are available in the Supplementary information Sect. 1.1.

4.13 � Multiple predictor models

Reported results for multiple predictor models were pro-
duced with a Bayesian logistic regression model imple-
mented in R with rstanarm R package (Goodrich, 2020). 
Comparative analysis was performed with the extreme gra-
dient boosting xgboost R package (Chen & Guestrin, 2016; 
Friedman, 2001), Logistic regression with Generalized Lin-
ear Models (GLM) glm R package and GLM with Elastic net 
regularization glmnet R package (Zou & Hastie, 2005). Data 
were separated into training and test groups (80:20) with bal-
anced label ratios. Conservative regularization parameters 
were used to reduce overfitting. Bayesian GLM approach 
was set to increased regularization with prior scale = 1, for 
glmnet alpha was set to 0.1 and xgboost eta to 0.01 with 
max_depth = 1. Due to the large group disparities in out-
come, weights were incorporated in the model to handle 
class imbalance. Sparsity inducing parameters such as L1 
regularization in glmnet and lasso or hierarchical shrinkage 
prior in Bayesian GLM were avoided despite better results 
in some cases. This allowed to perform subgroup selection 
accounting for compound identity confidence level and 
known biological role. From the four compared methods 
Bayesian logistic regression consistently showed better gen-
eralization and was therefore retained for results reporting.

Mean and standard deviation for accuracy and AUC were 
estimated using cross-validation with 100 iterations. These 
cross-validation results were used to describe the model 

sensitivity to the data and not for hyperparameters opti-
mization. ROC plots with 95% confidence intervals were 
obtained from a randomly selected train/test partition using 
pROC R package with 2000 stratified bootstrap replicates 
on the test data.

4.14 � Adjusted compounds significance

Individual OR and 95% CI for selected compounds were 
evaluated with univariate logistic regression with General-
ized Linear Models (glm) implementation in R stats pack-
age. OR (95% CI) and p-values for significance are presented 
in the reported tables. Compounds are adjusted for age, gen-
der, BMI, liver disease, cardiovascular disease, hyperten-
sion, kidney disease (i.e., chronic kidney disease stages 2 
to 5), diabetes mellitus (type 1 or 2) and all together. Liver 
conditions include cirrhosis, hepatitis, alcoholic hepititis, 
autoimmune hepatitis, ascites, transplant, fatty liver disease. 
Cardiovascular conditons include ischaemic heart disease 
(IHD), atrial fibrillation (AF), cardiomegaly, cardiomyo-
pathy, left ventricular systolic dysfunction, left ventricular 
hypertrophy, left ventricular failure, congestive heart failure, 
drug induced myocarditis, heart failure, angina and Takot-
subo cardiomyopathy with IHD and AF being most frequent.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s11306-​021-​01859-3.
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