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Gambiense human African trypanosomiasis (sleeping sickness, gHAT) is a disease targeted

for elimination of transmission by 2030. While annual new cases are at a historical minimum,

the likelihood of achieving the target is unknown. We utilised modelling to study the impacts

of four strategies using currently available interventions, including active and passive

screening and vector control, on disease burden and transmission across 168 endemic health

zones in the Democratic Republic of the Congo. Median projected years of elimination of

transmission show only 98 health zones are on track despite significant reduction in disease

burden under medical-only strategies (64 health zones if > 90% certainty required). Blanket

coverage with vector control is impractical, but is predicted to reach the target in all heath

zones. Utilising projected disease burden under the uniform medical-only strategy, we pro-

vide a priority list of health zones for consideration for supplementary vector control

alongside medical interventions.
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The pinnacle of success for an infectious disease programme
is to drive the disease to eradication, resulting in complete
removal of morbidity and mortality, no longer requiring

interventions1. Of the human diseases targeted for eradication,
only one—smallpox—has currently achieved this objective, yet
there are several for which this remains the potentially elusive
goal (such as polio, Guinea worm, and yaws)2–5. Clear lessons
that can be learnt from many eradication programmes are: (i) the
often slow progress from low to very low case burden, (ii) the
ever-increasing effort required per case to tackle remaining
infection, and (iii) the question of whether eradication is even
epidemiologically or operationally feasible6.

One step down from eradication is elimination of transmission
(EOT) to humans, acknowledging that transmission pockets
could persist in non-human animal cycles7–9. This goal, arguably,
may be almost as challenging and fraught with the same hurdles
to overcome as eradication itself. Gambiense human African
trypanosomiasis (gHAT, sleeping sickness) is one such disease
with the EOT goal and within the last decade, it was still known
to be extant in 15 countries in the West and Central Africa10.
This parasitic infection is transmitted to humans via bites by
tsetse, with gHAT symptoms typically increasing in severity over
several years and leading to death without treatment. Remarkable
progress has been made to bring down the case burden across the
continent; cases fell to below 10,000 in 2009 for the first time
since the most recent epidemic started in the 1970s, and to only
953 in 201810–12. This reduction has sparked optimism that EOT
may be possible and the World Health Organization (WHO) has
set the goal of EOT by 203013,14. Indeed gHAT fulfils some of the
criteria associated with an “eliminable” disease15: we have a range
of field-proven tools and associated delivery mechanisms as well
as means of diagnosis and surveillance16. Unlike smallpox, gHAT
is not vaccine-preventable, but widespread testing, diagnosis and
treatment have worked well to curtail transmission12,17. Advances
in treatment have transformed the once toxic intravenous treat-
ment regime into an oral cure for most patients, however, con-
firmation of the parasite is currently still a requirement before the
drugs can be administered18,19. This means that infected indivi-
duals must be identified either by self-presenting at facilities with
gHAT diagnostics due to symptoms or by specially-trained
mobile screening teams targeting villages with recent case
reporting16. A complementary intervention of tsetse control has
not been used widely to date but has been shown to be effective at
rapidly reducing vector populations in some gHAT-endemic
regions where it has been implemented20–22. The key questions
are (1) how much current tools for gHAT can reduce gHAT
burden, and (2) whether they are sufficient to reach EOT in the
next 10 years, and if so, how expansive might their use have to be
to get there.

The Democratic Republic of the Congo (DRC) is the country
with the greatest number of reported gHAT cases. Due to the
concerted efforts of the national sleeping sickness control pro-
gramme in the DRC (PNLTHA-DRC), the number of reported
cases dropped below 1000 in the country in 2018. However, the
DRC still accounted for ~70% of global cases (660 out of 953
cases) in that year10,12. Therefore, the DRC is a critical country on
which the achievement of EOT by 2030 hinges.

In order to project the trend of gHAT burden and ultimately
assess EOT feasibility, this study focuses on quantitative fore-
casting of gHAT across the endemic health zones in the DRC to
examine if, how, and when EOT could be expected under stra-
tegies based on currently available tools. Health zones are the
administrative units at which public health care is managed and
each has a population of between 29,010 and 613,072 people (the
median size is 157,338)23. Previous DRC-specific predictive
modelling studies have provided insights into expected timelines

to EOT in Equateur province24, and parts of Bandundu
province25–29 under continuation of medical-based strategies
with or without vector control. From these studies, it is clear that
a one-size-fits-all approach is unlikely to be sufficient to meet this
highly ambitious target in the next decade. Although coverage of
active screening has been driven by local numbers of cases,
additional data-driven guidance could help to further tailor
strategy selection.

In this article, we enlarge the geographical scope of previous
predictions to include 168 health zones across the whole country,
utilising our recently published fitting results30 to examine the
strategies of active screening (AS) with or without supplementary,
large-scale vector control (VC) on top of the local passive
screening (PS) system to stop gHAT transmission by 2030 in
the DRC. These health zones are ones considered to be endemic
during the 2000–2016 period, having reported cases in a mini-
mum of 5 years. We aim to identify regions which are likely to be
successful in substantially reducing disease burden and achieving
local EOT on their current trajectory and ones where enhanced
control may be required to meet this target. Furthermore, we
provide a priority list of health zones where intensification of
strategies is most urgent based on where is expected to experience
the greatest disease burden whilst also being unlikely to reach
EOT by 2030. A graphical user interface (GUI) to complement
this article was set up to provide full-model outputs.

Results
Projection trends in different risk settings. Our gHAT model, a
deterministic, mechanistic, SEIRS-type model, was independently
fitted to longitudinal human case data from 2000 to 2016 in
168 health zones in the DRC by Markov chain Monte Carlo
(MCMC) methods30. We used parameter estimates from our
previously fitted gHAT model (posteriors are available at https://
hatmepp.warwick.ac.uk/fitting/v2/ and simulated active and pas-
sive cases in 2000–2016 can be also viewed at https://
hatmepp.warwick.ac.uk/projections/v2/) to simulate forward
projections in 168 health zones under four strategies: two
medical-only strategies which comprise of active and passive
screening (MeanAS and 40%AS), and two medical strategies with
supplementary vector control from 2020 (MeanAS+VC and 40%
AS+VC). The two selected active screening coverage levels are
the mean of the last 5 years of data (2012–2016) and 40% of the
health zone’s population in 2014. Projections were run for
2017–2050 independently with parameter uncertainty in each
health zone. Table 1 in “Methods” gives more detailed informa-
tion on the strategies presented in the main text while results of
HistMaxAS and HistMaxAS+VC strategies (historical maximum
coverage achieved in AS between 2000 and 2016) and VC sen-
sitivity analyses can be found in Supplementary Note 2: Results
and our GUI at https://hatmepp.warwick.ac.uk/projections/v2/.
Those health zones with little or no interventions and/or case
reporting were excluded from the original model fitting and
hence from these projections30.

Figure 1 shows assumed numbers of people screened and
model outputs (i.e. active and passive cases, new infections, and
probability of EOT) for the four strategies in two example health
zones: Kwamouth (in the former Bandundu province) and
Tandala (in the former Equateur province). Both health zones
had significant numbers of cases in the early 2000s and still have
on-going transmission despite annual AS. Kwamouth, with 1068
reported cases in 2012–2016 (estimated 2015 population of
127,205), falls within WHO’s definition of a “high-risk” category
for gHAT (1–10 cases/1000 per year averaged over 5 years), while
Tandala is only “low-risk” (38 reported cases in 2012–2016 and
estimated 2015 population of 274,945 – i.e. 1–10 cases/100,000
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per year). Historical AS data shows that Kwamouth had
substantially higher proportions of people screened than Tandala.
Despite very high coverage of AS in Kwamouth, achieving EOT
by 2030 is predicted to only be possible when VC is added—the
model suggests that transmission will be interrupted completely
within 4 years once VC begins. Unlike Kwamouth, Tandala
appears extremely likely to achieve EOT by 2030 with the 40%AS
strategy and EOT even occurs in 59% of projections under the
less intensive MeanAS strategy. Projections under each strategy
for each health zone can be found in our GUI at https://
hatmepp.warwick.ac.uk/projections/v2/.

Timelines to, and certainty of, EOT. The year of elimination of
transmission (YEOT) is defined in our modelling framework as
the first year that the EOT criterion is met (i.e. the number of new
infections is less than one). Health zone maps of the median
YEOT under the four strategies are shown in Fig. 2. Using the
median value of YEOT, health zones can be classified into three
categories: on track (YEOT≤ 2030), slightly behind schedule
(2030 < YEOT ≤ 2040), and greatly behind schedule (YEOT >
2040) to meet the EOT goal. We predict 75 health zones are on
track, 28 are slightly behind schedule, and 65 are greatly behind
schedule under the MeanAS strategy. Data show low coverage of
AS (median AS coverage is 7.7% and lower than 25% AS coverage
in 95% health zones) may be responsible for predicted delays in
EOT in health zones outside the former Bandundu province. The
40%AS strategy improves YEOT by an average of 2 years (95%
CI: [0, 17.3]) and therefore its predictions are less pessimistic: 98
health zones are on track, 24 are slightly behind schedule, and 46
are greatly behind schedule. There are only three health zones,
Bolobo, Kwamouth, and Masi Manimba, all in the former Ban-
dundu province that screened more than 40% of their popula-
tions on average during 2012–2016. With VC starting in 2020,
all health zones are predicted to achieve EOT by 2024. The 40%
AS+VC strategy could further bring forward YEOT by up to 2
years (although the 5-year data bins in Fig. 2 obscure this
nuance). It is possible for different strategies to have very similar
YEOT distributions within a health zone especially if EOT is
expected to have already occurred.

The median YEOT provides a point estimate of when to expect
EOT but not the degree of certainty that the goal will be met by
2030. The probability of elimination of transmission (PEOT) by
2030, which reflects the distribution of YEOT, captures the
uncertainty of model predictions. Consequently, low values of
median YEOT cannot guarantee EOT by 2030. One example is
Inongo in the former Bandundu province, which has a median
YEOT of 2019 but the PEOT by 2030 is <1 under both medical-
only strategies. Figure 3 shows PEOT by 2030 in each health zone
under four strategies. Three uncertainty categories of model
predictions are particularly interesting: EOT is very likely to be
met by 2030 if PEOT > 0.9, EOT by 2030 is highly uncertain when

0.3 < PEOT < 0.7, and EOT is very unlikely to be met if
PEOT < 0.1. The model predicts that 42 health zones are very
likely to meet the goal and 60 are almost certain to miss it under
the MeanAS strategy. High uncertainty in EOT is reported in 33
health zones. Despite the distribution of YEOT being shifted
forward in general under the 40%AS strategy (22 extra health
zones become very likely to meet the goal by 2030), there are still
40 health zones that remain highly uncertain because of their
wide YEOT distributions. With VC starting in 2020, a tight
distribution of YEOT means EOT by 2030 is extremely likely
everywhere even if its median is quite close to 2030.

Case reporting has been the primary but indirect measure for
burden and underlying transmission. So one may expect different
health zones with the same number of reported cases very likely
to have different disease burden, predicted years of EOT and
certainty in EOT by 2030. Lusanga and Mosango health zones
in the former Bandundu province are geographically connected
and both had 13 total reported cases in 2016. Our model predicts
EOT to happen in 2029 and 2027 under the 40%AS strategy
and the probability of EOT as 60% and 83%, respectively. These
differences come from underlying epidemiological variation such
as relative risk of high-risk people, tsetse density or time to
detection through passive screening (linked to health facility
coverage and attendance). The explanations for some of these
differences are explored in our fitting paper30 and the posterior
distributions of the parameters can be found in the accompanying
GUI at https://hatmepp.warwick.ac.uk/fitting/v2/.

Prioritising health zones. Decision-making for gHAT strategy is
challenging; national programmes have the flexibility to implement
nuanced, spatially-heterogeneous interventions, however, they must
adhere to more general WHO recommendations and local budget
constraints. In this study, we rank strategies by how ambitious the use
of additional interventions is and examine the minimum required to
meet the 2030 EOT goal in each health zone—referred to here as the
“preferred strategy”. Maps showing the preferred strategy under
different levels of certainty in EOT as predicted by the model are
given in Fig. 4. Under the criterion of PEOT> 0.9 (left map), pre-
ferred strategies are defined as the strategies which achieve EOT by
2030 in at least 90% of simulations. The criterion of PEOT= 1 (right
map) further restricts preferred strategies to achieve the goal by 2030
in all simulations. According to the ordered ranking (MeanAS, 40%
AS, MeanAS+VC, and 40%AS+VC), the least ambitious strategy
among all that meet the PEOT criterion is selected as the preferred
strategy. This order of ambition ranking was based on the following
principles: MeanAS represents the continuation of current inter-
vention, 40%AS is a higher but likely achievable level of intervention,
and VC is a new intervention to all health zones except Yasa Bonga.
Notably, 40%AS+VC is absent in any of the preferred strategy maps
because all health zones are expected to achieve the EOT goal by
2030 under the MeanAS+VC strategy which requires less resources.

Table 1 Strategies considered for projections (2017–2050).

Strategy AS coverage VC effectiveness PS coverage

name from 2017 from 2020 from 2017

MeanAS Mean (2012–2016) 0% Same as 2016
40%AS 40% of the population 0% Same as 2016
MeanAS+VC Mean (2012–2016) 90% for Yasa Bonga; 80%

everywhere else
Same as 2016

40%AS+VC 40% of the population 90% for Yasa Bonga; 80%
everywhere else

Same as 2016

AS active screening, VC vector control, PS passive screening.
VC effectiveness is denoted here by the proportional reduction in tsetse population after 1 year of implementation. Strategies without VC are not considered in Yasa Bonga because VC has been
implemented since the middle of 2015.
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Maps showing lower PEOT thresholds (from PEOT= 0.5 upwards)
can be found in the GUI at https://hatmepp.warwick.ac.uk/
projections/v2/ and far less intensification would be required if a
50% probability of meeting the goal by 2030 is considered to be
sufficient.

Switching to intensified strategies is generally expected to reduce
disease burden and increase confidence that EOT will be achieved.
Despite our prediction that many deaths should be prevented by
either the 40%AS or MeanAS+VC strategies (Supplementary Fig. 4),
the model predicts that a relatively low percentage of health zones

Fig. 1 Time series of key model outputs in two example health zones. Kwamouth (left panels) in the former Bandundu province and Tandala (right
panels) in the former Equateur province represent a high-risk and a low-risk health zone, respectively. There are n= 10,000 independent samples, 10 from
each of 1000 independent samples from the joint posterior distributions of the fitted model parameters. The top row shows the number of people actively
screened, the middle three show direct model outputs (active cases, passive cases and underlying new infections from top to bottom), and the bottom row
shows the probability of achieving EOT by year. Shaded regions denote that the specificity in AS was improved to 100% from 2018 in both health zones.
Black lines and box plots indicate data and model fit in the last 5 years (2012–2016), coloured dashed lines denote the assumed AS starting in 2017, and
colour box plots and circles present the predictions for four strategies (as defined in Table 1). Box plots summarise parameter and observational
uncertainty. The lines in the boxes present the medians of predicted results. The lower and upper bounds of the boxes indicate 25th and 75th percentiles.
The minimum and maximum values are 2.5th and 97.5th percentiles and therefore whiskers cover 95% prediction intervals. Full-model outputs
(2000–2050) of all 168 analysed health zones are available in the graphical user interface at https://hatmepp.warwick.ac.uk/projections/v2/. AS active
screening, VC vector control, Spec specificity, EOT elimination of transmission.
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will eliminate transmission by medical-only strategies with high
probability (38% under PEOT> 0.9 and 19% under PEOT= 1). We
used the historical data in conjunction with model assumptions to
understand the causes of the apparent high need for VC and suggest
where and what kind of intensified interventions could result in the
achievement of EOT by 2030.

Using the WHO’s risk categories, health zones can be classified as:
moderate- or high-risk (≥1 case per year on average per 10,000), or
low- or very low-risk (≥1 but <100 cases per year on average per
1,000,000). Based on data from 2012 to 2016, there are 125 health
zones in low- or very low-risk categories. One may assume these
health zones should be on track to meet EOT by 2030 since they have
low reported cases in recent years, however, the model predicts the
majority (68 health zones) need VC to achieve EOT by 2030 with
more than 95% probability. The discrepancy arises from uncertainty
in model predictions due to the recent low coverage of AS. It is AS
which provides information on quantifying the underlying transmis-
sion and affects model predictions. In order to maximise resource
efficiency, reductions in AS commonly happen when fewer cases are
reported. More than 95% of the low- or very low-risk health zones
screened a total of less than 50% of its population in the last 5 years
(i.e. less than 10% annually). As a result, VC is favoured in model
predictions and may be unnecessary in practice in low- or very low-
risk health zones. For moderate- or high-risk health zones, the model
predicts nearly all health zones (36 out of 43) need VC to meet EOT
by 2030 with more than 95% probability. Although VC seems a
reasonable tool in moderate- or high-risk health zones, unfortunately
it is unlikely to be practical to roll out large-scale VC in all of them in
this short timeframe.

The symptoms of gHAT are generally mild and non-specific
before trypanosomes cross the blood-brain barrier, however,

progression to more severe symptoms and then death is the
outcome when infected humans are missed by AS and never
identified in PS. Thus, the disability-adjusted life years (DALYs)
of gHAT, a broad measure of overall disease burden, are mainly
comprised of deaths outside the health care system. Health zone
maps of total deaths under the MeanAS strategy (Supplementary
Fig. 3) and deaths averted under intensified interventions
(Supplementary Fig. 4) are available in Supplementary Note 2:
Results. By identifying health zones that have greater than 50 total
deaths predicted in 2017–2030 under the 40%AS strategy we
compiled a priority shortlist of health zones in the former
Bandundu province where VC implementation is practically
feasible and highly recommended by mathematical modelling:
Kwamouth, Masi Manimba, Bokoro, Bagata, Mushie, Kimputu,
Mokala, Bulungu, Nioki and Kenge (as shown in Fig. 5). More
than 95% of health zones have mean AS coverage lower than 25%,
therefore a secondary suggestion is to increase the coverage of AS,
especially in the moderate- or high-risk health zones.

Graphical user interface (GUI). A graphical user interface (GUI),
hosted at https://hatmepp.warwick.ac.uk/projections/v2/, was
built to provide interactive visualisation of the data and model
outputs of all 168 analysed health zones under all simulated
strategies. The time series figures including the number of people
actively screened, active cases, passive cases, underlying new
infections and deaths are re-generated automatically when a
health zone is selected from the drop-down menu or by clicking
on the country map. The predicted elimination map shows a
graphical summary of YEOT and PEOT. The exact median values
and 95% prediction intervals for YEOT are available when

Fig. 2 Health zone median year of elimination of transmission (YEOT)
maps for the DRC. The median YEOT provides the year in which 50% of
model simulations reach EOT in each health zone. The top two maps
show strategies without VC (except for Yasa Bonga health zone
which is shown with VC in all maps) and the bottom maps have VC
strategies with 80% vector reduction. The left maps simulate the
continuation of the mean AS coverage and the right two simulate
40% AS coverage. The uncertainty of YEOT is not shown in these maps
(only the average prediction). The exact median values and 95%
prediction intervals for YEOT are available in the graphical user
interface at https://hatmepp.warwick.ac.uk/projections/v2/.
Shapefiles used to produce maps are available under an ODC-ODbL
licence at https://data.humdata.org/dataset/drc-health-data. AS
active screening, VC vector control, EOT elimination of transmission,
YEOT year of elimination of transmission.

Fig. 3 Health zone probability of elimination of transmission (PEOT) by
2030 maps for the DRC. PEOT reveals the uncertainty of model predictions
about whether EOT will occur. Health zones with PEOT>0.9 (dark blue) will be
very likely to achieve EOT by 2030, and PEOT<0.1 (dark red) will be very
unlikely to meet it. Health zones with mid-range PEOT (0.3–0.7) have high
uncertainty in the success or failure of the strategy to meet the goal either
because (1) the median YEOT is close to 2030, or (2) the wide distribution in
the predicted YEOT. The two identical maps (with PEOT= 1 everywhere) at the
bottom show that VC is an efficient tool that ensures EOT has extremely high
certainty. Maps of PEOT by other years are available in the graphical user
interface at https://hatmepp.warwick.ac.uk/projections/v2/. Shapefiles used to
produce maps are available under an ODC-ODbL licence at https://
data.humdata.org/dataset/drc-health-data. AS active screening, VC vector
control, EOT elimination of transmission, PEOT probability of elimination of
transmission, YEOT year of elimination of transmission.
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hovering over health zones on the map. While the map defaults to
PEOT by 2030, maps of PEOT by other years (2020–2040) are
available via a controlling slider. In a separate tab, the preferred
strategy map is shown and defaults to a threshold of PEOT > 0.9.
Preferred strategy maps for lower PEOT thresholds are available
by selecting the desired PEOT level via the controlling slider.

Discussion
The presented model predictions are based on the previously fitted
deterministic mechanistic gHAT model (to 2000–2016 case data)30

and assumptions of different strategies starting from 2017. Using a

mechanistic, SEIR-type model not only provides parameter estimates
that describe the dynamics of infection but also allows us to simulate
future dynamics under various strategies, including those not con-
ducted in the health zone previously. Although stochastic models
naturally capture the stochasticity of chance events when approach-
ing EOT, similar dynamics and predicted EOT years were reported at
the health zone level from both the stochastic and the deterministic
gHAT models31–33. Other simpler model variants published else-
where are not considered in this study as none of them can achieve
good health zone-level fits to the WHO HAT Atlas data aggregated
by health zone and year22,25,29.

Fig. 4 Health zone preferred strategy maps for the elimination of transmission (EOT) by 2030 in the DRC. The preferred strategy is defined as the least
ambitious strategy which is predicted to achieve EOT by 2030 with a prescribed confidence level (90%, 95% and 100%). The order of ambition ranking is
MeanAS, 40%AS, MeanAS+VC and 40%AS+VC. All health zones are predicted to achieve EOT by 2030 (PEOT= 1) under the MeanAS+VC strategy so
40%AS+VC is absent here. The MeanAS and 40%AS strategies were not considered in Yasa Bonga because VC started in mid-2015. Preferred strategy
maps for smaller PEOT thresholds are available in the graphical user interface at https://hatmepp.warwick.ac.uk/projections/v2/. Shapefiles used to
produce maps are available under an ODC-ODbL licence at https://data.humdata.org/dataset/drc-health-data. AS active screening, VC vector control,
EOT elimination of transmission, PEOT probability of elimination of transmission.

Fig. 5 Identified health zones for supplementary vector control (VC) implementation in the former Bandundu province. Total deaths under the 40%AS
strategy present the disease burden under uniformly good AS coverage across all health zones. Colours indicate the probability of EOT by 2030 under the
40%AS strategy; blue denotes health zones that are likely to meet EOT by 2030, yellow denotes health zones with high uncertainty of achieving EOT and
red denotes health zones with low chance of meeting the 2030 goal. Our model identifies a priority list of ten health zones (highlighted by their names,
Kwamouth, Masi Manimba, Bokoro, Bagata, Mushie, Kimputu, Mokala, Bulungu, Nioki and Kenge) for consideration for supplementary VC implementation
because these health zones have high disease burden and low chance of achieving EOT under good AS coverage. Health zones outside of the former
Bandundu province are excluded from our modelling recommendation because of the concern of implementing feasibility. AS active screening, VC vector
control, EOT elimination of transmission, PEOT probability of elimination of transmission.
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This is the first publicly available analysis of gHAT predictions
for health zones across the whole of the DRC, and highlights
regions we expect to be successful, and those where there may be
challenges in managing disease burden and achieving the WHO
2030 target of EOT. Our custom-built GUI provides an inter-
active, user-friendly way to visualise these results and recom-
mendations. By providing estimated deaths (a broad measure of
overall disease burden), average predictions and 95% prediction
intervals for when we expect EOT to be met, and also the
probability of meeting the goal by 2030 in each health zone, we
aim to quantify not only regions which may need intensified
strategies, but those where current data may not be sufficient to
generate predictions with high certainty.

The preferred strategy maps in Fig. 4 show that the MeanAS
+VC strategy (or another intensified strategy) is likely needed in
a large proportion of the health zones. This finding brings up a
serious concern about the feasibility of scaling up VC in order to
achieve EOT in 10 years under resource constraints. The imple-
mentation of VC began in the southern part of Yasa Bonga in
2015 and expanded to cover three large rivers (Lukula, Kafi,
Inzia) and selected tributaries linked to fish ponds by 201734.
Scaling up of VC was slow and its feasibility was mainly deter-
mined by the availability of financial and human resources for
this new intervention. In the present study, the integration of
data, model assumptions, and model predictions identifies a
priority shortlist of ten health zones with high gHAT burden:
Kwamouth, Masi Manimba, Bokoro, Bagata, Mushie, Kimputu,
Mokala, Bulungu, Nioki and Kenge as regions where VC is pre-
dicted to be a beneficial supplementary tool – all these health
zones are predicted to have > 50 gHAT deaths between 2017 and
2030 and also unlikely to meet the EOT target by 2030 under the
40%AS strategy. Comparing our priority list for VC to the
planned VC scale-up in the DRC guided by recent case data,
modelling and habitat suitability (https://www.lstmed.ac.uk/
projects/tryp-elim-bandundu), six of ten priority health zones
identified by our model are currently targeted as operational areas
for VC expansion. Furthermore, our model suggests that the four
other health zones earmarked for scale-up (Bandundu, Kikongo,
Bolobo and Yumbi) would have been expected to have ≥25 deaths
without VC interventions.

Other health zones predicted to miss the 2030 EOT goal could
also benefit from this tool, although careful consideration is
required to assess whether scaling up medical interventions is
easier to implement than introducing large-scale VC. The
reported effectiveness of VC is high in general but the variations
between locations are non-negligible. According to our sensitivity
analysis on the effectiveness of VC (Supplementary Fig. 2), the
time difference in achieving EOT could be several years longer
with only 60% annual tsetse reduction, but this is still sub-
stantially faster than with medical-only interventions in many
settings. Our model forecasting would be more accurate if the
location-specific effectiveness of VC—which remains unknown in
most health zones—was taken into account. Pessimistic model
predictions can be found in some health zones where the coverage
of AS is very low recently or historically. Low AS coverage creates
additional uncertainty in model outputs and therefore can make
model predictions overly pessimistic (i.e. they could overstate the
need for VC in low- or very low-risk health zones). Exploring the
minimum AS coverage required to achieve EOT by 2030 would
be another mathematical modelling approach to address where
and what kind of intensified interventions are needed to
achieve EOT.

Whilst our policy recommendations are based on the expected
infection, disease burden and reporting dynamics in the next
decade, we also report long-term projections up to 2050. Making
long-term predictions is always a challenge for epidemiological

modelling in terms of uncertainty in a range of factors (e.g.
demographic and environmental changes). However, presenting
simulations up to 2050 provides illustrative outcomes beyond
2030, such as whether we expect the EOT goal to be missed by a
few years or if it might be totally infeasible. Whether elimination
is expected to occur before 2030, slightly beyond 2030, or after
2040 is a metric of value which our projections can be used to
assess. Our projections are used to consider whether current
strategy is on the right track to meet policy objectives or whether
a change in strategy is warranted; high levels of accuracy in model
projection at 2050 are not necessary for modelling to prove useful
in these assessments.

When the new data from 2017 onward becomes available, we
will be able to use it to validate our model by changing assumed
AS coverage to actual numbers of people screened and then
comparing the predicted active and passive cases to reported
cases. Subsequent re-fitting to the recent case data would further
refine model predictions presented here and is an important step
in the continuous process of modelling to support policy under
NTD-PRIME principles35 (Supplementary Table 3). Our model
framework is flexible and could be used to predict the impact of
unexpected future changes by estimating how they could alter
observable (i.e. reported cases and deaths) and unobservable
variables (i.e. new infections); in the present climate of the
COVID-19 pandemic and recent Ebola outbreaks in gHAT-
endemic parts of the DRC, this is particularly relevant and could
provide support in planning whether subsequent gHAT inter-
ventions should be altered due to unforeseen interruptions. Other
work by this modelling group specifically analysed the potential
impact of different COVID-19 interruptions to the gHAT pro-
gramme in the DRC and concluded that short interruptions to
active screening coverage only were unlikely to result in delays to
EOT due to the long timescale of disease progression in
humans33. If longer interruptions occurred and impacted both
active and passive screening then we would expect delays of
similar duration to the interruption itself, however, it is now
known that this worst-case scenario did not take place and the
main impact on the DRC programme was lower coverage of
active screening during 2020.

Without taking into account the potential impacts of animal
reservoirs, asymptomatic infections and secondary infections
from host/vector movement, our model results could be opti-
mistic on the issue of gHAT burden and EOT. However, our
predicted regions for enhanced control will remain on the list
should these alternative model formulations be utilised in future
modelling exercises. The impact of other factors such as the
screening of high-risk populations and the presence of animal
reservoirs on gHAT transmission have been studied by mathe-
matical modelling22,25,26,29,36,37. Recruiting high-risk individuals
can, unsurprisingly, improve the effectiveness of AS and bring
down the YEOT substantially26; the present framework could be
extended to quantify the impact of this type of improved AS.
Models considering an animal reservoir have largely been
inconclusive about the presence of zoonotic transmission (when
fitted to longitudinal human case data) however they have indi-
cated that animal reservoirs are unlikely to maintain the infection
by themselves22,25. An analysis including animal reservoirs could
yield different results for estimated deaths and YEOT predictions
presented here, although our previous work suggests that we
would probably not expect large qualitative differences. Another
concern is that transmission could be maintained through
asymptomatic humans38,39. Although a few modelling studies
have utilised frameworks explicitly incorporating asymptomatic
human infections29,37,39, there is limited observational data to
parametrise them with high certainty, and it is unclear how their
inclusion in this study would impact projections. Host or vector
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movement may play some role in spreading infection. Health
zones that achieve EOT earlier but are neighbouring higher
prevalence locations have a higher chance of resurgence due to
human mobility. The typical size of health zones in the DRC is
much bigger than the spatial scale of tsetse movement, although
epidemiological foci may overlap health zone boundaries and
could impact predictions. A stochastic model applied at a smaller
spatial scale is more suitable for addressing issues related to
chance events and their impact on EOT28. Given that our pre-
dictions are possibly optimistic, yet we still find health zones
reporting cases and unlikely to meet the 2030 EOT goal, this
highlights the urgent need to strengthen interventions in these
locations.

A new oral drug to treat gHAT—fexinidazole—has now been
approved for use in the DRC, and is being utilised in the country.
Despite the obvious advantages for patients, ease of transport and
administration, it is not deemed suitable for use in individuals
without parasitological case confirmation40, and hence is unlikely
to greatly impact on transmission as part of a strategy. A second
oral drug—acoziborole—hoped to be a safe single-dose cure, is
under clinical trial and could, in principle, radically change the
paradigm of diagnostic and treatment algorithms, especially in an
AS setting41. The non-toxic compound used in acoziborole may
allow mobile screening teams to “overtreat” rapid diagnostic test-
positive, gHAT suspects without parasitological confirmation.
Another important tool to measure elimination or detect re-
emergence of gHAT as prevalence approaches zero is its diag-
nosis. In contrast to the need to detect as many cases as possible
in epidemic and endemic situations, avoiding any false-positive
results becomes more important when the prevalence is low. A
promising new test with high specificity and sensitivity, iELISA,
was newly developed for this purpose42. Different from the
existing trypanolysis test, iELISA has lower requirements at both
the laboratory and the technical skill levels and therefore may be a
better tool for post-elimination monitoring as endemic countries
should be able to sustain it with little external financial and
technical support. Mathematical modelling could be used to
investigate the impact of potential diagnostic and treatment
algorithms and predict the impact of such strategies using aco-
ziborole and iELISA on EOT before they begin. These types of
novel interventions could be particularly helpful as we approach
the endgame for gHAT.

AS planning by PNLTHA-DRC is guided at a village level by
WHO recommendations. These include screening historical
gHAT prevalent villages and stopping AS after 3 years of zero
case detection and then switching to “reactive AS” when new
cases arise in PS16. Disease foci (transmission pockets) and
intervention areas may only cover small parts of the health zone.
We did not consider the geographical distributions of reported
cases within health zones in our model. Although our model
already produced fits well-matched to data, we expect that
the relative risk of high-risk humans (r) is underestimated and the
proportion of low-risk humans (k1) is overestimated due to the
assumption of homogeneity within health zones. Model fitting
and projections at smaller scales would provide more realistic
impacts on the efficacy of AS and VC when infections are highly
clustered in smaller areas or when incidence becomes very low
and triggers the cessation of AS. To achieve smaller-scale analyses
in the future there are a range of computational challenges that
would need to be overcome, such as an order of magnitude
increase in the number of locations to be fitted to, and greater
levels of stochastic noise in the data. In some smaller-scale
regions, there may simply not be sufficient historical data points
to allow for robust fitting of the model.

In this study, our four strategies were assumed to carry on
indefinitely without any stopping, however, the economic gains

and health risks associated with cessation should be examined. A
previous health economic analysis concluded that VC can be
cost-effective at low willingness-to-pay thresholds per DALY
averted in high-risk settings43. Taking account of the PNLTHA-
DRC algorithm of reactive screening, a novel health economic
analysis based on predicted model dynamics would allow for the
examination of cost-effective strategies rather than the “preferred
strategy” presented here based on a cruder ranking of “ambition”.

Looking across at other infections targeted for elimination, the
enormity of the challenge ahead becomes apparent—with many
of these programmes reaching ever-lower levels of disease, but
failing to meet elimination deadlines. Modelling in this study
suggests that, even though the elimination of gHAT in the near
future may be epidemiologically feasible with current tools, its
widespread, low-level persistence across the DRC could prove
operationally challenging for the achievement of the goal in the
short term. In many regions, there is considerable uncertainty
whether current interventions are sufficient to meet EOT in the
next 10 years, yet the prospect of intensifying strategies in dozens
of health zones may pose a large, possibly insurmountable, bur-
den on both financial and personnel resources. As further pro-
gress is made towards the elimination of gHAT, it will become
increasingly important to use data-driven methods to optimise
the endgame pathway based on practical strategies and use these
methods to quantify success.

Methods
Model. Previous modelling studies explored several model variants for some health
zones within the former Bandundu province in the DRC and a focus in Chad. They
showed that a simpler model variant (“Model 1”) which is a Ross–Macdonald style
model was unable to fit the case data well in the DRC or Chad and therefore
concluded that heterogeneous risk of human infections, participation in AS
structures and improvement in passive screening are essential to perform a good
model fit to observed longitudinal human case data22,25,29,44. Stochastic modelling
studies on gHAT dynamics towards EOT demonstrated surprisingly similar results
between deterministic and stochastic models despite wider prediction intervals for
EOT years by the stochastic model31–33. In this paper, we considered a passive
improvement on top of a previously developed variant (“Model 4”) of the Warwick
deterministic gHAT model25,26,30,44, which captures systematic non-participation
of high-risk groups in the population— anecdotally believed to be working-age
people spending time near tsetse habitat, and away from villages during active
screening activities, to predict gHAT dynamics by considering transmission among
humans, tsetse and non-reservoir animals.

As illustrated in Fig. 6, human hosts’ risk of infection categories are defined by
their different contact rates with tsetse. High-risk humans (subscript H4) represent
the working-age males and are r-fold more likely to receive bites than low-risk
humans (subscript H1). Any blood meals taken upon “other” hosts do not result in
infection. Both the proportion of low-risk humans (k1 from which we get the
proportion of high-risk humans, k4= 1− k1) and the relative bites on high-risk
humans (r) are fitted parameters in our model because we believe they would vary
geographically. Tsetse select their blood meal from one of the host types dependant
upon innate feeding preference and relative host abundance. We assume tsetse
preferentially feed on humans with a probability fH which is taken to be 0.0945, if
some other fixed value of fH was used this would impact the fitting of the other
model parameters, in particular meff in Supplementary Eq. (1). In contrast to the
assumption that low-risk humans randomly participate in active screening, high-
risk humans are assumed to never participate. This participating structure is
supported by data in previous model fits30. All infected individuals are assumed to
exhibit treatment-seeking behaviour regardless of risk, however, those in early-
stage infection have a much lower probability of seeking treatment compared to
those with late-stage infection. Thus passive detection is assumed to be dependent
on their disease progression (slower rate to detection for stage 1, ηH compared to
stage 2, uγH), which includes the health zone-specific availability of fixed health
facilities with gHAT diagnostics and underreporting. Tsetse bites are assumed to be
taken on humans or non-reservoir animals. However, the non-reservoir animal
species do not need to be explicitly modelled, i.e. this model variant does not
include tsetse to non-human animal transmission. Complete mathematical
descriptions are available in Supplementary Methods with detailed updates in
Supplementary Note 1: Model Updates.

Fitting. In a previous publication, we used the gHAT case data and annual screening
numbers in 168 health zones from the WHO HAT Atlas to individually fit the gHAT
model to health zone-specific trends from 2000 to 201630. The data are aggregated by
location, year, surveillance type and diagnosed disease stages (stage 1, stage 2 and stage
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unknown). Location was defined by the available geolocation and geographical iden-
tifier information, while surveillance type was either active or passive screening12,46,47.
Cases of gHAT are not reported across all of the DRC (only 290 out of 516 health zones
had any data for the 2000–2016 period), and some health zones have very little case
reporting or screening activities (122 health zones of the 290 reporting any data). We do
not include these locations in either fitting to the historical data or future predictions
and they are coloured grey on corresponding maps. Whilst we are not willing to make
quantitative predictions for the health zones coloured grey on our maps using our
model, we believe that these largely represent regions without transmission. For each
health zone we fitted, we estimated model parameters that are likely to geographically
vary across regions including basic reproduction number, the proportion of low-risk
humans, relative bites taken on high-risk humans, and reporting bias such as passive
treatment rates for both stages, passive reporting proportion and active screening
diagnostic specificity (Supplementary Table 2). The fitted model also takes into account
previous advances in medical, diagnostic, and control systems and assumes all false
positives found in active screening are assigned to stage 1. Samples from posterior
distributions of parameters were obtained by fitting to annual health zone-level data for
the period 2000–2016 using an adaptive Metropolis-Hastings MCMC method30. Pos-
teriors and fitted trends to case data are available at https://hatmepp.warwick.ac.uk/
fitting/v2/.

Forward projections. Major changes during the data collection period include
improvements to the PS systems in the former provinces of Bandundu and Bas Congo,
improved active case confirmation via a video recording of diagnostics in Mosango and
Yasa Bonga in the former Bandundu province from 2015, and implementation of large-
scale VC in Yasa Bonga since mid-2015. Based on the continuation of the current PS
system, we considered four strategies for projections from 2017 to 2050, which included
different coverage of AS and whether or not to implement VC from 2020. As sum-
marised in Table 1, the level of AS in a health zone is assumed to be either at the recent
(2012–2016) observed mean or at 40% of its population, and hence depends on the
historical data and population size in each health zone. HistMaxAS and HistMaxAS
+VC strategies (historical maximum level ever achieved in AS) were included in our
projections in Supplementary Note 2: Results. For VC, a fixed effectiveness of 80% tsetse
reduction after 1 year was used in the strategies with VC in all health zones except Yasa
Bonga, where effectiveness of 90% has been reported34. Other tsetse reductions (i.e. 60%
and 90%) were considered in sensitivity analyses in Supplementary Fig. 2. Further
model assumptions include: (1) in Yasa Bonga only strategies with VC are considered
since VC was already in place before 2017; (2) video confirmation of parasitological
diagnosis was included from 2018 in Bandundu health zones to avoid false-positive
diagnoses in AS; (3) automatic improvement of the diagnostic algorithms to 100%
specificity outside Bandundu when the detected case numbers were close to the
expected incidence of false-positive detections.

The dataset finished in 2016 and so forward projections were performed from
2017 to 2050, independently for each health zone. Parameter uncertainty was
represented by 1000 randomly selected sets of parameters from the health zone-

specific posterior distributions from the model fitting. Observational uncertainty in
predicted case numbers each year was considered by drawing ten random samples
from the predicted mean dynamics for each set of parameters. In model outputs,
10,000 samples for observable variables such as active and passive cases, and related
metrics were generated. On the other hand, unobservable variables like new
infections and the year of EOT were predicted by the 1000 model realisations
(parameter uncertainty but no sampling uncertainty).

Measuring elimination of transmission. As there is no direct way to observe
EOT, the WHO suggests a primary indicator of zero reported cases to measure the
achievement of EOT13,48. However, the number of reported cases depends largely
on the strength of medical interventions, so other methods to assess progress
towards EOT are desirable to complement imperfect case indicators47,49.

Fortunately, mechanistic modelling provides the means to both infer and
predict the unobservable transmission dynamics to assess EOT. Here, we calculated
the number of underlying new infections each year in the epidemiological model.
Unlike the discrete nature of populations, the outputs of deterministic models are
continuous and whilst they can asymptote to zero they will never reach it.
Therefore, to identify a realistic point at which EOT has been achieved, we
introduced a proxy threshold (=1) for annual new infections and assume that EOT
is achieved when the number of new infections is below the threshold
(Supplementary Note 1: Model Updates).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Case data used for model fitting in Crump et al.30 and screening data used to inform
future potential screening coverage were obtained through the World Health
Organisation (WHO) HAT Atlas. Identifiable data cannot be shared publicly because of
our data-sharing agreement with the WHO’s HAT Atlas which is under the stewardship
of the WHO. Data are available from the WHO (contact neglected.diseases@who.int or
visit https://www.who.int/trypanosomiasis_african/country/foci_AFRO/en/) for
researchers who meet the criteria for accessing confidential data. Timeframe for response
to requests would depend on the WHOs schedule.

Code availability
The Matlab code used to simulate this work is available in Open Science Framework at
https://osf.io/jza27/.
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Fig. 6 Illustration of compartmental gHAT model. The multi-host gHAT model is composed of one host species able to confer gHAT (humans), a further
non-reservoir species (others) and tsetse. After the incubation period, infected human hosts follow the progression which includes infectious stage 1
disease, I1H, infectious stage 2 disease, I2H, and non-infectious (due to hospitalisation) disease, R. Pupal stage tsetse, PV, emerge into unfed adults. Unfed
tsetse are susceptible, SV, and following a blood meal become either exposed, EV, or have reduced susceptibility to the trypanosomes, GV. Tsetse select
their blood meal from one of the host types dependant upon innate feeding preference and relative host abundance. High-risk humans are more likely to
receive bites than low-risk humans. Any blood meals taken upon “other” hosts do not result in infection. The transmission of infection between humans
and tsetse is shown by grey paths. This figure is adapted from the original model schematic25, which was published under a CC-BY licence.
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